Applications of Quantitative MRI in Neurodegenerative Disorders and Peripheral Neuropathies

A special issue of Diagnostics (ISSN 2075-4418). This special issue belongs to the section "Medical Imaging and Theranostics".

Deadline for manuscript submissions: 31 October 2025 | Viewed by 1654

Special Issue Editor


E-Mail Website
Guest Editor
Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
Interests: quantitative MRI; neuroimaging; monitoring biomarker; Parkinson’s disease; peripheral nerve diseases
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

We are pleased to invite submissions to a Special Issue of Diagnostics titled "Applications of Quantitative MRI in Neurodegenerative Disorders and Peripheral Neuropathies." This Special Issue aims to highlight the latest advances and clinical applications of quantitative MRI (qMRI) in diagnosing and understanding disorders affecting both the central nervous system (CNS) and the peripheral nervous system (PNS).

Quantitative MRI techniques such as T1 mapping, T2 mapping, T2* mapping, proton density mapping, quantitative susceptibility mapping (QSM), diffusion tensor imaging (DTI), and magnetization transfer imaging (MTI) offer unprecedented insights into the structural and functional alterations associated with these conditions. This Special Issue seeks to showcase studies that utilize these advanced imaging modalities to investigate a range of CNS diseases, including Parkinson's disease, multiple sclerosis, and Alzheimer's disease, as well as PNS diseases such as Charcot–Marie–Tooth disease. Emphasis will be placed on the role of qMRI in detecting neurodegeneration and iron deposition, which are critical factors in many of these disorders.

We welcome original research articles, reviews, and case studies that explore the clinical applications, technological advancements, and combined use of qMRI techniques. Submissions should emphasize the diagnostic value, potential for early detection, and contributions to understanding disease progression and treatment efficacy.

This Special Issue aims to provide a comprehensive overview of how qMRI can enhance our understanding and management of disorders affecting both the CNS and PNS, with a particular focus on neurodegeneration and iron deposition, ultimately contributing to improved patient outcomes.

Dr. Yongsheng Chen
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Diagnostics is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • quantitative MRI
  • neurodegeneration
  • iron deposition
  • demyelination
  • remyelination
  • Parkinson’s disease
  • multiple sclerosis
  • peripheral neuropathy

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 3012 KiB  
Article
QSI and DTI of Inherited White Matter Disorders in Rat Spinal Cord: Early Detection and Comparison with Quantitative Electron Microscopy Findings
by Maysa Teixeira Resende, Benjamin K. August, Daniel Z. Radecki, Madelyn Reilly, Abigail Komro, John Svaren, Debbie Anaby, Ian D. Duncan and Yoram Cohen
Diagnostics 2025, 15(7), 837; https://doi.org/10.3390/diagnostics15070837 - 25 Mar 2025
Viewed by 268
Abstract
Background: Inherited white matter (WM) disorders of the central nervous systems (CNS), or leukodystrophies, are devastating diseases that primarily affect children, many of whom die early in life or suffer from long-term disability. Methods: q-Space diffusion MR imaging (QSI) and diffusion tensor [...] Read more.
Background: Inherited white matter (WM) disorders of the central nervous systems (CNS), or leukodystrophies, are devastating diseases that primarily affect children, many of whom die early in life or suffer from long-term disability. Methods: q-Space diffusion MR imaging (QSI) and diffusion tensor MR imaging (DTI) with the same resolution and timing parameters were used to study the spinal cords (SCs) of two myelin mutants that are experimental models of WM diseases of different severity, namely the 28-day-old taiep and Long–Evans Shaker (les) rats. The aim was to verify if and which of the diffusion methodologies used is more suitable for early detection of the milder taiep pathology and to characterize its early phase. We also aimed to compare the diffusion MRI results with quantitative electron microscopy (EM) findings. Results: We found that at this early age (28 days), both QSI and DTI were able to detect the severe les WM pathology, while the milder WM pathology in the SC of the taiep rats was detected only by QSI. An increase in the mean radial displacement (RaDis), representing the MRI axon diameter (AD), and a decrease in the probability for zero displacement (PZD) were observed in the dorsal column (ROI 1) of the taiep SCs. In other WM areas, the same trends were observed but the differences were not of statistical significance. In DTI, we found some lower fractional anisotropy (FA) values in the taiep SCs compared to the controls; however, these differences were not statistically significant. For the more severe les pathology, we observed a dramatic increase in the RaDis values and a large decrease in PZD values in all ROIs examined. There, even the FA values were lower than that of the control SCs in all ROIs, albeit with much smaller statistical significance. These MRI results, which show a higher detectability of WM pathology with heavier diffusion weighting, followed histological findings that showed significant myelin deficiency in the dorsal column in the taiep SCs and a practically complete myelin loss in all WM areas in the les SCs. This study also revealed that, under the experimental conditions used here, the apparent increase in RaDis agrees better with myelin thickness and not with average AD extracted form EM, probably reflecting the effect of water exchange. Conclusions: These results, corroborated by diffusion time-dependent QSI, also imply that while diffusion MRI in general and QSI in particular provide acceptable apparent axon diameter estimations in heathy and mature WM, this appears not to be the case in severely damaged WM where exchange appears to play a more important role. Full article
Show Figures

Figure 1

11 pages, 2421 KiB  
Article
Cerebellar Structural and N-Acetylaspartate, Choline, and Creatine Metabolic Profiles in Parkinson’s Disease and Essential Tremor
by Chien-Tai Hong, Cheng-Chang Yang, David Yen-Ting Chen, Shu-Ping Chao and Lung Chan
Diagnostics 2024, 14(21), 2430; https://doi.org/10.3390/diagnostics14212430 - 30 Oct 2024
Cited by 1 | Viewed by 929
Abstract
Background: The role of the cerebellum in Parkinson’s disease (PD), particularly in tremor-dominant subtypes, is increasingly recognized. Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) provide anatomical and metabolic insights, suggesting compensatory hyperactivity or degenerative changes in the cerebellum in PD. Volumetric [...] Read more.
Background: The role of the cerebellum in Parkinson’s disease (PD), particularly in tremor-dominant subtypes, is increasingly recognized. Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) provide anatomical and metabolic insights, suggesting compensatory hyperactivity or degenerative changes in the cerebellum in PD. Volumetric analysis of cerebellar structures in MRI images, combined with metabolic profiles from MRS, offers possibilities for differentiating PD from essential tremor (ET). The cerebellum may be a potential therapeutic target due to its role in neurocircuitry of PD and ET. Methods: Brain structural data were obtained using MRI, and cerebellar metabolic profiles, focusing on the quantification of N-acetylaspartate (NAA), choline, and creatine peaks were obtained using MRS. This study enrolled patients with ET and PD, both with and without tremor, as well as disease controls with cerebellar atrophy (including spinocerebellar ataxia and multiple system atrophy). Volumetric analysis of cerebellar structures was performed. Differences in MRI and MRS parameters were analyzed using one-way analysis of covariance with a significance threshold of p < 0.05. Results: From November 2018 to March 2023, 111 patients were enrolled, including 29 ET, 29 cerebellar atrophy, 12 PD without tremor, and 41 PD with tremor. No significant differences in cerebellar volume and N-acetylaspartate/creatine and choline/creatine ratios were found between ET and PD with tremor. Conclusions: This preliminary retrospective study suggests similarities in cerebellar structures and metabolic profiles between ET and PD, highlighting the need for advanced imaging techniques to better differentiate between these conditions. Future research should integrate clinical data, such as tremor severity and cognitive assessments, to explore the relationships with cerebellar MRI parameters. Full article
Show Figures

Figure 1

Back to TopTop