Special Issue "Advanced Modelling and Control of Complex Nonlinear Mechatronic Systems–Volume II"

A special issue of Electronics (ISSN 2079-9292). This special issue belongs to the section "Systems & Control Engineering".

Deadline for manuscript submissions: 31 October 2022 | Viewed by 3908

Special Issue Editors

Dr. Truong Quang Dinh
E-Mail Website
Guest Editor
Energy Innovation Centre, WMG, University of Warwick, Coventry CV4 7AL, UK
Interests: mechatronic systems design; modelling and control; energy saving and management technologies; control theories and applications; battery management systems; renewable energy
Special Issues, Collections and Topics in MDPI journals
Dr. Junjie Chong
E-Mail Website
Guest Editor
Mechanical Engineering, Newcastle University Singapore, Singapore
Interests: virtual environments; AR & VR; robotics; smart sensing and human-machine interface
Prof. Dr. Adolfo Senatore
E-Mail Website
Guest Editor
Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy
Interests: mechatronic systems; frictional modeling and model-based control in automotive transmissions; lubrication in internal combustion engines and journal bearings; effects of nanoparticles as friction reducer additives; vibration measurement methods
Special Issues, Collections and Topics in MDPI journals
Prof. Dr. James Marco
E-Mail Website
Guest Editor
WMG, University of Warwick, Coventry CV4 7AL, UK
Interests: systems engineering; real-time control; systems modelling; design optimization; design of energy management control systems
Special Issues, Collections and Topics in MDPI journals
Dr. Andrew McGordon
E-Mail Website
Guest Editor
WMG, University of Warwick, Coventry CV4 7AL, UK
Interests: component sizing; batteries; systems modelling; powertrain modelling; supervisory control; powertrain usage cases
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

With the rapid development of computer-based technologies, a wide variety of complex mechatronic systems are used in different fields of application, such as robotic systems, manufacturing systems, heavy-duty equipment, and transportation systems. The control technology is therefore considered as the key enabler for high-performance mechatronic applications. However, there are always larger numbers of nonlinearities and uncertainties existing in complex mechatronic systems (such as material properties, system parameters, noises, and disturbances). These factors could significantly impact control system performance, leading to system instability. Hence, it is necessary to develop advanced and accurate models based on effective dynamic analysis and identification methods to have a better understanding of complex mechatronic systems. The developed models could be used to either design advanced control approaches (such as sliding mode control, H-infinity control, model predictive control, and robust adaptive control) or verify the control systems.

The International Conference on Mechatronics Technology (ICMT) is recognized as one of the foremost and world-renowned conference series in the fields of Mechatronics. This year, the 24th ICMT2021 is held at the Newcastle University in Singapore, Singapore on December 18th – 22nd, 2021, and will gather contributions from the broad research community, to present and discuss breakthroughs in the latest developments in Mechatronics and its applications. For further information about the 24th ICMT2021, please see: www.icmt2021.org   

Following the success of Volume I of this Special Issue, in this Volume II we continue to publish the highest quality articles, including, but not limited to, selected papers from the ICMT2021, to contribute to the main theme ‘Advanced Modelling and Control of Complex Nonlinear Mechatronic Systems’. This Special Issue will therefore introduce the most recent research findings, the progress, and the advancements of mechatronic systems empowered by advanced modelling and control technology, from both theoretical and practical perspectives.

Therefore, the Special Issue welcomes new studies of advanced mechatronic systems in the following fields (but not limited to these fields):

  • Advanced modelling techniques for complex mechatronic systems
  • Dynamic analysis and innovative identification methods
  • Model-based advanced simulation platforms for complex mechatronic systems
  • Model-based advanced mechatronic system prediction and predictive control
  • Advanced observer design and observer-based control for complex mechatronic systems
  • Model-based advanced control of complex mechatronic systems
  • Precision control of complex mechatronic systems
  • Robust and adaptive control of complex mechatronic systems
  • Fault diagnosis and fault-tolerant control in complex mechatronic systems
  • Real-time simulation and verification of complex mechatronic systems and control

Dr. Truong Quang Dinh
Dr. Junjie Chong
Prof. Dr. Adolfo Senatore
Prof. Dr. James Marco
Dr. Andrew McGordon
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Electronics is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • complex mechatronic system
  • nonlinearity and uncertainty
  • system modelling
  • system identification
  • observer
  • model-based control
  • observer-based control
  • prediction and predictive control
  • precision control
  • adaptive control
  • robust control
  • fault-tolerant control
  • Real-time simulation and verification

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
Adaptive Fuzzy Observer Control for Half-Car Active Suspension Systems with Prescribed Performance and Actuator Fault
Electronics 2022, 11(11), 1733; https://doi.org/10.3390/electronics11111733 - 30 May 2022
Viewed by 358
Abstract
In this paper, an adaptive fuzzy observer-based fault-tolerant controller is designed for a half-car active suspension system under the presence of uncertain parameters, unknown masses of passengers, and actuator failures. To improve the control performance, fuzzy logic systems (FLSs) are employed to approximate [...] Read more.
In this paper, an adaptive fuzzy observer-based fault-tolerant controller is designed for a half-car active suspension system under the presence of uncertain parameters, unknown masses of passengers, and actuator failures. To improve the control performance, fuzzy logic systems (FLSs) are employed to approximate the unknown functions caused by uncertain dynamics of the suspension system. Then, an adaptive control design is developed to compensate for the effects of a non-ideal actuator. To improve passenger comfort, both vertical and angular motions are guaranteed simultaneously under the predefined boundaries by the prescribed performance function (PPF) method. Besides, the objectives of handling stability and driving safety are also considered to enhance the suspension performance. The system stability is proved according to the Lyapunov theory. Finally, the effectiveness of the developed approach is evaluated by comparative simulation examples on the half-car model. The simulation results show that the proposed control can improve the suspension performance as the RMS acceleration value is decreased by 68.1%. Full article
Show Figures

Figure 1

Article
Study on the Compact Balance Control Mechanism for Guinea Fowl Jumping Robot
Electronics 2022, 11(8), 1191; https://doi.org/10.3390/electronics11081191 - 08 Apr 2022
Viewed by 389
Abstract
We developed a guinea fowl jumping robot with a one-axis momentum wheel mechanism with a passive hallux model. The Guinea fowl jumping robot was able to perform stable vertical jumping due to the linkage structure designed as a passive hallux model. Furthermore, we [...] Read more.
We developed a guinea fowl jumping robot with a one-axis momentum wheel mechanism with a passive hallux model. The Guinea fowl jumping robot was able to perform stable vertical jumping due to the linkage structure designed as a passive hallux model. Furthermore, we used the one-axis momentum wheel mechanism in the jumping robot for making the compact balance control mechanism that can control the body angle of the robot. Through the experiment, the conventional jumping robot uses the inertial tail to adjust the body angle in the air for stable landing and jumping. However, in the case of an inertial tail, it has a large volume and has a disadvantage in that stability is highly reduced when it collides with obstacles due to the shape of the inertial tail. Moreover, we performed a theoretical analysis, simulation, and experiment to verify the performance of the momentum wheel mechanism, and we confirmed that the passive hallux structure contributed to the jumping stability. Besides, we proved that the momentum wheel could adequately land on the ground by adjusting the body angle after vertical jumping. In addition, we demonstrated that the stability of the momentum wheel is higher than the inertial tail through collision simulation. Full article
Show Figures

Graphical abstract

Article
Development and Real-Time Performance Evaluation of Energy Management Strategy for a Dynamic Positioning Hybrid Electric Marine Vessel
Electronics 2021, 10(11), 1280; https://doi.org/10.3390/electronics10111280 - 27 May 2021
Cited by 1 | Viewed by 878
Abstract
Hybridisation of energy sources in marine vessels has been recognized as one of the feasible solutions to improve fuel economy and achieve global emission reduction targets in the maritime sector. However, the overall performance of a hybrid vessel system is strongly dependent on [...] Read more.
Hybridisation of energy sources in marine vessels has been recognized as one of the feasible solutions to improve fuel economy and achieve global emission reduction targets in the maritime sector. However, the overall performance of a hybrid vessel system is strongly dependent on the efficiency of the energy management system (EMS) that regulates the power-flow amongst the propulsion sources and the energy storage system (ESS). This study develops a simple but production-feasible and efficient EMS for a dynamic positioning (DP) hybrid electric marine vessel (HEMV) and real-time experimental evaluation within a hardware-in-the-loop (HIL) simulation environment. To support the development and evaluation, map-based performance models of HEMVs’ key components are developed. Control logics that underpin the EMS are then designed and verified. Real-time performance evaluation to assess the performance and applicability of the proposed EMS is conducted, showing the improvement over those of the conventional control strategies. The comparison using key performance indicators (KPIs) demonstrates that the proposed EMS could achieve up to 4.8% fuel saving per voyage, while the overall system performance remains unchanged as compared to that of the conventional vessel. Full article
Show Figures

Figure 1

Article
Integral Sliding Control Approach for Generalized Cyclic Pursuit Formation Maintenance
Electronics 2021, 10(10), 1217; https://doi.org/10.3390/electronics10101217 - 20 May 2021
Cited by 1 | Viewed by 826
Abstract
This paper is concerned with the formation maintenance of a group of autonomous agents under generalized cyclic pursuit (GCP) law. The described pattern for agents under such formation is epicycle-like. For a network of agents to achieve such a formation, marginal stability of [...] Read more.
This paper is concerned with the formation maintenance of a group of autonomous agents under generalized cyclic pursuit (GCP) law. The described pattern for agents under such formation is epicycle-like. For a network of agents to achieve such a formation, marginal stability of the overall network is required. The desired marginal stability of the network relies on each agents’ gain values, and uncertainties in these gains can occur. Previous studies have used fixed gains, we enhance the stability of the gains via a dynamic approach using an integral sliding controller (ISC). An ISC can ensure sliding behavior of the gains throughout the entire response, and it is shown that the gains are robust toward variations and thus make the network keep its marginal stability and its formation. Full article
Show Figures

Figure 1

Article
An Advanced Angular Velocity Error Prediction Horizon Self-Tuning Nonlinear Model Predictive Speed Control Strategy for PMSM System
Electronics 2021, 10(9), 1123; https://doi.org/10.3390/electronics10091123 - 10 May 2021
Cited by 2 | Viewed by 619
Abstract
In nonlinear model predictive control (NMPC), higher accuracy can be obtained with a shorter prediction horizon in steady-state, better dynamics can be obtained with a longer prediction horizon in a transient state, and calculation burden is proportional to the prediction horizon which is [...] Read more.
In nonlinear model predictive control (NMPC), higher accuracy can be obtained with a shorter prediction horizon in steady-state, better dynamics can be obtained with a longer prediction horizon in a transient state, and calculation burden is proportional to the prediction horizon which is usually pre-selected as a constant according to dynamics of the system with NMPC. The minimum calculation and prediction accuracy are hard to ensure for all operating states. This can be improved by an online changing prediction horizon. A nonlinear model predictive speed control (NMPSC) with advanced angular velocity error (AAVE) prediction horizon self-tuning method has been proposed in which the prediction horizon is improved as a discrete-time integer variable and can be adjusted during each sampling period. A permanent magnet synchronous motor (PMSM) rotor position control system with the proposed strategy is accomplished. Tracking performances including rotor position Integral of Time-weighted Absolute value of the Error (ITAE), the maximal delay time, and static error are improved about 15.033%, 23.077%, and 10.294% respectively comparing with the conventional NMPSC strategy with a certain prediction horizon. Better disturbance resisting performance, lower weighting factor sensitivities, and higher servo stiffness are achieved. Simulation and experimental results are given to demonstrate the effectiveness and correctness. Full article
Show Figures

Figure 1

Back to TopTop