energies-logo

Journal Browser

Journal Browser

Battery Thermal Management

A special issue of Energies (ISSN 1996-1073). This special issue belongs to the section "D2: Electrochem: Batteries, Fuel Cells, Capacitors".

Deadline for manuscript submissions: closed (30 September 2024) | Viewed by 7141

Special Issue Editors


E-Mail Website
Guest Editor
CMT—Clean Mobility and Thermofluids, Universitat Politècnica de València, 46022 Valencia, Spain
Interests: thermo- and fluid-dynamics in vehicles; thermal management in propulsive systems; experimental and numerical techniques for heat flow systems
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
CMT-Motores Térmicos, Universitat Politècnica de València, 46022 Valencia, Spain
Interests: turbomachinery; aerodynamics; internal combustion engines; computational fluid dynamics (CFD)

Special Issue Information

Dear Colleagues,

Many national and international regulations aim to reduce greenhouse emissions and pollutants. Towards this goal, electrified vehicles will play an important role. The element in the vehicle that has the greatest improvement potential is probably the battery. Efficient thermal management is needed to ensure that the battery temperature remains within its operational limits. Different battery thermal management methods have been studied in recent years, including both measurement and estimation of the heat generated by the battery’s cells, the state of charge, the state of health, the real capacity of the cells, the temperature distribution within the battery, etc.

This Special Issue is open to the latest research about theoretical, methodological, and experimental advances in the thermal behaviour of batteries in various applications. Topics of interest for the publication include but are not limited to:

  • Heat generation in batteries.
  • Batteries’ temperature measurement, control, and modelling.
  • Battery thermal management systems: passive and active cooling.
  • Thermal safety performance of batteries.
  • Advanced modelling of batteries’ thermal state.
  • Special cooling methods for fast charging.

Prof. Dr. Pablo Olmeda
Dr. Xandra Margot
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Energies is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • heat transfer in batteries
  • cooling systems in batteries
  • electro-thermal models of batteries

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 5280 KiB  
Article
Simulation of Battery Thermal Management System for Large Maritime Electric Ship’s Battery Pack
by Fu Jia and Geesoo Lee
Energies 2024, 17(18), 4587; https://doi.org/10.3390/en17184587 - 12 Sep 2024
Cited by 1 | Viewed by 1347
Abstract
In recent years, large power batteries have been widely used not only in automobiles and other vehicles but also in maritime vessels. The thermal uniformity of large marine battery packs significantly affects the performance, safety, and longevity of the electric ship. As a [...] Read more.
In recent years, large power batteries have been widely used not only in automobiles and other vehicles but also in maritime vessels. The thermal uniformity of large marine battery packs significantly affects the performance, safety, and longevity of the electric ship. As a result, the thermal management of large power batteries has become a crucial technical challenge with traditional battery management system (BMS) that cannot effectively solve the battery heating problem caused by electrochemical reactions and joule heating during operation. To address this gap, a battery thermal management system (BTMS) has been newly designed. This article presents the design of a large marine battery pack, which features a liquid cooling system integrated into both the bottom and side plates of each pack. The flow plate is constructed from five independent units, each connected by manifold structures at both ends. These connections ensure the formation of a stable and cohesive flow plate assembly. Although research on the BTMS is relatively advanced, there is a notable lack of studies examining the effects of liquid temperature, flow rate, and battery discharge rate on the temperature consistency and uniformity of large marine battery packs. This work seeks to design the cooling system for the battery pack and analyzes the impact of the temperature, flow rate, and battery discharge rate of the liquid fluid on the consistency and uniformity of the battery pack temperature on the overall structure of the battery pack. It was found that, in low discharge conditions, there was good temperature consistency between the battery packs and between the different batteries within the battery pack, and the temperature difference did not exceed 1 °C. However, under high discharge rates, a C-rate of 4C, there might have been a decrease in temperature consistency; the temperature rise rate even exceeded 50% compared to when the discharge rate was low. The flow rate in the liquid flow characteristics had little effect on the temperature consistency between the batteries and the temperature uniformity on the battery surface, and the temperature fluctuation was maintained within 1 °C. Conversely, the liquid flow temperature had little effect on the temperature distribution between the batteries, but it caused discrepancies in the surface temperature of the batteries. In addition, the liquid flow temperature could cause the overall temperature of the battery to increase or decrease, which also occurs under different discharge rates. Full article
(This article belongs to the Special Issue Battery Thermal Management)
Show Figures

Figure 1

Review

Jump to: Research

30 pages, 3784 KiB  
Review
A Comprehensive Review of Thermal Management in Solid Oxide Fuel Cells: Focus on Burners, Heat Exchangers, and Strategies
by Mingfei Li, Jingjing Wang, Zhengpeng Chen, Xiuyang Qian, Chuanqi Sun, Di Gan, Kai Xiong, Mumin Rao, Chuangting Chen and Xi Li
Energies 2024, 17(5), 1005; https://doi.org/10.3390/en17051005 - 21 Feb 2024
Cited by 14 | Viewed by 5132
Abstract
Solid Oxide Fuel Cells (SOFCs) are emerging as a leading solution in sustainable power generation, boasting high power-to-energy density and minimal emissions. With efficiencies potentially exceeding 60% for electricity generation alone and up to 85% when in cogeneration applications, SOFCs significantly outperform traditional [...] Read more.
Solid Oxide Fuel Cells (SOFCs) are emerging as a leading solution in sustainable power generation, boasting high power-to-energy density and minimal emissions. With efficiencies potentially exceeding 60% for electricity generation alone and up to 85% when in cogeneration applications, SOFCs significantly outperform traditional combustion-based technologies, which typically achieve efficiencies of around 35–40%. Operating effectively at elevated temperatures (600 °C to 1000 °C), SOFCs not only offer superior efficiency but also generate high-grade waste heat, making them ideal for cogeneration applications. However, these high operational temperatures pose significant thermal management challenges, necessitating innovative solutions to maintain system stability and longevity. This review aims to address these challenges by offering an exhaustive analysis of the latest advancements in SOFC thermal management. We begin by contextualizing the significance of thermal management in SOFC performance, focusing on its role in enhancing operational stability and minimizing thermal stresses. The core of this review delves into various thermal management subsystems such as afterburners, heat exchangers, and advanced thermal regulation strategies. A comprehensive examination of the recent literature is presented, highlighting innovations in subsystem design, fuel management, flow channel configuration, heat pipe integration, and efficient waste heat recovery techniques. In conclusion, we provide a forward-looking perspective on the state of research in SOFC thermal management, identifying potential avenues for future advancements and their implications for the broader field of sustainable energy technologies. Full article
(This article belongs to the Special Issue Battery Thermal Management)
Show Figures

Figure 1

Back to TopTop