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Abstract: In this paper, an adaptive fuzzy observer-based fault-tolerant controller is designed for
a half-car active suspension system under the presence of uncertain parameters, unknown masses
of passengers, and actuator failures. To improve the control performance, fuzzy logic systems
(FLSs) are employed to approximate the unknown functions caused by uncertain dynamics of the
suspension system. Then, an adaptive control design is developed to compensate for the effects
of a non-ideal actuator. To improve passenger comfort, both vertical and angular motions are
guaranteed simultaneously under the predefined boundaries by the prescribed performance function
(PPF) method. Besides, the objectives of handling stability and driving safety are also considered
to enhance the suspension performance. The system stability is proved according to the Lyapunov
theory. Finally, the effectiveness of the developed approach is evaluated by comparative simulation
examples on the half-car model. The simulation results show that the proposed control can improve
the suspension performance as the RMS acceleration value is decreased by 68.1%.

Keywords: active suspension systems (ASSs); fuzzy logic systems; prescribed performance function;
adaptive control

1. Introduction

Vehicle suspension systems have received more attention both in the automobile
industry and academic research since they provide passenger comfort and driving safety [1].
Although the active suspension system requires a flexible structure that is designed by
an external actuator to create an active force, it has shown effectiveness in regulating the
chassis displacement in comparison with passive or semi-active suspension [2]. Over
the past decades, many types of actuators have been used for active suspensions, such
as hydraulic [3], electromagnetic [4], or pneumatic devices [5], to dissipate the external
excitation from road disturbance. However, precise modeling and control strategies to
accurately monitor the vehicle performance in question have not been demonstrated.
Besides, the damping and stiffness coefficients of active suspension are always nonlinear
parameters, which can degrade the suspension performance if these problems are neglected.

To enhance ride comfort, many advanced control techniques have been designed
for active suspension systems such as robust control [6], optimal control [7], output feed-
back control [8], sliding mode control [9], and backstepping control [10]. To stabilize the
chassis displacement under the effect of external disturbance, Pan et al. [8] proposed an
output feedback controller for the vehicle suspension which can efficiently compensate
for unknown parameters. Although the time-delayed optimal control is investigated to
guarantee the chassis stability by Yan et al. [7], the actuator dynamics were not investigated
to fully consider the requirements of the suspension system. To enhance the suspension
performance under the effect of actuator fault and unmodeled parameters, Kazemipour
et al. [11] designed a novel terminal sliding mode controller which can enhance the finite-
time convergence of tracking error of chassis movement. Besides, Pusadkar et al. [12]
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proposed an adaptive sliding mode based on linear disturbance observer for a quarter car
model to overcome external disturbance and a non-ideal actuator. However, the problems
of chattering and singularity in the control law are possible limitations associated with the
SMC technique. To improve passenger comfort and guarantee the suspension displacement,
an adaptive backstepping technique was proposed by Pang et al. [13]. Nonetheless, most
previous studies focused on enhancing the passenger comfort for the quarter car model,
which cannot ensure the pitch motion of the chassis. Furthermore, the objectives of driving
safety and handling stability need to be considered continuously, which can be designed
for practical application.

On the other hand, most suspension control methods that have been developed
based on the system modeling are exactly known while parametric uncertainties are
ignored. However, these assumptions rarely occur since vehicle suspension contains
uncertain parameters which can degrade the control performance. To overcome these
above limitations, some intelligent control algorithms are employed to compensate for
unknown functions including fuzzy logic systems [14] and neural networks [15]. In order
to approximate external disturbances and uncertain parameters, Zhang et al. [16] proposed
a neural network-based adaptive dynamic surface controller for an active seat suspension
model. Li et al. [17] designed a fuzzy finite-frequency output feedback control to estimate
the uncertainties of vehicle suspension which can guarantee the suspension performance
under the effect of time delay and output constraints. Besides, the problem of the uncertain
suspension model was investigated by the fuzzy logic approach based on the dynamic
sliding-mode method to improve passenger comfort [18]. However, the actuator dynamic
was often neglected in the system modeling, which can lead to system instability. In
addition, some problems’ actuator failures were not taken seriously in most previous
studies of active suspension.

Generally, many control laws have been developed for active suspension systems to
enhance passenger comfort by reducing the chassis displacement without considering the
output constraint of sprung mass motion. Unfortunately, the convergence rate of tracking
error strongly affects the control performance since it may lead to handling instability and
degrade the driving safety if the displacement constraint is violated. For this purpose, a
novel output constraint called prescribed performance was developed by Bechlioulis et al.
to guarantee the maximum overshoot of tracking error within a small boundary [19]. With
the PPF technique, many controllers have been designed to satisfy the tracking accuracy
and improve the system stability [20,21]. To stabilize the chassis displacement, an adaptive
controller was designed for the active suspension, considering the unknown nonlinear
dynamics, to improve the ride comfort and guarantee driving safety. Huang et al. [22]
proposed a novel control strategy that can ensure the steady-state response of the active
suspension by applying a prescribed performance function. Similarly, to guarantee the
convergence rate of the vehicle suspension system, an adaptive control-based prescribed
performance technique was developed by Na et al. [23] which can compensate for the
unknown nonlinearities. However, a few studies applied the PPF constraint for the half-car
active suspension to guarantee the convergence rate of vertical displacement and pitch
motions simultaneously, which motivates this research.

The problem of actuator failure has not been seriously considered in most of the
previous works for vehicle suspension systems. Instead, many proposed controllers assume
that the ideal actuators are used to dissipate external vibration even though the non-smooth
nature of actuator failure can destroy the suspension performance [24]. To improve the
control efficiency and ensure system stability, the issue of fault-tolerant control should
be investigated for vehicle suspension [25–27]. Liu et al. [28] proposed an adaptive fault-
tolerant control problem to stabilize vehicle suspension under the effect of unknown
actuator failures. To improve passenger comfort, Liu et al. [29] designed an adaptive sliding
fault-tolerant controller for the vehicle suspension system considering the issues of actuator
faults and parameter uncertainties. Note that all mentioned studies focused on error
compensation for an actuator failure quarter car model and ignored the tracking constraint
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of sprung mass displacement. Therefore, ensuring the vertical and pitch motions of the
half-car suspension model under the effects of actuator failures and unknown parameters
still presents challenges in vehicle suspension design.

Inspired by the above discussions, we propose an adaptive control for a half-car
active suspension system considering the unknown functions and actuator failure problem.
With the PPF technique, the chassis displacement and angular motion are guaranteed
simultaneously to enhance passenger comfort. Besides, the objectives of handling stability
and driving safety are satisfied by the dynamic analysis. The major advantages of this work
are summarized as follows.

1. The half-car active suspension is analyzed in the presence of uncertain parameters and
actuator failures to guarantee ride comfort, suspension deflection, and driving safety;

2. FLSs are applied to approximate the unknown functions of parametric uncertain-
ties and different masses of passengers. Then, the adaptive fault-tolerant control is
designed to compensate for the actuator fault problem;

3. The PPF technique is incorporated into the control technique to constrain chassis
displacement and angular motion within the small boundaries.

2. System Description
2.1. Half Car Suspension Model

The structure of the vehicle half-car model is displayed in Figure 1, consisting of one
sprung mass, two unsprung masses at front and rear positions, two sets of mechanical
springs and damping components, two active actuators, and two tire models. The total
mass of the chassis and passenger are denoted by sprung mass while the unsprung mass
represents the mechanical structure of the wheel and suspension frame. One set of a
spring, a damper, and an actuator are installed between sprung mass and on unsprung
mass. The tire is molded by one mechanical spring and damper. The irregular road
roughness impacts the front and rear unsprung mass which causes external excitations
to the passengers. The active suspension is designed to achieve passenger comfort by
dissipating the continuous vibration with two active actuators. The mechanical equation of
the half-car active suspension model can be expressed by:

ms
..
zs = −Fs f − Fsr − Fd f − Fdr + Fv

I
..
ψ = c

(
Fs f + Fd f

)
− d(Fsr + Fdr) + Fψ

mu f
..
zu f = −Ft f − Fc f + Fs f + Fd f − Fu f

mur
..
zur = −Ftr − Fcr + Fsr + Fdr − Fur

(1)

where ms is the total weight while I denotes the inertia of sprung mass; the front and
rear unsprung masses are defined by mu f and mur, respectively; zs, zu f , zur represent the
positions of sprung mass, front and rear unsprung masses, respectively; the structural
length of the front and rear suspension are defined by c and d while the front and rear road
profile are denoted by zr f and zrr. The active forces of front and rear actuators are defined
by Fu f and Fur. Then, the detailed forces for regulating the vertical and pitch motions Fv,
Fψ are expressed as follows:

Fv = Fu f + Fur
Fψ = dFur − cFu f

(2)

The dynamics forces of front and rear mechanical spring are described by
Fs f = ks f (zs − dsinψ − zu f ), Fd f = cd f (

.
zs − dcosψ − .

zu f ), while the detailed damping
forces are calculated by Fsr = ksr(zs + csinψ − zur), Fdr = cdr(

.
zs + ccosψ − .

zur). Sim-
ilarly, the spring and damping forces of front and rear tire models are expressed by
Ft f = kt f (zu f − zr f ), Fc f = ct f (

.
zu f −

.
zr f ), Ftr = ktr(zur − zrr), Fcr = ctr(

.
zur −

.
zrr), in

which ks f and ksr are the spring coefficients at the front and rear suspension; cd f and cdr are
the damping coefficients of the front and rear damping components.
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Define the system state variables as x1 = zs, x2 =
.
zs, x3 = ψ, x4 =

.
ψ, x5 = zu f ,

x6 =
.
zu f , x7 = zu f , and x8 =

.
zur; the state-space form of the half-car suspension model (1)

can be rewritten as follows:
.
x1 = x2
.
x2 = 1

ms

(
Fv − Fs f − Fd f − Fsr − Fdr

)
.
x3 = x4
.
x4 = 1

I

(
Fψ + c

(
Fs f + Fd f

)
− d(Fsr + Fdr)

)
.
x5 = x6
.
x6 = 1

mu f

(
−Fu f − Ft f − Fc f + Fs f + Fd f

)
.
x7 = x8.
x8 = 1

mur
(−Fur − Ftr − Fcr + Fsr + Fdr)

(3)

2.2. Actuator Fault Formulation and Preliminaries

Although many control schemes have been designed to improve suspension per-
formance, the ideal actuators are considered in most vehicle systems. The unknown
parameters and actuator faults are often unavoidable in practical applications, which can
degrade the system’s stability. Hence, the fault tolerance problem should be investigated in
the control design to evaluate the actual system dynamics. For this purpose, two types of
actuator failures are considered in this research, that is, the lock-in-place model and the
loss of effectiveness definition.

(1) Lock-in-place type: In this case, the actuator is stuck and cannot respond to the input
control signal. Then, the actual signal can be described by Fv = φv and Fψ = φψ, in
which φv is the constant values of the float fault of Fv and φw is the constant values of
the float fault of Fψ.

(2) Loss of effectiveness model: The actual control cannot satisfy the complete value of signal
control in this case. This means that some effectiveness is lost, which is denoted by
the coefficient factor µv and µψ. For example, µv = 0.6 indicates that the remaining
coefficient actuator is 60% while the loss signal of the vertical control actuator is 40%.

Therefore, the two actuator failure cases can be described in general forms:

Fv = µvF∗v + φv
Fψ = µψF∗ψ + φψ

(4)



Electronics 2022, 11, 1733 5 of 19

where F∗v and F∗ψ denote the ideal actuator signal.
Since the spring and damping coefficients and passenger masses are not exactly de-

termined in actual system modeling, the vehicle half-car suspension contains unknown
functions which cannot be applied to the control design process. To overcome this draw-
back, FLSs can be used as a good estimation technique in this study. An FLS combines
four individual parts; they are a knowledge rule base, a fuzzifier, a fuzzy inference engine,
and a defuzzifier. The FLSs knowledge base includes a series of fuzzy rules, “If–Then”,
as follows:

Rk: If x1 is Gk
1 and x2 is Gk

2 and . . . xn is Gk
n, then y is Hk, k = 1, . . . , N (5)

where X = [x1, x2, . . . , xn]
T is FLSs input of a system variable and y is the output value;

Gk
i and Hk represent fuzzy sets corresponding to membership functions χGk

i
(xi) and χHk (y);

and N is the number of fuzzy rules [30].
Therefore, the FLSs can be described via singleton fuzzifier, center average defuzzifi-

cation, and product inference as follows:

y(X) =
∑N

k=1 yk∏n
i=1 χGk

i
(Xi)

∑N
k=1

(
∏n

i=1 χGk
i
(Xi)

) (6)

where yk = max
y∈R
{χHk (y)}.

Define fuzzy basis functions as:

sk(Xi) =
∏n

i=1 χGk
i
(Xi)

∑N
k=1

(
∏n

i=1 χGk
i
(Xi)

) (7)

Let S(X) = [s1(X), s2(X), . . . , sN(X)]T and θT = [y1, y2, . . . , yN ] = [θ1, θ2, . . . , θN ],
we can write the fuzzy logic system (7) as:

y(X) = θTS(X) (8)

Lemma 1 ([31]). For any continuous unknown function f (X) determined on a compact set Φ .
Then, for any given positive constant ε > 0 , there exist fuzzy logic systems θTS(X) that satisfy

sup
X∈Φ

∣∣∣ f (X)− θTS(X)
∣∣∣ ≤ ε (9)

where θ is the ideal FLSs weight matrix, and S(X) is bounded by ‖S(X)‖ ≤ τ.
In the control design in this study, the FLSs are used to approximate the unknown

functions f (X) with X ∈ Φ:
fi(X) = θT

i Si(Xi) + ηi (10)

In this study, the fuzzy “If-Then” rules are proposed as:

R1: If x1 is H1
1 , x2 is H1

2 , and x3 is H1
3 then y is T1

R2: If x1 is H2
1 , x2 is H2

2 , and x3 is H2
3 then y is T2

R3: If x1 is H3
1 , x2 is H3

2 , and x3 is H3
3 then y is T3

R4: If x1 is H4
1 , x2 is H4

2 , and x3 is H4
3 then y is T4

R5: If x1 is H5
1 , x2 is H5

2 , and x3 is H5
3 then y is T5

when fuzzy sets are selected as H1
1 = (NL), H1

2 = (NL), H1
3 = (NL), H2

1 = (NS),
H2

2 = (NS), H2
3 = (NS), H3

1 = (ZE), H3
2 = (ZE), H3

3 = (ZE), H4
1 = (PS), H4

2 = (PS),
H4

3 = (PS), H5
1 = (PL), H5

2 = (PL), H5
3 = (PL), which are defined over the interval [−2, 2]
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for variables x1, x2, and x3 respectively. NL represents negative large, NS represents
negative small, ZE represents zero, PS represents positive small, PL represents positive
large, and choose −2, −1, 0, 1, 2 as center points.

Fuzzy membership functions (as shown in Figure 2) are defined as:

µHl
1
(x1) = exp

[
− (x1−3+l)2

4

]
µHl

2
(x2) = exp

[
− (x2−3+l)2

4

]
µHl

3
(x3) = exp

[
− (x3−3+l)2

4

] (11)

where l = 1, . . . , 5.
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To enhance the ride comfort, the control algorithm is designed to deplete the external
road vibration by reducing the chassis displacement. However, improving the ride comfort
requires larger suspension deflection. Due to the suspension design being limited by
the mechanical structure, the control design must satisfy the three suspension objectives
as follows:

(1) Ride comfort: The chassis movement must be stabilized and isolated from the external
violation of road disturbance, which can improve the passenger comfort;

(2) Handling stability: The active suspension must guarantee the suspension deflection
within the mechanical structure. To meet this requirement, the relative suspension
deflection (RSD) has to be smaller than 1.

RSD =

(
zs + dsinψ− zu f

)
zM

(12)

where zM is the maximum vertical displacement of the chassis.

(3) Driving safety: This objective is considered to ensure that the tire should always contact
with the road profile. For this purpose, the relative tire fore (RTF) must be kept less
than 1.
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RTF =
Ft f + Fc f + Ftr + Fcr[

ms + mu f + mur

]
g

(13)

Remark 1. Most of the previous suspension studies are proposed to improve the three above
objectives. Nonetheless, increasing the ride comfort will enlarge the suspension stability, and even
degrade the contact condition between tire and road surface. Besides, it requires regulating the active
force at front and rear positions to stabilize the pitch motion of the half-car suspension model, which
can overcome the actuator capacity. In this study, these objects can be guaranteed under the presence
of actuator failures.

3. Adaptive Fuzzy Observer Control with Prescribed Performance
3.1. Prescribed Performance Function

This section employs the prescribed performance technique to limit the tracking error
of the system state within the predefined boundary. First, define the tracking error by:

e = x− xd (14)

where xd is the desired trajectory.
A positive decreasing smooth function is used to describe the prescribed performance

function as [19]:
δ(t) = (δ0 − δ∞)e−γt + δ∞ (15)

where γ > 0 denotes the convergence rate, δ0 is the initial value that is selected to meet two
initial conditions:

lim
t→0

δ(t) = δ0 > 0, lim
t→∞

δ(t) = δ∞ > 0, δ0 > δ∞

Then, the following inequality can be used to describe the constraint condition of the
tracking error based on the prescribed performance:

−βδ(t) < e < βδ(t) t > 0 (16)

where β, β > 0 are the lower and upper control parameters. Hence, the lower bound and
upper bound of tracking error are determined by −βδ(0) and βδ(0), respectively. The
inequality (16) can be guaranteed by selecting these positive parameters β, β, δ0, δ∞, γ.

However, the above inequality constraint cannot be directly applied to the controller
design. Instead, it needs to transform the inequality condition of the tracking error into an
equivalent unrestricted form. Hence, a smooth and strictly increasing function Q(z) can be
applied to this requirement:

Q(z) =
βez − βe−z

ez + e−z (17)

Based on (16) and (17), we can express the equivalent unconstrained by:

e = δ(t)Q(z) (18)

By choosing the PPF parameter to satisfy the initial condition δ(t) > δ∞ > 0, the strictly
monotonically increasing function Q(z) can be rewritten by the inverse transfer function:

z = Q−1(e/δ(t)) (19)

Therefore, the transform function of z can be converted by the following equation:

z =
1
2

ln
(

η + β

β− η

)
− 1

2
ln

β

β
(20)
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where η = e/δ(t).

Lemma 2 ([32]). By transforming the tracking error e into a smooth function (17), it will be
guaranteed within the small boundary of the prescribed performance (15).

Since the control parameters δ0, β, β are selected to satisfy the initial condition
−βδ(0) < x(0) < βδ(0), the transform variable z can be kept within the boundaries.
Hence, the condition −β < Q(z) < β is held while the constraint condition of tracking
error −βδ(t) < e < βδ(t) is ensured.

3.2. Adaptive Fuzzy Observer Controller with Prescribed Performance

To stabilize sprung mass movement, the control design will focus on the dynamic
equation for sprung mass as follows:

.
x1 = x2
.
x2 = 1

ms

(
Fv − Fs f − Fd f − Fsr − Fdr

)
.
x3 = x4
.
x4 = 1

I

(
Fψ + c

(
Fs f + Fd f

)
− d(Fsr + Fdr)

) (21)

Then, the tracking errors of vertical displacement and pitch motion are defined by

e1 = x1 − xd1
e2 = x3 − xd2

(22)

where xd1 and xd2 are the reference trajectory of vertical and angular motions, respectively.
Step 1: Propose the control signal F∗v for the vertical motion.
Choose the prescribed performance δ1(t) = (δ01 − δ∞1)e−γ1t + δ∞1. Based on (20), the

transformed function for the tracking error of vertical displacement z1 can be expressed as:

z1 =
1
2

ln

(
η1 + β

1

β1 − η1

)
− 1

2
ln

β
1

β1
(23)

where η1 = e1/δ1(t).
Then, the time derivative of z1 is obtained by:

.
z1 = ξ1

(
x2 −

x1
.
δ1

δ2
1

)
(24)

where ξ1 = 1
2δ1

(
1

η1+β
1
− 1

η1−β1

)
.

Based on the transformed error z1, the sliding surface h1 is designed as follows:

h1 = κ1z1 +
.
z1 (25)

where κ1 is the positive design parameter.
The time derivative h1 can be obtained by:

.
h1 =

µv

ms

[
ξ1F∗v −

(
Fs f + Fd f + Fsr + Fdr

)
+ Fv(Xv)

]
(26)

where

Fv(Xv) =
1

µv
ms

(
κ1ξ1 +

.
ξ1

)(
x2 − x1

.
δ1
δ1

)
+ ξ1

φv
µv
− 1

µv
ms

(
x2

.
δ1
δ1
+ x1

..
δ1.
δ1
− x1

.
δ

2
1

.
δ

2
1

)
+
(

1− ξ1
µv

)(
Fs f + Fd f + Fsr + Fdr

) (27)
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Based on Equation (27), the unknown function Fv(Xv) contains the effectiveness factors
of actuator failures µv and φv that cannot be determined. The mass of passengers is an
uncertain parameter, which cannot be applied to the control design. Under the effects
of these problems, the suspension performance will be degraded and the system will
become unstable. Hence, the FLSs can be employed as an approximation technique to
develop the control algorithm. Based on Equation (10), the unknown function Fv(Xv) can
be estimated by:

Fv(Xv) = θT
v Sv(Xv) + ηv (28)

where Xv = [x1, x2]T denotes the input vector, ηv illustrates the approximation error.
Then, we can rewrite the time derivative h1 (26) as follows:

.
h1 =

µv

ms

[
ξ1F∗v −

(
Fs f + Fd f + Fsr + Fdr

)
+ θT

v Sv(Xv) + ηv

]
(29)

From (29), the adaptive control law is designed,

F∗v =
1
ξ1

((
Fs f + Fsr + Fd f + Fdr

)
− θ̂T

v Sv(Xv)− k1h1

)
(30)

where k1 > 0 is the control parameter.
The adaptive law can be proposed by:

.
θ̂v = ςv

[
h1Sv(Xv)− ρv θ̂v

]
(31)

where ςv and ρv are the positive design parameters.
Step 2: Design the control F∗ψ for angular displacement.
Firstly, the transform function of z2 can be obtained from (20):

z2 =
1
2

ln

(
η2 + β

2

β2 − η2

)
− 1

2
ln

β
2

β2
(32)

where the prescribed performance is chosen by δ2(t) = (δ02 − δ∞2)e−γ2t + δ∞2 and we
define η2 = e2/δ2(t).

The time derivative of z2 can be obtained as follows:

.
z2 = ξ2

(
x4 −

x3
.
δ2

δ2
2

)
(33)

where ξ2 = 1
2δ2

(
1

η2+β
2
− 1

η2−β2

)
.

Then, the sliding surface h2 is determined by:

h2 = κ2z2 +
.
z2 (34)

where κ2 is the positive design parameter.
Hence, we can express the time derivative of h2 as follows:

.
h2 =

µψ

I

[
ξ2F∗ψ + c

(
Fs f + Fd f

)
− d(Fsr + Fdr) + Fψ

(
Xψ

)]
(35)

where

Fψ

(
Xψ

)
= 1

µψ
I
(

κ2ξ2 +
.
ξ2

)(
x4 − x3

.
δ2
δ2

)
+ ξ2

φψ

µψ
− 1

µψ
I
(

x4

.
δ2
δ2
+ x3

..
δ2.
δ2
− x3

.
δ

2
2

.
δ

2
2

)
+
(

1− ξ2
µψ

)(
d(Fsr + Fdr)− c

(
Fs f + Fd f

)) (36)
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By applying the fuzzy approximation technique for Fψ

(
Xψ

)
, we have:

Fψ

(
Xψ

)
= θT

ψSψ

(
Xψ

)
+ ηψ (37)

where Xψ = [x3, x4]
T is the input vector, ηψ denotes the approximation error.

We can rewrite (35) as follows:

.
h2 =

µψ

I

[
ξ2F∗ψ + c

(
Fs f + Fd f

)
− d(Fsr + Fdr) + θT

ψSψ

(
Xψ

)
+ ηψ

]
(38)

The control law and the adaptive law are designed by:

F∗ψ =
1
ξ2

(
d(Fsr + Fdr)− c

(
Fs f + Fd f

)
− θ̂T

ψSψ

(
Xψ

)
− k2h2

)
(39)

.
θ̂ψ = ςψ

[
h2Sψ

(
Xψ

)
− ρψ θ̂ψ

]
(40)

where k2 > 0, ςψ > 0, ρψ > 0 are the control parameters.

Theorem 1. The adaptive control (30), (39) and adaptation laws (31), (40) are designed for the
half-car active suspension model (3) to guarantee that all system signals are semi-globally uniformly
ultimately bounded. Then, the transform variables z1, z2 are also bounded by selecting the control
parameters and FLSs estimation design. Therefore, the tracking errors e1, e2 are forced to converge
to a small set around zero asymptotically. We can conclude that the developed method with PPF can
improve the suspension performance by ensuring both vertical and angular motion simultaneously.

Proof. See Appendix A. �

3.3. Handling Stability and Driving Safety Analysis

Based on the above analysis, the objective of passenger comfort was guaranteed by
the proposed control. However, as driving comfort is enhanced, it will require greater
suspension deflection and even reduce driving safety. Therefore, two objectives of handling
stability and driving safety can be guaranteed by selecting suitable control parameters
that will be analyzed in this section. For this purpose, the dynamic equations of unsprung
masses (3) are analyzed as follows:

.
X = CX + DY + Y0 (41)

where X =


x5
x6
x7
x8

; C =


0 1 0 0

− kt f
mu f

− ct f
mu f

0 0

0 0 0 1
0 0 − ktr

mur
− ctr

mur

; D =


0 0 0 0

kt f
mu f

ct f
mu f

0 0

0 0 0 0
0 0 ktr

mur
ctr

mur



Y =


zu f.
zu f
zur.
zur

;
Θ1 = 1

mu f (c + d)

(
dµv
(
θ̂T

v Sv(Xv) + k1h1
)
− µψ

(
θ̂T

ψSψ

(
Xψ

)
+ k2h2

)
+ φψ − dφv

)
+

(Fs f + Fd f )
mu f (c + d)

(
1 +

µψ

ξ2
d− dµv

ξ1

)
+ d(Fsr + Fdr)

mu f (c + d)

(
µψ

ξ2
− dµv

ξ1

) ;

Y0 =


0

Θ1
0

Θ2

;
Θ2 = 1

mur(c + d)

(
µψ

(
θ̂T

ψSψ

(
Xψ

)
+ k2h2

)
+ cµv

(
θ̂T

v Sv(Xv) + k1h1
)
− φψ − cφv

)
+

(Fs f + Fd f )
mur(c + d)

(
cµψ

ξ2
− cµv

ξ1

)
+ Fsr+Fdr

mur(c+d)

(
1− cµv

ξ1
− dµψ

ξ2

) .

The detailed control signals at the front and rear suspension are expressed by:

Fur =
cFv + Fψ

c + d

Fu f =
dFv − Fψ

c + d

(42)
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Based on the previous results of Section 3.2, the system state variables x1, x2, x3, x4 and
adaptive laws θv, θψ are bounded. Then, the residual errors Θ1, Θ2 are also bounded, which
are limited by positive constants Θ1 and Θ2. Therefore, there exists a positive constant
Y satisfying ‖Y‖ ≤ Y.

Select the Lyapunov function by:

VH = XT PX (43)

where P is a positive definite matrix.
Taking the time derivative of VH , we get:

.
VH =

.
X

T
PX + XT P

.
X (44)

Using (41), we can write (44) as follows:

.
VH = XT

(
CT P + CP

)
X + 2XT PDY + 2XT PY0 (45)

According to Young’s inequality, we can obtain:

2XT PDY ≤ 1
τ1

XT PDDT PX + τ1YTY
2XT PY0 ≤ 1

τ2
XT PPX + τ2YT

0 Y0
(46)

where τi > 0, i = 1, 2 are the positive constants.
There exists a positive definite symmetric matrix Q > 0 that satisfies CT P + PC = −Q.

Substituting (46) into (45), we can obtain:
.

VH ≤ −
[

λmin

(
P
−1
2 QP

−1
2

)
− 1

τ1
λmax

(
P

1
2 DDT P

1
2

)
− 1

τ2
λmax(P)

]
VH + τ1YTY + τ2YT

0 Y0 (47)

where λmax, λmin are the maximal and minimal eigenvalues of the matrix P.
By selecting the control parameters to satisfy the following inequalities:

τ1 > 2
λmax

(
P

1
2 DDT P

1
2

)
λmin

(
P
−1
2 QP

−1
2

) and τ2 > 2
λmax(P)

λmin

(
P
−1
2 QP

−1
2

) (48)

then we can define two parameters Ω and ∆ such that:

Ω ≥ λmin

(
P
−1
2 QP

−1
2

)
− 1

τ1
λmax

(
P

1
2 DDT P

1
2

)
− 1

τ2
λmax(P) (49)

∆ ≥ τ1YTY + τ2YT
0 Y0 (50)

Hence, the inequality (47) can be expressed by:

.
VH ≤ −ΩVH + ∆ (51)

Multiplying (51) both sides of (51) by eΩt and then integrating, we write:

VH ≤
(

VH(0)−
∆
Ω

)
e−Ωt +

∆
Ω
≤ VH(0)e−Ωt +

∆
Ω

(52)

Then, the system states (41) are bounded by:

|xi(t)| ≤

√(
VH(0)e−Ωt +

∆
Ω

)
/λmin(P) , i = 5, 6, 7, 8 (53)
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To evaluate the handling stability condition, the RSD definition (12) can be expressed
by using (53) as follows:∣∣∣zc + dsinψ− zu f

∣∣∣ = |x1 + dsinψ− x5| ≤ |x1|+ d|x3|+ |x5|

≤ β1δ1(0) + dβ2δ2(0) +
√(

VH(0)e−Ωt + ∆
Ω

)
/λmin(P)

(54)

From (54), we can select the control parameters τ1, τ2, P, and appropriate PPF con-
straints

_
β, β, δ0 satisfying the condition

∣∣∣zc + dsinψ− zu f

∣∣∣ ≤ zM. Then, the objective of
handling stability of the suspension performance is guaranteed.

Similarly, the tire forces Fst and Fat can be detailed as follows:

Ft f = kt f (zu f − zr f ) ≤ kt f

√(
VH(0)e−Ωt + ∆

Ω

)
/λmin(P) + kt f ‖zr f ‖∞

Fc f = ct f (
.
zu f −

.
zr f ) ≤ ct f

√(
VH(0)e−Ωt + ∆

Ω

)
/λmin(P) + ct f ‖

.
zr f ‖∞

Ftr = ktr(zur − zrr) ≤ ktr

√(
VH(0)e−Ωt + ∆

Ω

)
/λmin(P) + ktr‖zrr‖∞

Fcr = ctr(
.
zur −

.
zrr) ≤ ctr

√(
VH(0)e−Ωt + ∆

Ω

)
/λmin(P) + ctr‖

.
zrr‖∞

(55)

Then, we write the relative tire force based on (55) by:

|Ft| ≤
∣∣Ft f

∣∣+ ∣∣Fc f
∣∣+ |Ftr |+ |Fcr |

≤
(
kt f + ct f + ktr + ctr

)√(
VH(0)e−Ωt + ∆

Ω

)
/λmin(P) +

(
kt f + ktr

)
‖zr f ‖∞ +

(
ct f + ctr

)
‖ .

zr f ‖∞
(56)

The relative tire force objective (13) can be guaranteed by selecting the control parame-
ters τ1, τ2, P according to inequality

∣∣∣Ft f + Fc f + Ftr + Fcr

∣∣∣ ≤ [ms + mu f + mur

]
g. Then, we

can conclude that the driving safety is satisfactory.
By choosing appropriate design parameters π1, π2, P which meet the inequality

|Fst + Fat| ≤ (ms + mu)g, the relative tire force condition (13) could be guaranteed.

Remark 2. Based on the above analysis, the objectives of handling stability and driving safety are
ensured by selecting the appropriate initial conditions and control parameters. This means that the
half-car suspension system works well according to the requirements of the mechanical structure
and is always in contact with the road profile.

4. Simulation Results and Discussion
4.1. Simulation Description

This section provides comparative simulations to verify the effectiveness of the pro-
posed control scheme in comparison with passive suspension, traditional backstepping,
and backstepping with PPF (Back-PPF). To simulate the road disturbance, the sinusoidal
profiles with an amplitude of 0.2 m and frequency of 2 Hz are used in this research by
zr f (t) = 0.2sin(4πt), zrr(t) = 0.2sin(4πt + π). The simulation results of RSD and RTF
objectives are also evaluated to prove suspension performance. The PPF constraints are
chosen by δ01 = 0.058, δ∞1 = 0.006, γ1 = 1.2, δ02 = π/10, δ∞2 = π/100, γ2 = 1.2. The
main parameters of the half-car suspension system can be displayed in Table 1.
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Table 1. Half-car suspension parameters.

Parameter Value Unit

ms 1200 kg
mu f 100 kg
mur 100 kg

I 600 kgm2

ks f , ksr 15,000 Nm−1

kt f 150,000 Nm−1

ktr 200,000 Nm−1

cd f , cdr 1500 Nsm−1

ct f 1100 Nsm−1

ctr 1200 Nsm−1

c 1.2 m
d 1.5 m

Besides, the control parameters of different control methods are compared in Table 2.

Table 2. Half-car suspension parameters.

Controller Parameter

Backstepping k1 = 40, k2 = 60

Back-PPF

k1 = 40, k2 = 60
β1 = 0.98; β

1
= 0.98;

β2 = 0.98; β
2
= 0.98;

Proposed
k1 = 40, k2 = 60
κ1 = 5; ςv = 0.1; ρv = 10
κ2 = 3; ςψ = 0.2; ρψ = 5

4.2. Simulation Results

The simulation results of vertical and angular motions of sprung mass and acceleration,
RSD and RTF, are shown in Figures 3–8. The tracking error of sprung mass displacement
and angular motions are guaranteed within the small boundaries by the proposed control
as displayed in Figures 3a and 4a. With the PPF constraint, the proposed controller can
provide a fast transient convergence speed than the other controllers. Under the effects
of uncertain parameters, the passive cannot satisfy vehicle performance. Although the
Back-PPF can limit both tracking errors of vertical and angular motions in comparison with
the traditional backstepping, the sprung mass displacement cannot be stabilized to zero.
The proposed control not only regulates the chassis movement within the small boundaries
rapidly but also enhances the ride comfort even when the actuator failures occur at the
time 5s < t < 10s. Because the traditional backstepping cannot compensate for the actuator
faults, the chassis motions are more violated than the proposed scheme. Besides, the RMS
acceleration value of the developed method is decreased by 68.1% to improve ride comfort
in comparison with the Back-PPF as shown in Figures 5 and 6. With the fault compensation
technique, the vertical and angular accelerations of the proposed control can be reduced
under the effects of actuator failures. The objectives of handling stability and driving safety
are shown in Figures 7 and 8. It can be seen that the suspension defection and dynamic tire
load are guaranteed within the limitation ranges. The proposed control can decrease the
RSD and RTF in comparison with the other methods to get the suspension objectives. To
compare the control signals, the simulation results are displayed in Figures 9 and 10; the
developed control approach requires a smaller control signal in both fault and non-fault
cases compared with other controllers. Furthermore, the convergence simulation results of
the adaptive laws are shown in Figure 11.
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5. Conclusions

This study proposed an adaptive fault tolerance control scheme for the half-car sus-
pension system to stabilize both the vertical movement and angular displacement. The
actuator failures are considered to investigate the suspension performance in the presence
of uncertain parameters. FLSs are employed to approximate the unknown functions and
are then incorporated into the control design to compensate for the effects of actuator
faults. By applying the PPF technique, the proposed control not only eliminates the sprung
mass displacement and angular motion to achieve the ride comfort but also guarantees the
objectives of handling stability and driving safety. Then, the stability of the closed-loop
system is analyzed according to the Lyapunov theorem. The RMS acceleration value is
decreased by 68.1% when the proposed control is used for the simulation with the sin
road profile. Hence, the developed control can provide an effective method for vehicle
suspension, which can be applied to the automotive industry. Future research will focus on
stabilizing the full car model with the PPF technique.
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Appendix A

Proof of the Theorem 1. Consider the Barrier Lyapunov functions for Step 1 and Step 2
as follows.

V1 =
1
2

µ−1
v msh2

1 +
1
2

ς−1
v θ̃T

v θ̃v (A1)

V2 =
1
2

µ−1
ψ Ih2

2 +
1
2

ς−1
ψ θ̃T

ψ θ̃ψ (A2)

Therefore, we can get the time derivative of V1 and V2 using (29) and (38) by

.
V1 = h1

[
ξ1F∗v −

(
Fs f + Fd f + Fsr + Fdr

)
+ θT

v Sv(Xv) + ηv

]
− ς−1

v θ̃T
v

.
θ̂v (A3)

.
V2 = h2

[
ξ2F∗ψ + c

(
Fs f + Fd f

)
− d(Fsr + Fdr) + θT

ψSψ

(
Xψ

)
+ ηψ

]
− ς−1

ψ θ̃T
ψ

.
θ̂ψ (A4)

Using (31) and (40), we obtain

ς−1
v θ̃T

v

.
θ̂v = h1θ̃T

v Sv(Xv)− ρv θ̃T
v θ̂v (A5)

ς−1
ψ θ̃T

ψ

.
θ̂ψ = h2θ̃T

ψSψ

(
Xψ

)
− ρψ θ̃T

ψ θ̂ψ (A6)

Substituting (30), (39), (A5) and (A6) into (A3) and (A4), we can write

.
V1 = h1

[
−θ̂T

v Sv(Xv)− k1h1 + θT
v Sv(Xv) + ηv

]
− h1θ̃T

v Sv(Xv) + ρv θ̃T
v θ̂v (A7)
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.
V2 = h2

[
−θ̂T

ψSψ

(
Xψ

)
− k2h2 + θT

ψSψ

(
Xψ

)
+ ηψ

]
− h2θ̃T

ψSψ

(
Xψ

)
+ ρψ θ̃T

ψ θ̂ψ (A8)

According to Young’s inequality, we obtain

h1ηv ≤ 1
2 h2

1 +
1
2 η2

v
h2ηψ ≤ 1

2 h2
2 +

1
2 η2

ψ

ρv θ̃T
v θ̂v ≤ ρv

2 ‖θv‖2 − ρv
2 ‖θ̃v‖

2

ρψ θ̃T
ψ θ̂ψ ≤

ρψ

2 ‖θψ‖2 − ρψ

2 ‖θ̃ψ‖
2

(A9)

Then, we can write (A7) and (A8) by

.
V1 ≤ −

(
k1 −

1
2

)
h2

1 −
ρv‖θ̃v‖

2

2
+

1
2

η2
v +

ρv‖θv‖2

2
(A10)

.
V2 ≤ −

(
k2 −

1
2

)
h2

2 −
ρψ‖θ̃ψ‖

2

2
+

1
2

η2
ψ +

ρψ‖θψ‖2

2
(A11)

From (A10) and (A11), we can obtain the general form as follows

.
Vi ≤ ζiVi + ϑi, i = 1, 2 (A12)

where ζ1 = min{2µv(k1 − 0.5)/ms, ςvρv}, ζ2 = min
{

2µψ(k2 − 0.5)/I, ςψρψ

}
, ϑ1 = 1

2 η2
v +

ρv‖θv‖2

2 , ϑ2 = 1
2 η2

ψ +
ρψ‖θψ‖2

2 .

Multiplying (A12) by e−ζit both sides and integrating
.

V1,
.

V2, we obtain

V1 ≤
(

V1(0)−
ϑ1

ζ1

)
e−ζ1t +

ϑ1

ζ1
≤ V1(0)e−ζ1t +

ϑ1

ζ1
(A13)

V2 ≤
(

V2(0)−
ϑ2

ζ2

)
e−ζ2t +

ϑ2

ζ2
≤ V2(0)e−ζ2t +

ϑ2

ζ2
(A14)

Then, we can get the boundaries of h1 and h2 from (A13) and (A14) by

h1 ≤

√
2
(

V1(0)e−ζ1t +
ϑ1

ζ1

)
(A15)

h2 ≤

√
2
(

V2(0)e−ζ2t +
ϑ2

ζ2

)
(A16)

Based on the above results (A15) and (A16), the proposed control can guarantee
that the system variables will converge to the desired equilibrium point along the sliding
surface. Besides, the tracking errors e1, e2 also converge to zero asymptotically because
the transform errors z1, z2 are also bounded. By selecting the control parameters and
prescribed performance design, the system stability is guaranteed while the vertical and
angular motions are limited by the small boundaries.
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