Influence of Crop Phenology and Seasonality on Soil Conditions Across Depth Profiles
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil and Vegetation Samples Prelevation
2.3. Analytical Methods
- -
- Working electrode: carbon paste electrode modified with zeolite adsorbed with Toluidine Blue O (CPE-Z-TBO);
- -
- Reference electrode: Ag/AgCl/KClsat electrode;
- -
- Counter electrode: platinum wire with a large surface area.
2.4. Statistical Analysis
3. Results and Discussion
3.1. Physico-Chemical Parameters of Soil
3.1.1. Clover Crop
3.1.2. Maize Crop
3.1.3. Triticale Crop
3.2. Nitrites in Soil Under Clover, Maize and Triticale Crops
3.3. Statistical Assessment of Soil Parameters
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beltran-Peña, A.; Rosa, L.; D’Odorico, P. Global food self-sufficiency in the 21st century under sustainable intensification of agriculture. Environ. Res. Lett. 2020, 15, 094064. [Google Scholar] [CrossRef]
- Ajayi, A.E.; Faloye, O.T.; Rostek, J.; Schroeren, V.; Fasina, A.; Horn, R. Changes in mechanical and resilience characteristics of degraded arable land under long-term grassland management. Soil Tillage Res. 2025, 248, 106387. [Google Scholar] [CrossRef]
- Amenumey, S.E.; Capel, P.D. Fertilizer consumption and energy input for 16 crops in the United States. Nat. Resour. Res. 2013, 23, 299–309. [Google Scholar] [CrossRef]
- Xu, P.; Li, G.; Zheng, Y.; Fung, J.C.H.; Chen, A.; Zeng, Z.; Shen, H.; Hu, M.; Mao, J.; Zheng, Y.; et al. Fertilizer management for global ammonia emission reduction. Nature 2024, 626, 792–798. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Li, X.; Liu, T.; Chen, N.; Xin, M.; Qi, Q.; Liu, B. Controlled-release fertilizer improved sunflower yield and nitrogen use efficiency by promoting root growth and water and nitrogen capacity. Ind. Crops Prod. 2025, 226, 120671. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.; Zhang, S.; Wang, Y. What could promote farmers to replace chemical fertilizers with organic fertilizers? J. Clean. Prod. 2018, 199, 882–890. [Google Scholar] [CrossRef]
- Shanmugam, V.; Kumar, V.; Peramaiyan, P.; Sundaram, R.M. Continental variations in fertilizer use and efficiency call for judicious fertilization to ensure agricultural sustainability and environmental safety. Next Res. 2025, 2, 100476. [Google Scholar] [CrossRef]
- Graaff, M.D.; Hornslein, N.; Throop, H.L. Effects of Agricultural Intensification on Soil Biodiversity and Implications for Ecosystem Functioning: A Meta-Analysis. In Advances in Agronomy, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 1–44. [Google Scholar] [CrossRef]
- Baldivieso-Freitas, P.; Blanco-Moreno, J.M.; Armengot, L.; Chamorro, L.; Romanyà, J.; Sans, F.X. Crop yield, weed infestation and soil fertility responses to contrasted ploughing intensity and manure additions in a Mediterranean organic crop rotation. Soil Tillage Res. 2018, 180, 10–20. [Google Scholar] [CrossRef]
- Abalos, D.; Recous, S.; Butterbach-Bahl, K.; De Notaris, C.; Rittl, T.F.; Topp, C.F.E.; Petersen, S.O.; Hansen, S.; Bleken, M.A.; Rees, R.M.; et al. Areview and meta-analysis of mitigation measures for nitrous oxide emissions from crop residues. Sci. Total Environ. 2022, 828, 154388. [Google Scholar] [CrossRef] [PubMed]
- Haas, E.; Carozzi, M.; Massad, R.S.; Butterbach-Bahl, K.; Scheer, C. Long term impact of residue management on soil organic carbon stocks and nitrous oxide emissions from European croplands. Sci. Total Environ. 2022, 836, 154932. [Google Scholar] [CrossRef]
- Tariq, A.; Larsen, K.S.; Hansen, L.V.; Jensen, L.S.; Bruun, S. Effect of nitrification inhibitor (DMPP) on nitrous oxide emissions from agricultural fields: Automated and manual measurements. Sci. Total Environ. 2022, 847, 1549157650. [Google Scholar] [CrossRef] [PubMed]
- Nyvold, M.; Dörsch, P. Nitrous oxide emissions from production, storage and application of nitrogen enriched organic fertilizer. Sci. Total Environ. 2025, 977, 179375. [Google Scholar] [CrossRef]
- Butterbach-Bahl, K.; Baggs, E.M.; Dannenmann, M.; Kiese, R.; Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philos. Trans. R. Soc. 2013, 368, 20130122. [Google Scholar] [CrossRef]
- Subbarao, G.V.; Rao, I.M.; Nakahara, K.; Sahrawat, K.L.; Ando, Y.; Kawashima, T. Potential for biological nitrification inhibition to reduce nitrification and N2O emissions in pasture crop–livestock systems. Animal 2013, 7, 322–332. [Google Scholar] [CrossRef] [PubMed]
- Waheed, A.; Qiao, X.; Muhammad, M.; Yiremaikebayo, Y.; Yinying, X.; Xu, H.; Aili, A.; Wahab, A. Plant root-mediated carbon sequestration and nutrient cycling in grassland ecosystems under land use and climate change. Agric. Ecosyst. Environ. 2025, 393, 109865. [Google Scholar] [CrossRef]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Jobbágy, E.G.; Jackson, R.B. The distribution of soil nutrients with depth: Global patterns and the imprint of plants. Biogeochemistry 2001, 53, 51–77. [Google Scholar] [CrossRef]
- Randhawa, H.S.; Bona, L.; Graf, R.J. Triticale Breeding—Progress and Prospect. In Triticale; Eudes, F., Ed.; Springer: Cham, Germany, 2015. [Google Scholar] [CrossRef]
- Wortmann, C.S.; Dobermann, A.R.; Ferguson, R.B.; Hergert, G.W.; Shapiro, C.A. High-Yielding Corn Response to Applied Phosphorus, Potassium, and Sulfur in Nebraska. Agron. J. 2009, 101, 546–555. [Google Scholar] [CrossRef]
- Ciampitti, I.A.; Murrell, S.T.; Camberato, J.J.; Tuinstra, M.; Xia, Y.; Friedemann, P.; Vyn, T.J. Physiological Dynamics of Maize Nitrogen Uptake and Partitioning in Response to Plant Density and Nitrogen Stress Factors: II. Reproductive Phase. Crop Sci. 2013, 53, 2588–2602. [Google Scholar] [CrossRef]
- Puerta, V.L.; Pereira, E.I.P.; Wittwer, R.; van der Heijden, M.; Six, J. Improvement of soil structure through organic crop management, conservation tillage and grass-clover ley. Soil Tillage Res. 2018, 80, 1–9. [Google Scholar] [CrossRef]
- Doroțan, D.; Bălc, R.; Kalmár, J. Neotectonically controlled quaternary sedimentation in the Lăpuș basin (Maramureș county, Romania), demonstrated by sedimentological and geochemical analyses. Geo-Eco-Marina 2019, 25, 203–218. [Google Scholar]
- OM 278/2011; Order on the approval of the National Program for the implementation of the National Soil-Terrain Monitoring System for Agriculture. Published in the Official Gazette no. 928, Ministry of Agriculture and Rural Development: Bucharest, Romania, 2011.
- Pupăzan, I.A.; Gligor, D.M. Carbon paste electrodes modified with diatomite adsorbed with Toluidine Blue, used for nitrite detection in water. Stud. UBB Ambient. 2013, LVIII, 111–120. [Google Scholar]
- Liu, D.; Niu, J.; Kong, L.; Chen, Z. Simultaneous Detection of Nitrite and Nitrate in Celeries and Carrots. Am. J. Biochem. Biotechnol. 2016, 12, 122–126. [Google Scholar] [CrossRef]
- Maltais-Landry, G. Legumes have a greater effect on rhizosphere properties (pH, organic acids and enzyme activity) but a smaller impact on soil P compared to other cover crops. Plant Soil 2015, 394, 139–154. [Google Scholar] [CrossRef]
- Yu, Z.; Chen, H.Y.H.; Searle, E.B.; Sardans, J.; Ciais, P.; Peñuelas, J.; Huang, Z. Whole soil acidification and base cation reduction across subtropical China. Geoderma 2020, 361, 114107. [Google Scholar] [CrossRef]
- Kaštowská, E.; Choma, M.; Čapek, P.; Kaňa, J.; Tahovská, K.; Kopáček, J. Soil warming during winter period enhanced soil N and P availability and leaching in alpine grasslands: A transplant study. PLoS ONE 2022, 17, e0272143. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, Q.; Chen, S.; Lv, H.; Li, J.; Chen, Q.; Zhou, J.; Liang, B. Nitrate leaching is the main driving factor of soil calcium and magnesium leaching loss in intensive plastic-shed vegetable production systems. Agric. Water Manag. 2024, 293, 108708. [Google Scholar] [CrossRef]
- Castañeda, C.; Rodríguez-Ochoa, R.; Olarieta, J.R.; Medina, E.; Latorre, B.; Scott, B.; Rabenhorst, M.C.; Herrero, J. Redox conditions and Indicator of Reduction in Soils (IRIS) films in soils of a hypersaline wetland. Catena 2024, 247, 108552. [Google Scholar] [CrossRef]
- Mansfeldt, T. In situ long-term redox potential measurements in a dyked marsh soil. J. Plant Nutr. Soil Sci. 2003, 166, 210–219. [Google Scholar] [CrossRef]
- Haberer, C.M.; Rolle, M.; Cirpka, O.A.; Grathwohl, P. Oxygen transfer in a fluctuating capillary fringe. Vadose Zone J. 2012, 11, 1–16. [Google Scholar] [CrossRef]
- Zhang, Z.; Furman, A. Soil redox dynamics under dynamic hydrologic regimes—A review. Sci. Total Environ. 2021, 763, 143026. [Google Scholar] [CrossRef]
- Barczok, M.; Smith, C.; Di Domenico, N.; Kinsman-Costello, L.; Herndon, E. Variability in soil redox response to seasonal flooding in a vernal pond. Front. Environ. Sci. 2023, 11, 1114814. [Google Scholar] [CrossRef]
- Husson, O. Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: A transdisciplinary overview pointing to integrative opportunities for agronomy. Plant Soil 2013, 362, 389–417. [Google Scholar] [CrossRef]
- Van der Zee, S.E.A.T.M.; Shah, S.H.H.; Vervoort, R.W. Root zone salinity and sodicity under seasonal rainfall due to feedback of decreasing hydraulic conductivity. Water Resour. Reasearch 2014, 50, 9432–9446. [Google Scholar] [CrossRef]
- Wang, H.; She, D.; Cardoso, R. Understanding the Effect of Seasonal Climate Variability on the Salinity in Unsaturated Agricultural Soil. Agronomy 2023, 13, 2802. [Google Scholar] [CrossRef]
- Doran, J.W.; Parkin, T.B. Quantitative Indicators of Soil Quality: A Minimum Data Set. In Methods for Assessing Soil Quality; Doran, J.W., Jones, A.J., Eds.; Soil Science Society of America: Madison, WI, USA, 1996; Volume 49, pp. 25–38. [Google Scholar] [CrossRef]
- Corwin, D.L.; Lesch, S.M. Apparent soil electrical conductivity measurements in agriculture. Comput. Electron. Agric. 2005, 46, 11–43. [Google Scholar] [CrossRef]
- Fu, Y.; Horton, R.; Ren, T.; Heitman, J.L. A general form of Archie’s model for estimating bulk soil electrical conductivity. J. Hydrol. 2021, 597, 126160. [Google Scholar] [CrossRef]
- Flores, J.L.G.; Rodríguez, M.R.; Jiménez, A.G.; Farzamian, M.; Galán, J.F.H.; Bellido, B.S.; Sacristan, P.C.; Vanderlinden, K. Depth-Specific Soil Electrical Conductivity and NDVI Elucidate Salinity Effects on Crop Development in Reclaimed Marsh Soils. Remote Sens. 2022, 14, 3389. [Google Scholar] [CrossRef]
- Erenstein, O.; Jaleta, M.; Sonder, K.; Mottaleb, K.; Prasanna, B.M. Global maize production, consumption and trade: Trends and R&D implications. Food Secur. 2022, 14, 1295–1319. [Google Scholar] [CrossRef]
- Banaj, A.; Banaj, Đ.; Stipešević, B.; Nemet, F. Seeding Pattern Impact at Crop Density Establishment and Grain Yield of Maize. Crops 2023, 3, 1–10. [Google Scholar] [CrossRef]
- Gao, J.; Shi, J.; Dong, S.; Liu, P.; Zhai, B.; Zhang, J. Grain development and endogenous hormones in summer maize (Zea mays L.) submitted to different light conditions. Int. J. Biometeorol. 2018, 62, 2131–2138. [Google Scholar] [CrossRef] [PubMed]
- Himani, C.; Barsha, K.C.; Biddhya, P.; Preeti, K.; Pawan, L.; Janak, B.; Roka, M.B.; Prakash, B.; Ram, P.M. A review on effects of heat stress on maize. Plant Physiol. Soil Chem. 2022, 2, 72–74. [Google Scholar] [CrossRef]
- Jing, X.; Chai, X.; Long, S.; Liu, T.; Si, M.; Zheng, X.; Cai, X. Urea/sodium hydroxide pretreatments enhance decomposition of maize straw in soils and sorption of straw residues toward herbicides. J. Hazard. Mater. 2022, 431, 128467. [Google Scholar] [CrossRef]
- García-Gutiérrez, S.; García-Marco, S.; Jiménez-Horcajada, R.; Montoya, M.; Vallejo, A.; Guardia, G. Maize residue input rather than cover cropping influenced N2O emissions and soil–crop N dynamics during the intercrop and cash crop periods. Agric. Ecosyst. Environ. 2024, 363, 108873. [Google Scholar] [CrossRef]
- Hua, L.; Yang, Z.; Li, W.; Zhao, Y.; Xia, J.; Dong, W.; Chen, B. Effects of Different Straw Return Modes on Soil Carbon, Nitrogen, and Greenhouse Gas Emissions in the Semiarid Maize Field. Plants 2024, 13, 2503. [Google Scholar] [CrossRef]
- Tang, C.; Yu, Q. Impact of chemical composition of legume residues and initial soil pH on pH change of a soil after residue incorporation. Plant Soil 1999, 215, 29–38. [Google Scholar] [CrossRef]
- Butterly, C.; Baldock, J.; Tang, C. Chemical mechanisms of soil pH change by agricultural residues. In Proceedings of the 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, 16 August 2010. [Google Scholar]
- Cai, Z.; Xu, M.; Zhang, L.; Yang, Y.; Wang, B.; Wen, S.; Misselbrook, T.H.; Carswell, A.M.; Duan, Y.; Gao, S. Decarboxylation of organic anions to alleviate acidification of red soils from urea application. J. Soils Sediments 2020, 20, 3124–3135. [Google Scholar] [CrossRef]
- Nilahyane, A.; Ghimire, R.; Thapa, V.R.; Sainju, U.M. Cover crop effects on soil carbon dioxide emissions in a semiarid cropping system. Agrosyst. Geosci. Environ. 2019, 3, e20012. [Google Scholar] [CrossRef]
- Curtin, D.; Trolove, S. Predicting pH buffering capacity of New Zealand soils from organic matter content and mineral characteristics. Soil Res. 2013, 51, 494–502. [Google Scholar] [CrossRef]
- Kul’bachkoa, Y.L.; Didur, O.O.; Loza, I.M.; Pakhomov, O.E.; Bezrodnova, O.V. Environmental Aspects of the Effect of Earthworm (Lumbricidae, Oligochaeta) TrophoMetabolic Activity on the pH Buffering Capacity of Remediated Soil (Steppe Zone, Ukraine). Biol. Bull. 2015, 42, 899–904. [Google Scholar] [CrossRef]
- Fiedler, S.; Vepraskas, M.J.; Richardson, J.L. Soil redox potential: Importance, field measurements, and observations. Adv. Agron. 2007, 94, 1–54. [Google Scholar] [CrossRef]
- Lussich, F.; Dhaliwal, J.K.; Faiia, A.M.; Jagadamma, S.; Schaeffer, S.M.; Saha, D. Cover crop residue decomposition triggered soil oxygen depletion and promoted nitrous oxide emissions. Sci. Rep. 2024, 14, 8437. [Google Scholar] [CrossRef]
- Gardiner, D.T.; James, S. Wet Soil Redox Chemistry as Affected by Organic Matter and Nitrate. Am. J. Clim. Change 2012, 1, 205–209. [Google Scholar] [CrossRef]
- Segers, R.; Kengen, S.W.M. Methane production as a function of anaerobic carbon mineralization: A process model. Soil Biol. Biochem. 1998, 8, 1107–1117. [Google Scholar] [CrossRef]
- González-Méndez, B.; Webster, R.; Fiedler, S.; Siebe, C. Changes in soil redox potential in response to flood irrigation with waste water in central Mexico. Eur. J. Soil Sci. 2017, 68, 886–896. [Google Scholar] [CrossRef]
- Gatel, F.; Lavorel, O.; Fekete, J.; Grosjean, F.; Castaing, J. Feeding value of triticale for monogastrics: Weaned piglets, growing finishing pigs and broilers. In Genetics and Breeding of Triticale; Bernard, M., Bernard, S., Eds.; INRA: Paris, France, 1985; pp. 659–670. [Google Scholar]
- Vieira, S.L.; Penz, A.M.; Kessler, A.M.; Catellan, E.V., Jr. A nutritional evaluation of triticale in broiler diets. J. Appl. Poult. Res. 1995, 4, 352–355. [Google Scholar] [CrossRef]
- McGoverin, C.M.; Snyders, F.; Muller, N.; Botes, W.; Fox, G.; Manley, M. A review of triticale uses and the effect of growth environment on grain quality. J. Sci. Food Agric. 2010, 91, 1155–1165. [Google Scholar] [CrossRef]
- Liu, D.L.; Helyar, K.R.; Conyers, M.K.; Fisher, R.; Poile, G.J. Response of wheat, triticale and barley to lime application in semi-arid soils. Field Crop Res. 2004, 90, 287–301. [Google Scholar] [CrossRef]
- Bagayoko, M.; Alvey, S.; Neumann, G.; Buerkert, A. Root-induced increases in soil pH and nutrient availability to field-grow cereals and legumes on acid sandy soils of Sudano-Sahelian West Africa. Plant Soil 2000, 225, 117–127. [Google Scholar] [CrossRef]
- Tang, C.; Conyers, M.K.; Nuruzzaman, M.; Poile, G.J.; Liu, D.L. Biological amelioration of subsoil acidity through managing nitrate uptake by wheat crops. Plant Soil 2011, 338, 383–397. [Google Scholar] [CrossRef]
- Yan, F.; Schubert, S.; Mengel, K. Soil pH increase due to biological decarboxylation of organic anions. Soil Biol. Biochem. 1996, 28, 617–624. [Google Scholar] [CrossRef]
- Xu, J.M.; Tang, C.; Chen, Z.L. The role of plant residues in pH change of acid soils differing in initial pH. Soil Biol. Biochem. 2006, 38, 709–719. [Google Scholar] [CrossRef]
- Murungu, F.S.; Chiduza, C.; Muchaonyerwa, P.; Mnkeni, P.N.S. Decomposition, nitrogen and phosphorus mineralization from winter-grown cover crop residues and suitability for a smallholder farming system in South Africa. Nutr. Cycl. Agroecosyst. 2011, 89, 115–123. [Google Scholar] [CrossRef]
- Paul, K.I.; Black, A.S.; Conyers, M.K. Effect of plant residue return on the development of surface soil pH gradients. Biol. Fertil. Soils 2001, 33, 75–82. [Google Scholar] [CrossRef]
- Patrick, H., Jr.; Delaune, R.D. Chemical and biological redox systems affecting nutrient availability in the coastal wetlands. Geosci. Man 1977, 18, 131–137. [Google Scholar]
- Shahid, S.A.; Zaman, M.; Heng, L. Soil salinity: Historical perspectives and a world overview of the problem. In Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques; Springer: Cham, Germany, 2018; pp. 43–61. [Google Scholar] [CrossRef]
- Stark, J.M.; Firestone, M.K. Kinetic characteristics of ammonium-oxidizer communities in a California oak woodland-annual grassland. Soil Biol. Biochem. 1996, 28, 1307–1317. [Google Scholar] [CrossRef]
- Schimel, J.; Balser, T.C.; Wallenstein, M. Microbial stress-response physiology and its implications for ecosystem function. Ecology 2007, 88, 1386–1394. [Google Scholar] [CrossRef]
- Groffman, P.M.; Hardy, J.P.; Fisk, M.C.; Fahey, T.J.; Driscoll, C.T. Climate Variation and Soil Carbon and Nitrogen Cycling Processes in a Northern Hardwood Forest. Ecosystems 2009, 12, 927–943. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, Z.; He, P.; Zhang, Y.; Li, L.-J. Changes in soil microbial community and carbon use efficiency in freeze-thaw period restored after growth season under warming and straw return. Appl. Soil Ecol. 2025, 205, 105779. [Google Scholar] [CrossRef]
- Davidson, E.A.; Seitzinger, S. The enigma of progress in denitrification research. Ecol. Appl. 2006, 16, 2057–2063. [Google Scholar] [CrossRef]
- Firestone, M.K.; Davidson, E.A. Microbiological Basis of NO and N2O Production and Consumption in Soils. In Exchange of Trace Gases Between Terrestrial Ecosystems and the Atmosphere; Andreae, M.O., Schimel, D.S., Eds.; John Willey and Sons: New York, NY, USA, 1989; pp. 7–21. [Google Scholar]
- Maitlo, A.A.; Zhang, S.; Ahmed, W.; Jangid, K.; Ali, S.; Yang, H.; Bhatti, S.M.; Duan, Y.; Xu, M. Potential Nitrogen Mineralization and Its Availability in Response to Long-Term Fertilization in a Chinese Fluvo-Aquic Soil. Agronomy 2022, 12, 1260. [Google Scholar] [CrossRef]
- Qiu, X.; Hou, J.; Guo, N.; Wang, Z.; Wang, C. Seasonal Variations and Influencing Factors of Gross Nitrification Rate in Desert Steppe Soil. Sustainability 2022, 14, 4787. [Google Scholar] [CrossRef]
- Vincent, A.E.S.; Tank, J.L.; Mahl, U.H. Seasonal patterns in sediment nitrification rates and their linkages to ammonium cycling in three agricultural streams. Biogeochemistry 2025, 168, 13. [Google Scholar] [CrossRef]
- Shen, Q.R.; Ran, W.; Cao, Z.H. Mechanisms of nitrite accumulation occurring in soil nitrification. Chemosphere 2003, 50, 747–753. [Google Scholar] [CrossRef]
- Wang, F.; Liang, X.; Ding, F.; Ren, L.; Liang, M.; An, T.; Li, S.; Wang, J.; Liu, L. The active functional microbes contribute differently to soil nitrification and denitrification potential under long-term fertilizer regimes in North-East China. Front. Microbiol. 2022, 13, 1021080. [Google Scholar] [CrossRef]
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Maryinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef] [PubMed]
- Canfield, D.E.; Glazer, A.N.; Falkowski, P.G. The Evolution and Future of Earth’s Nitrogen Cycle. Science 2010, 330, 192–196. [Google Scholar] [CrossRef]
- Fang, Q.; Yu, Q.; Wang, E.; Chen, Y.; Zhang, G.; Wang, J.; Li, L. Soil nitrate accumulation, leaching and crop nitrogen use as influenced by fertilization and irrigation in an intensive wheat–maize double cropping system in the North China Plain. Plant Soil 2006, 284, 335–350. [Google Scholar] [CrossRef]
- Sabey, B.R.; Bartholomew, W.V.; Shaw, R.; Pesek, J. Influence of temperature on nitrification in soils. Soil Sci. Soc. Am. J. 1956, 20, 357–360. [Google Scholar] [CrossRef]
- Bollmann, A.; Bär-Gilissen, M.-J.; Laanbroek, H.J. Growth at Low Ammonium Concentrations and Starvation Response as Potential Factors Involved in Niche Differentiation among Ammonia-Oxidizing Bacteria. Appl. Environ. Microbiol. 2002, 68, 4751–4757. [Google Scholar] [CrossRef] [PubMed]
- Elrys, A.S.; Wang, J.; Metwally, M.A.S.; Cheng, Y.; Zhang, J.-B.; Cai, Z.-C.; Chang, S.X.; Müller, C. Global gross nitrification rates are dominantly driven by soil carbon-to-nitrogen stoichiometry and total nitrogen. Glob. Change Biol. 2021, 27, 6512–6524. [Google Scholar] [CrossRef]
- Das, S.; Ganguly, D.; Maiti, T.K.; Mukherjee, A.; Jana, T.K.; De, T.K. A depth wise diversity of free living N2 fixing and nitrifying bacteria and its seasonal variation with nitrogen containing nutrients in the mangrove sediments of Sundarban, WB, India. Open J. Mar. Sci. 2013, 3, 112–119. [Google Scholar] [CrossRef]
- Hu, R.; Wang, X.-P.; Pan, Y.-X.; Zhang, Y.-F.; Zhang, H. The response mechanisms of soil N mineralization under biological soil crusts to temperature and moisture in temperate desert regions. Eur. J. Soil Biol. 2014, 62, 66–73. [Google Scholar] [CrossRef]
- Recous, S.; Robin, D.; Darwis, D.; Mary, B. Soil inorganic N availability: Effect on maize residue decomposition. Soil Biol. Biochem. 1995, 27, 1529–1538. [Google Scholar] [CrossRef]
- Moritsuka, N.; Yanai, J.; Kosaki, T. Biotic and abiotic processes of nitrogen immobilization in decomposing maize residue–soil systems. Soil Biol. Biochem. 2004, 36, 1141–1148. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, Y.; Cui, J.; Zhang, X.; Gao, W. Effects of mixing maize straw with soil and placement depths on decomposition rates and products at two cold sites in the Mollisol region of China. Soil Tillage Res. 2020, 197, 104524. [Google Scholar] [CrossRef]
- Wang, H.-M.; Wang, W.-J.; Chen, H.; Zhang, Z.; Mao, Z.; Zu, Y.-G. Temporal changes of soil physic-chemical properties at different soil depths during larch afforestation by multivariate analysis of covariance. Ecol. Evol. 2014, 4, 1039–1048. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bălc, R.; Gligor, D.M.; Roba, C.A.; Dicu, T.; Roșian, G.; Mico, L. Influence of Crop Phenology and Seasonality on Soil Conditions Across Depth Profiles. Crops 2025, 5, 67. https://doi.org/10.3390/crops5050067
Bălc R, Gligor DM, Roba CA, Dicu T, Roșian G, Mico L. Influence of Crop Phenology and Seasonality on Soil Conditions Across Depth Profiles. Crops. 2025; 5(5):67. https://doi.org/10.3390/crops5050067
Chicago/Turabian StyleBălc, Ramona, Delia Maria Gligor, Carmen Andreea Roba, Tiberius Dicu, Gheorghe Roșian, and Laura Mico. 2025. "Influence of Crop Phenology and Seasonality on Soil Conditions Across Depth Profiles" Crops 5, no. 5: 67. https://doi.org/10.3390/crops5050067
APA StyleBălc, R., Gligor, D. M., Roba, C. A., Dicu, T., Roșian, G., & Mico, L. (2025). Influence of Crop Phenology and Seasonality on Soil Conditions Across Depth Profiles. Crops, 5(5), 67. https://doi.org/10.3390/crops5050067