Moroccan Ulva rigida Extracts: A Promising Biostimulant for Improving Growth and Photosynthetic Performance in Salt-Stressed Bean Plants
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection and Preparation of Seaweed
2.1.1. Maceration Extraction Method
2.1.2. Ultrasonic-Assisted Extraction Method
2.2. Botanical Samples and Culture Conditions
2.3. Experimental Design and Treatments
2.4. Collection and Analysis of Data
2.5. Chlorophyll Fluorescence and Photosystem II (PS II) Efficiency
2.6. Determination of Indole Acetic Acid (IAA) Concentration
2.7. Statistical Analysis
3. Results
3.1. Effect of Ulva rigida Extract (URE) Application Methods and Concentrations on Chlorophyll Content Index (CCI)
3.2. Effect of Seaweed (Ulva rigida) Extract Application Methods and Concentrations on Stomatal Conductance (SC)
3.3. Chlorophyll a Fluorescence and Photosynthetic Performance Index
3.4. Root Length
3.5. Indole Acetic Acid (IAA) Content
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
URE | Ulva rigida extract |
SWE | Seaweed extract |
SS | Salt stress |
C | Control |
UP | Ultrasonic extract applied via a foliar spray |
MI | Maceration extract applied via irrigation |
MP | Maceration extract applied via a foliar spray |
UI | Ultrasonic extract applied via irrigation |
IAA | Indole acetic acid |
CCI | Chlorophyll content index |
SC | Stomatal conductance |
OJIP | Fast chlorophyll a fluorescence induction |
P2O5 | Phosphorus pentoxide |
K2O | Potassium oxide |
N-NO3 | Nitrate nitrogen |
References
- Munns, R.; Tester, M. Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-P.; Ma, H.-B.; Zhang, J.-L. Halo-Tolerant Plant Growth-Promoting Bacteria-Mediated Plant Salt Resistance and Microbiome-Based Solutions for Sustainable Agriculture in Saline Soils. FEMS Microbiol. Ecol. 2025, 101, fiaf037. [Google Scholar] [CrossRef]
- Balasubramaniam, T.; Shen, G.; Esmaeili, N.; Zhang, H. Plants’ Response Mechanisms to Salinity Stress. Plants 2023, 12, 2253. [Google Scholar] [CrossRef]
- Fu, H.; Yang, Y. How Plants Tolerate Salt Stress. Curr. Issues Mol. Biol. 2023, 45, 5914–5934. [Google Scholar] [CrossRef]
- Isayenkov, S.V.; Maathuis, F.J.M. Plant Salinity Stress: Many Unanswered Questions Remain. Front. Plant Sci. 2019, 10, 80. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, P.; Kumar, R. Soil Salinity: A Serious Environmental Issue and Plant Growth Promoting Bacteria as One of the Tools for Its Alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef]
- Du Jardin, P. Plant Biostimulants: Definition, Concept, Main Categories and Regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural Uses of Plant Biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef]
- Rashedy, S.H.; Madkour, A.G. Phytoremediation Potential of Seaweeds: Exploring Their Environmental Cleanup Capabilities. In Recent Advances in Seaweed Biotechnology; Trivedi, N., Reddy, C.R.K., Critchley, A.T., Eds.; Springer Nature: Singapore, 2025; pp. 265–282. [Google Scholar] [CrossRef]
- Battacharyya, D.; Babgohari, M.Z.; Rathor, P.; Prithiviraj, B. Seaweed Extracts as Biostimulants in Horticulture. Sci. Hortic. 2015, 196, 39–48. [Google Scholar] [CrossRef]
- El Boukhari, M.E.M.; Barakate, M.; Bouhia, Y.; Lyamlouli, K. Trends in Seaweed Extract Based Biostimulants: Manufacturing Process and Beneficial Effect on Soil-Plant Systems. Plants 2020, 9, 359. [Google Scholar] [CrossRef]
- Farooq, M.; Gogoi, N.; Hussain, M.; Barthakur, S.; Paul, S.; Bharadwaj, N.; Migdadi, H.M.; Alghamdi, S.S.; Siddique, K.H.M. Effects, Tolerance Mechanisms and Management of Salt Stress in Grain Legumes. Plant Physiol. Biochem. 2017, 118, 199–217. [Google Scholar] [CrossRef]
- Latique, S.; Mrid, R.B.; Kabach, I.; Kchikich, A.; Sammama, H.; Yasri, A.; Nhiri, M.; El Kaoua, M.; Douira, A.; Selmaoui, K. Foliar Application of Ulva rigida Water Extracts Improves Salinity Tolerance in Wheat (Triticum durum L.). Agronomy 2021, 11, 265. [Google Scholar] [CrossRef]
- Sivasankari, S.; Venkatesalu, V.; Anantharaj, M.; Chandrasekaran, M. Effect of Seaweed Extracts on the Growth and Biochemical Constituents of Vigna Sinensis. Bioresour. Technol. 2006, 97, 1745–1751. [Google Scholar] [CrossRef]
- Mansori, M.; Farouk, I.A.; Hsissou, M.; Kaoua, E.I. Seaweed extract treatment enhances vegetative growth and antioxidant parameters in water stressed Salvia officinalis L. J. Mater. Environ. Sci. 2019, 8, 756–766. [Google Scholar]
- Latique, S.; Elouaer, M.A.; Chernane, H.; Hannachi, C.; Mimoun, E.K. Alleviation of Salt Stress in Durum Wheat (Triticum durum L.) Seedlings Through the Application of Liquid Seaweed Extracts of Fucus spiralis. Commun. Soil Sci. Plant Anal. 2017, 48, 2582–2593. [Google Scholar] [CrossRef]
- Sultana, S. Nutritional and Functional Properties of Moringa Oleifera. Metab. Open 2020, 8, 100061. [Google Scholar] [CrossRef]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; US Department of Agriculture: Washington, DC, USA, 1954.
- Sparks, D.L. Methods of Soil Analysis Part 3: Chemical Methods; Soil Science Society of America, American Society of Agronomy: Madison, WI, USA, 1996. [Google Scholar]
- Tsimilli-Michael, M.; Strasser, R.J. In Vivo Assessment of Plants’ Vitality: Applications in Detecting and Evaluating the Impact of Mycorrhization on Host Plants. In Mycorrhiza: State of the Art, Genetics and Molecular Biology, Eco-Function, Biotechnology, Eco-Physiology, Structure and Systematics, 3rd ed.; Varma, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 679–703. [Google Scholar]
- Ehmann, A. The van URK-Salkowski Reagent—A Sensitive and Specific Chromogenic Reagent for Silica Gel Thin-Layer Chromatographic Detection and Identification of Indole Derivatives. J. Chromatogr. A 1977, 132, 267–276. [Google Scholar] [CrossRef]
- Freitas, M.V.; Afonso, C.; Pereira, L.; Mouga, T. The Vibrant Spectra of the Oceans: Unravelling the Diversity, Functions, and Applications of Seaweed Pigments. In Recent Advances in Seaweed Biotechnology; Trivedi, N., Reddy, C.R.K., Critchley, A.T., Eds.; Springer Nature: Singapore, 2025; pp. 311–346. [Google Scholar] [CrossRef]
- Jacomassi, L.M.; Viveiros, J.D.O.; Oliveira, M.P.; Momesso, L.; De Siqueira, G.F.; Crusciol, C.A.C. A Seaweed Extract-Based Biostimulant Mitigates Drought Stress in Sugarcane. Front. Plant Sci. 2022, 13, 865291. [Google Scholar] [CrossRef] [PubMed]
- Craigie, J.S. Seaweed Extract Stimuli in Plant Science and Agriculture. J. Appl. Phycol. 2011, 23, 371–393. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Bhuyan, M.; Nahar, K.; Hossain, M.; Mahmud, J.; Hossen, M.; Masud, A.; Moumita; Fujita, M. Potassium: A Vital Regulator of Plant Responses and Tolerance to Abiotic Stresses. Agronomy 2018, 8, 31. [Google Scholar] [CrossRef]
- Sardans, J.; Peñuelas, J. Potassium Control of Plant Functions: Ecological and Agricultural Implications. Plants 2021, 10, 419. [Google Scholar] [CrossRef]
- Stirbet, A.; Riznichenko, G.Y.; Rubin, A.B.; Govindjee. Modeling Chlorophyll a Fluorescence Transient: Relation to Photosynthesis. Biochem. Mosc. 2014, 79, 291–323. [Google Scholar] [CrossRef] [PubMed]
- Teng, Z.; Zheng, W.; Jiang, S.; Hong, S.-B.; Zhu, Z.; Zang, Y. Role of Melatonin in Promoting Plant Growth by Regulating Carbon Assimilation and ATP Accumulation. Plant Sci. 2022, 319, 111276. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Jajoo, A.; Oukarroum, A.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.D.; Łukasik, I.; Goltsev, V.; Ladle, R.J. Chlorophyll a Fluorescence as a Tool to Monitor Physiological Status of Plants under Abiotic Stress Conditions. Acta Physiol. Plant. 2016, 38, 102. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Editorial: Biostimulants in Agriculture. Front. Plant Sci. 2020, 11, 40. [Google Scholar] [CrossRef]
- Zivcak, M.; Brestic, M.; Kalaji, H.M.; Govindjee. Photosynthetic Responses of Sun- and Shade-Grown Barley Leaves to High Light: Is the Lower PSII Connectivity in Shade Leaves Associated with Protection against Excess of Light? Photosynth. Res. 2014, 119, 339–354. [Google Scholar] [CrossRef] [PubMed]
- Shukla, P.S.; Mantin, E.G.; Adil, M.; Bajpai, S.; Critchley, A.T.; Prithiviraj, B. Ascophyllum nodosum-Based Biostimulants: Sustainable Applications in Agriculture for the Stimulation of Plant Growth, Stress Tolerance, and Disease Management. Front. Plant Sci. 2019, 10, 655. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Motos, J.; Ortuño, M.; Bernal-Vicente, A.; Diaz-Vivancos, P.; Sanchez-Blanco, M.; Hernandez, J. Plant Responses to Salt Stress: Adaptive Mechanisms. Agronomy 2017, 7, 18. [Google Scholar] [CrossRef]
- Van Zelm, E.; Zhang, Y.; Testerink, C. Salt Tolerance Mechanisms of Plants. Annu. Rev. Plant Biol. 2020, 71, 403–433. [Google Scholar] [CrossRef]
- Michalak, I.; Chojnacka, K.; Saeid, A. Plant Growth Biostimulants, Dietary Feed Supplements and Cosmetics Formulated with Supercritical CO2 Algal Extracts. Molecules 2017, 22, 66. [Google Scholar] [CrossRef]
- Stirk, W.A.; Rengasamy, K.R.R.; Kulkarni, M.G.; Van Staden, J. Plant Biostimulants from Seaweed: An Overview. In The Chemical Biology of Plant Biostimulants; Geelen, D., Xu, L., Eds.; Wiley: Hoboken, NJ, USA, 2020; pp. 31–55. [Google Scholar] [CrossRef]
- Zhou, H.; Shi, H.; Yang, Y.; Feng, X.; Chen, X.; Xiao, F.; Lin, H.; Guo, Y. Insights into Plant Salt Stress Signaling and Tolerance. J. Genet. Genom. 2024, 51, 16–34. [Google Scholar] [CrossRef]
- Chen, D.; Zhou, W.; Yang, J.; Ao, J.; Huang, Y.; Shen, D.; Jiang, Y.; Huang, Z.; Shen, H. Effects of Seaweed Extracts on the Growth, Physiological Activity, Cane Yield and Sucrose Content of Sugarcane in China. Front. Plant Sci. 2021, 12, 659130. [Google Scholar] [CrossRef]
- Sherif, F.K.; Argeaa, H.A.; Mostafa, A.S. Does Seaweed Extract as a Biostimulant Ameliorate Tomato Plant’s Salt Stress Tolerance? Alex. Sci. Exch. J. 2025, 46, 43–56. [Google Scholar] [CrossRef]
- Xavier James, V.C.; Pushpa Thiraviam, A.G.; Al-Dosary, M.A.; Hatamleh, A.A.; Bukhari, N.A.; Arokiyaraj, S.; Kalaiyarasi, M. Evaluation of Nutrient Composition and Biostimulant Properties of Seaweeds for Improving Soil Microbial Population and Tomato Plant Growth. BioResources 2024, 20, 1431–1451. [Google Scholar] [CrossRef]
- Olaetxea, M.; Garnica, M.; Erro, J.; Sanz, J.; Monreal, G.; Zamarreño, A.M.; García-Mina, J.M. The Plant Growth-Promoting Effect of an Ascophyllum nodosum (L.) Extract Derives from the Interaction of Its Components and Involves Salicylic-, Auxin- and Cytokinin-Signaling Pathways. Chem. Biol. Technol. Agric. 2024, 11, 190. [Google Scholar] [CrossRef]
- Bertoldo, G.; Chiodi, C.; Della Lucia, M.C.; Borella, M.; Ravi, S.; Baglieri, A.; Lucenti, P.; Ganasula, B.K.; Mulagala, C.; Squartini, A.; et al. Brown Seaweed Extract (BSE) Application Influences Auxin- and ABA-Related Gene Expression, Root Development, and Sugar Yield in Beta vulgaris L. Plants 2023, 12, 843. Plants 2023, 12, 843. [Google Scholar] [CrossRef]
Chemical Compound | P2O5 (ppm) | K2O (ppm) | N-NO3 mg/Kg |
---|---|---|---|
Concentration | 24.33 ± 0.0056 | 220.3 ± 0.00 | 37.017 ± 0.004 |
Soil characteristics | Moderately poor | Moderately poor | Moderately poor |
phi(Po) | psi(Eo) | phi(Eo) | phi(Ro) | PItot | |
---|---|---|---|---|---|
C | 0.711 | 0.346 | 0.246 | 0.130 | 0.3708 |
SS | 0.625 | 0.287 | 0.180 | 0.118 | 0.3013 |
UI-25 | 0.665 | 0.404 | 0.269 | 0.132 | 0.3141 |
MI-25 | 0.746 | 0.396 | 0.296 | 0.157 | 0.6096 |
UP-25 | 0.639 | 0.336 | 0.215 | 0.108 | 0.2200 |
MP-25 | 0.745 | 0.317 | 0.236 | 0.140 | 0.5672 |
UI-50 | 0.722 | 0.338 | 0.244 | 0.148 | 0.6103 |
MI-50 | 0.767 | 0.382 | 0.293 | 0.159 | 0.7029 |
UP-50 | 0.747 | 0.362 | 0.271 | 0.173 | 0.8802 |
MP-50 | 0.764 | 0.372 | 0.284 | 0.176 | 0.9459 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latique, S. Moroccan Ulva rigida Extracts: A Promising Biostimulant for Improving Growth and Photosynthetic Performance in Salt-Stressed Bean Plants. Crops 2025, 5, 61. https://doi.org/10.3390/crops5050061
Latique S. Moroccan Ulva rigida Extracts: A Promising Biostimulant for Improving Growth and Photosynthetic Performance in Salt-Stressed Bean Plants. Crops. 2025; 5(5):61. https://doi.org/10.3390/crops5050061
Chicago/Turabian StyleLatique, Salma. 2025. "Moroccan Ulva rigida Extracts: A Promising Biostimulant for Improving Growth and Photosynthetic Performance in Salt-Stressed Bean Plants" Crops 5, no. 5: 61. https://doi.org/10.3390/crops5050061
APA StyleLatique, S. (2025). Moroccan Ulva rigida Extracts: A Promising Biostimulant for Improving Growth and Photosynthetic Performance in Salt-Stressed Bean Plants. Crops, 5(5), 61. https://doi.org/10.3390/crops5050061