Advancements in Cardiovascular CT Imaging

A special issue of Diagnostics (ISSN 2075-4418). This special issue belongs to the section "Medical Imaging and Theranostics".

Deadline for manuscript submissions: 31 May 2025 | Viewed by 2234

Special Issue Editor


E-Mail Website
Guest Editor

Special Issue Information

Dear Colleagues,

This Special Issue aims to showcase the latest breakthroughs and innovations in the field of cardiovascular computed tomography. We aim to delve into the state-of-the-art techniques and methodologies that are revolutionizing the way we diagnose and manage cardiovascular diseases. From high-resolution imaging to advanced post-processing algorithms, the contributions in this Special Issue should highlight the remarkable progress made in improving the accuracy and reliability of CT imaging for the heart and blood vessels.

The aim of this Special Issue is to collect articles in the field of cardiovascular CT imaging, with a focus on the following:

  • Novel applications/technology (photon-counting, quantitative imaging, multi-energy spectral imaging, AI, machine learning);
  • Advances in diagnosis/novel diseases;
  • Cardiovascular prevention and risk stratification;
  • Cardiovascular inflammation/infection;
  • Congenital and structural heart disease and minimally invasive intervention planning.

The following types of articles will be considered:

  • Original research articles;
  • Reviews of current hot topics in cardiac CT;
  • Technical reports (of novel technology or imaging techniques) as short communications;
  • Case reports and case series.

Prof. Dr. Gudrun Feuchtner
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Diagnostics is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • cardiovascular CT imaging
  • high-resolution imaging
  • advanced algorithms
  • diagnostic accuracy
  • clinical applications
  • innovations in imaging
  • cardiovascular disease management

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 4373 KiB  
Article
Relationship Between Myocardial Strain and Extracellular Volume: Exploratory Study in Patients with Severe Aortic Stenosis Undergoing Photon-Counting Detector CT
by Costanza Lisi, Victor Mergen, Lukas J. Moser, Konstantin Klambauer, Jonathan Michel, Albert M. Kasel, Hatem Alkadhi and Matthias Eberhard
Diagnostics 2025, 15(2), 224; https://doi.org/10.3390/diagnostics15020224 - 19 Jan 2025
Viewed by 1005
Abstract
Background/Objectives: Diffuse myocardial fibrosis and altered deformation are relevant prognostic factors in aortic stenosis (AS) patients. The aim of this exploratory study was to investigate the relationship between myocardial strain, and myocardial extracellular volume (ECV) in patients with severe AS with a [...] Read more.
Background/Objectives: Diffuse myocardial fibrosis and altered deformation are relevant prognostic factors in aortic stenosis (AS) patients. The aim of this exploratory study was to investigate the relationship between myocardial strain, and myocardial extracellular volume (ECV) in patients with severe AS with a photon-counting detector (PCD)-CT. Methods: We retrospectively included 77 patients with severe AS undergoing PCD-CT imaging for transcatheter aortic valve replacement (TAVR) planning between January 2022 and May 2024 with a protocol including a non-contrast cardiac scan, an ECG-gated helical coronary CT angiography (CCTA), and a cardiac late enhancement scan. Myocardial strain was assessed with feature tracking from CCTA and ECV was calculated from spectral cardiac late enhancement scans. Results: Patients with cardiac amyloidosis (n = 4) exhibited significantly higher median mid-myocardial ECV (48.2% versus 25.5%, p = 0.048) but no significant differences in strain values (p > 0.05). Patients with prior myocardial infarction (n = 6) had reduced median global longitudinal strain values (−9.1% versus −21.7%, p < 0.001) but no significant differences in global mid-myocardial ECV (p > 0.05). Significant correlations were identified between the global longitudinal, circumferential, and radial strains and the CT-derived left ventricular ejection fraction (EF) (all, p < 0.001). Patients with low-flow, low-gradient AS and reduced EF exhibited lower median global longitudinal strain values compared with those with high-gradient AS (−15.2% versus −25.8%, p < 0.001). In these patients, the baso-apical mid-myocardial ECV gradient correlated with GLS values (R = 0.28, p = 0.02). Conclusions: In patients undergoing PCD-CT for TAVR planning, ECV and GLS may enable us to detect patients with cardiac amyloidosis and reduced myocardial contractility Full article
(This article belongs to the Special Issue Advancements in Cardiovascular CT Imaging)
Show Figures

Figure 1

12 pages, 3748 KiB  
Article
Late Enhancement Computed Tomography for Left Atrial Fibrosis Imaging: A Pilot “Proof-of-Concept” Study
by Pietro G. Lacaita, Christoph Beyer, Fabian Plank, Markus Stühlinger and Gudrun M. Feuchtner
Diagnostics 2024, 14(23), 2753; https://doi.org/10.3390/diagnostics14232753 - 6 Dec 2024
Viewed by 956
Abstract
Background/Objective: Left atrial (LA) fibrosis imaging improves the guidance of LA catheter ablation. Cardiac computed tomography (CT) may be a reasonable alternative to CMR. The aim was to evaluate late enhancement (LE) fibrosis mapping by CT, and to correlate the results with [...] Read more.
Background/Objective: Left atrial (LA) fibrosis imaging improves the guidance of LA catheter ablation. Cardiac computed tomography (CT) may be a reasonable alternative to CMR. The aim was to evaluate late enhancement (LE) fibrosis mapping by CT, and to correlate the results with low-voltage areas on electroanatomical mapping (EAM). Methods: In patients with atrial fibrillation who underwent 128-slice dual-source CT angiography (CTA) prior to LA catheter ablation, an additional LE-CT scan was performed 7 min after CTA. (1) Left atrial wall thickness (LAWT) was measured at three sites along the LA ridge. (2) Late enhancement (LE) was quantified co-axially aligned to LAWT and compared with low-voltage areas (LVA) on EAM. Results: Of 137 patients (age: 59.8 years; 27.7% females), 108 were included. The prevalence of LE was higher in patients with LAWT > 2 mm compared with 1.5 mm, with 78 (91.7%) vs. 77 (80.2%) (p = 0.022). Of 78 patients with LE, 60 (77.1%) had focal, 13 (16.5%) had diffuse, and 5 (6.3%) had mixed LE patterns. The CT density of focal LE was not different from that of diffuse patterns (104.2 +/− 21 HU vs. 98.9 +/− 18 HU; p = 0.360). Increasing LAWT and LE-HU were weakly correlated (r = 0.229; p = 0.041). LA wall artifacts had higher CT density compared with LE (154.1 HU vs. 114.2 HU; p = 0.002). The effective radiation dose was 0.95 mSv (range, 0.52–1.2 mSv) for LE-CT. The agreement of LE-CT was 80% for LVA < 0.5 mV and 86.6% for LVA < 0.7 mV in a subset of 30 patients. Conclusions: Left atrial fibrosis mapping by LE-CT is feasible. Late enhancement was found more frequently in LAWTs of more than 2 mm, and LE was correlated with increasing LA remodeling and low-voltage areas. Full article
(This article belongs to the Special Issue Advancements in Cardiovascular CT Imaging)
Show Figures

Figure 1

Back to TopTop