Mitigating Salinity Stress in Solanaceae: The Role of Nanoparticles in Seed Germination and Growth Development
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site and Plant Materials
2.2. Experimental Design and Treatments
2.3. Data Collection
2.4. Statistical Analysis
3. Results
3.1. Response of Seed Germination to Salinity and Nanoparticles
3.2. Response of Morphology Attributed to Salinity and Nanoparticles
3.3. Response of Yield Components to Salinity and Nanoparticles
3.4. Response of Seed Production to Salinity and Nanoparticles
3.5. Principal Component Analysis (PCA)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Shahid, M.A.; Sarkhosh, A.; Khan, N.; Balal, R.M.; Ali, S.; Rossi, L.; Gómez, C.; Mattson, N.; Nasim, W.; Garcia-Sanchez, F. Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agronomy 2020, 10, 938. [Google Scholar] [CrossRef]
- Hussain, S.; Shaukat, M.; Ashraf, M.; Zhu, C.; Jin, Q.; Zhang, J. Salinity stress in arid and semi-arid climates: Effects and management in field crops. Clim. Change Agric. 2019, 13, 201–226. [Google Scholar]
- Ahmed, G.O.; Halshoy, H.S.; Mahmood, C.H.; Hama, J.R. Titanium Nanoparticle and Humic Acid Applications Improve Seed Germination, Growth Development, and Phytochemical Contents of Lettuce (Lactuca Sativa) Plants. BioNanoScience 2024, 14, 4930–4941. [Google Scholar] [CrossRef]
- Priyanka, N.; Geetha, N.; Ghorbanpour, M.; Venkatachalam, P. Chapter 6—Role of Engineered Zinc and Copper Oxide Nanoparticles in Promoting Plant Growth and Yield: Present Status and Future Prospects. In Advances in Phytonanotechnology; Ghorbanpour, M., Wani, S.H., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 183–201. [Google Scholar]
- Yusuf, A.; Almotairy, A.R.Z.; Henidi, H.; Alshehri, O.Y.; Aldughaim, M.S. Nanoparticles as drug delivery systems: A review of the implication of nanoparticles’ physicochemical properties on responses in biological systems. Polymers 2023, 15, 1596. [Google Scholar] [CrossRef]
- Halshoy, H.S.; Rasul, K.S.; Ahmed, H.M.; Mohammed, H.A.; Mohammed, A.A.; Ibrahim, A.S.; Ibrahim, A.S.; Braim, S.A. Effect of nano titanium and organic fertilizer on broccoli growth, production, and biochemical profiles. J. Plant Nutr. 2024, 48, 1344–1363. [Google Scholar] [CrossRef]
- Etesami, H.; Fatemi, H.; Rizwan, M. Interactions of nanoparticles and salinity stress at physiological, biochemical and molecular levels in plants: A review. Ecotoxicol. Environ. Saf. 2021, 225, 112769. [Google Scholar] [CrossRef]
- Sarkar, J.; Chakraborty, N.; Chatterjee, A.; Bhattacharjee, A.; Dasgupta, D.; Acharya, K. Green synthesized copper oxide nanoparticles ameliorate defence and antioxidant enzymes in Lens culinaris. Nanomaterials 2020, 10, 312. [Google Scholar] [CrossRef]
- Faizan, M.; Yu, F.; Chen, C.; Faraz, A.; Hayat, S. Zinc oxide nanoparticles help to enhance plant growth and alleviate abiotic stress: A review. Curr. Protein Pept. Sci. 2021, 22, 362–375. [Google Scholar] [CrossRef]
- Al-Khayri, J.M.; Rashmi, R.; Surya Ulhas, R.; Sudheer, W.N.; Banadka, A.; Nagella, P.; Aldaej, M.I.; Rezk, A.A.-S.; Shehata, W.F.; Almaghasla, M.I. The role of nanoparticles in response of plants to abiotic stress at physiological, biochemical, and molecular levels. Plants 2023, 12, 292. [Google Scholar] [CrossRef]
- Tahir, N.A.-R.; Rasul, K.S.; Lateef, D.D.; Aziz, R.R.; Ahmed, J.O. In vitro evaluation of Iraqi Kurdistan tomato accessions under drought stress conditions using polyethylene glycol-6000. Life 2024, 14, 1502. [Google Scholar] [CrossRef]
- Zhang, T.; Fan, S.; Xiang, Y.; Zhang, S.; Wang, J.; Sun, Q. Non-destructive analysis of germination percentage, germination energy and simple vigour index on wheat seeds during storage by Vis/NIR and SWIR hyperspectral imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 239, 118488. [Google Scholar] [CrossRef]
- Gairola, K.C.; Nautiyal, A.R.; Dwivedi, A.K. Effect of temperatures and germination media on seed germination of Jatropha curcas Linn. Adv. Biores. 2011, 2, 66–71. [Google Scholar]
- Othman, S.H.; Lazim, Z.S.; Al-Wakaa, A.H.A. Allelopathic Potential of Aqueous Plant Extracts Against Seed Germination and Seedling Growth of Weeds. IOP Conf. Ser. Earth Environ. Sci. 2023, 1262, 032041. [Google Scholar] [CrossRef]
- Ibrahim, C.O.; Mahmood, C.H. Response of tomato (Lycopersicum esculentum L.) to imbibing seeds by GA3, and foliar spraying by boron and α-tocopherol. J. Duhok Univ. 2022, 25, 211–228. [Google Scholar] [CrossRef]
- Khan, A.Z.; Imran, A.M.; Khalil, A.; Gul, H.; Akbar, H.; Wahab, S. Impact of fertilizer priming on seed germination behavior and vigor of maize. Pure Appl. Biol. (PAB) 2021, 5, 744–751. [Google Scholar] [CrossRef]
- Mohammed, N.T.; Halshoy, H.S.; Saed, N.F.; Ali, H.W.R.; Mohammed, N.I.; Ali, S.M. Impact of inorganic fertilizer doses on growth, yield, physical and chemical components of broccoli plants. J. Kerbala Agric. Sci. 2024, 11, 57–72. [Google Scholar] [CrossRef]
- Parihar, P.; Singh, S.; Singh, R.; Singh, V.P.; Prasad, S.M. Effect of salinity stress on plants and its tolerance strategies: A review. Environ. Sci. Pollut. Res. 2015, 22, 4056–4075. [Google Scholar] [CrossRef]
- Shah, T.; Latif, S.; Saeed, F.; Ali, I.; Ullah, S.; Abdullah Alsahli, A.; Jan, S.; Ahmad, P. Seed priming with titanium dioxide nanoparticles enhances seed vigor, leaf water status, and antioxidant enzyme activities in maize (Zea mays L.) under salinity stress. J. King Saud Univ.-Sci. 2021, 33, 101207. [Google Scholar] [CrossRef]
- Raliya, R.; Saharan, V.; Dimkpa, C.; Biswas, P. Nanofertilizer for Precision and Sustainable Agriculture: Current State and Future Perspectives. J. Agric. Food Chem. 2018, 66, 6487–6503. [Google Scholar] [CrossRef]
- Dimkpa, C.O.; McLean, J.E.; Latta, D.E.; Manangón, E.; Britt, D.W.; Johnson, W.P.; Boyanov, M.I.; Anderson, A.J. CuO and ZnO nanoparticles: Phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J. Nanopart. Res. 2012, 14, 1125. [Google Scholar] [CrossRef]
- Mahmood, C.H. Response of some vegetables belongs to Solanaceae family to different temperature and NaCl levels on seed germination and growth characteristics. Tikrit J. Agric. Sci 2017, 17, 11–27. [Google Scholar]
- Khan, M.N.; Fu, C.; Li, J.; Tao, Y.; Li, Y.; Hu, J.; Chen, L.; Khan, Z.; Wu, H.; Li, Z. Seed nanopriming: How do nanomaterials improve seed tolerance to salinity and drought? Chemosphere 2023, 310, 136911. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, P.L.; Kumar, S.; Jasrotia, P.; Singh, D.P.; Singh, G.P. Nanotechnology in Wheat Production and Protection. In Environmental Nanotechnology Volume 4; Dasgupta, N., Ranjan, S., Lichtfouse, E., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 165–194. [Google Scholar]
- Shukla, P.; Chaurasia, P.; Younis, K.; Qadri, O.S.; Faridi, S.A.; Srivastava, G. Nanotechnology in sustainable agriculture: Studies from seed priming to post-harvest management. Nanotechnol. Environ. Eng. 2019, 4, 11. [Google Scholar] [CrossRef]
- Korotkova, A.M.; Lebedev, S.V.; Gavrish, I.A. The study of mechanisms of biological activity of copper oxide nanoparticle CuO in the test for seedling roots of Triticum vulgare. Environ. Sci. Pollut. Res. 2017, 24, 10220–10233. [Google Scholar] [CrossRef]
- Solanki, B.; Khan, M.S. Phytotoxic impact of copper oxide nanoparticles fabricated from rose petals (Rosa indica) on germination, biological growth, and phytochemicals of tomato (Solanum lycopersicum). S. Afr. J. Bot. 2024, 172, 125–139. [Google Scholar] [CrossRef]
- Thakur, V.; Sharma, S.; Kumar, A.; Kumar, R. Unraveling nanoparticles efficiency in solanaceae crops: Mechanistic understanding, action, and stress mitigation approaches. Ecol. Front. 2024, 44, 1097–1108. [Google Scholar] [CrossRef]
- Raliya, R.; Nair, R.; Chavalmane, S.; Wang, W.-N.; Biswas, P. Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 2015, 7, 1584–1594. [Google Scholar] [CrossRef]
- Singh, A.; Sengar, R.S.; Rajput, V.D.; Minkina, T.; Singh, R.K. Zinc Oxide Nanoparticles Improve Salt Tolerance in Rice Seedlings by Improving Physiological and Biochemical Indices. Agriculture 2022, 12, 1014. [Google Scholar] [CrossRef]
- Giordani, T.; Fabrizi, A.; Guidi, L.; Natali, L.; Giunti, G.; Ravasi, F.; Cavallini, A.; Pardossi, A. Response of tomato plants exposed to treatment with nanoparticles. EQA-Int. J. Environ. Qual. 2012, 8, 27–38. [Google Scholar]
- Sun, L.; Song, F.; Zhu, X.; Liu, S.; Liu, F.; Wang, Y.; Li, X. Nano-ZnO alleviates drought stress via modulating the plant water use and carbohydrate metabolism in maize. Arch. Agron. Soil Sci. 2021, 7, 245–259. [Google Scholar] [CrossRef]
- Siddiqui, M.H.; Al-Whaibi, M.H.; Firoz, M.; Al-Khaishany, M.Y. Role of Nanoparticles in Plants. In Nanotechnology and Plant Sciences: Nanoparticles and Their Impact on Plants; Siddiqui, M.H., Al-Whaibi, M.H., Mohammad, F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 19–35. [Google Scholar]
- Bulcke, F.; Dringen, R.; Thiel, K. Copper oxide nanoparticles: Synthesis, toxic potential and modulation of astrocytic metabolism. SpringerPlus 2015, 4 (Suppl. S1), P5. [Google Scholar] [CrossRef]
- Zafar, H.; Aziz, T.; Khan, B.; Mannan, A.; Rehman, R.; Zia, M. CuO and ZnO Nanoparticle Application in Synthetic Soil Modulates Morphology, Nutritional Contents, and Metal Analysis of Brassica nigra. ACS Omega 2020, 5, 13566–13577. [Google Scholar] [CrossRef]
- Prasad, R.; Bhattacharyya, A.; Nguyen, Q.D. Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Front. Microbiol. 2017, 8, 1014. [Google Scholar] [CrossRef]
- Javan, M.; Selahvarzi, Y.; Sayyad-Amin, P.; Rastegar, S. Potential application of TiO2 nanoparticles to improve the nutritional quality of strawberry cv. Camarosa under drought stress. Sci. Hortic. 2024, 330, 113055. [Google Scholar] [CrossRef]
- Ghormade, V.; Deshpande, M.V.; Paknikar, K.M. Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol. Adv. 2011, 29, 792–803. [Google Scholar] [CrossRef] [PubMed]
- Mahawar, L.; Živčák, M.; Barboricova, M.; Kovár, M.; Filaček, A.; Ferencova, J.; Vysoká, D.M.; Brestič, M. Effect of copper oxide and zinc oxide nanoparticles on photosynthesis and physiology of Raphanus sativus L. under salinity stress. Plant Physiol. Biochem. 2024, 206, 108281. [Google Scholar] [CrossRef] [PubMed]
- Faizan, M.; Bhat, J.A.; Chen, C.; Alyemeni, M.N.; Wijaya, L.; Ahmad, P.; Yu, F. Zinc oxide nanoparticles (ZnO-NPs) induce salt tolerance by improving the antioxidant system and photosynthetic machinery in tomato. Plant Physiol. Biochem. 2021, 161, 122–130. [Google Scholar] [CrossRef]
- Shahbaz, M. Heat and Wheat: Adaptation strategies with respect to heat shock proteins and antioxidant potential; an era of climate change. Int. J. Biol. Macromol. 2024, 256, 128379. [Google Scholar]
- Singh, A.; Sengar, R.S.; Shahi, U.P.; Rajput, V.D.; Minkina, T.; Ghazaryan, K.A. Prominent effects of zinc oxide nanoparticles on roots of rice (Oryza sativa L.) grown under salinity stress. Stresses 2022, 3, 33–46. [Google Scholar] [CrossRef]
- Adisa, I.O.; Pullagurala, V.L.R.; Peralta-Videa, J.R.; Dimkpa, C.O.; Elmer, W.H.; Gardea-Torresdey, J.L.; White, J.C. Recent advances in nano-enabled fertilizers and pesticides: A critical review of mechanisms of action. Environ. Sci. Nano 2019, 6, 2002–2030. [Google Scholar] [CrossRef]
- Pérez-Labrada, F.; López-Vargas, E.R.; Ortega-Ortiz, H.; Cadenas-Pliego, G.; Benavides-Mendoza, A.; Juárez-Maldonado, A. Responses of tomato plants under saline stress to foliar application of copper nanoparticles. Plants 2019, 8, 151. [Google Scholar] [CrossRef] [PubMed]
- Rai-Kalal, P.; Jajoo, A. Priming with zinc oxide nanoparticles improve germination and photosynthetic performance in wheat. Plant Physiol. Biochem. 2021, 160, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Wu, X.; Wu, F.; Chen, W.; White, J.C.; Yang, Y.; Wang, B.; Xing, B.; Tao, S.; Wang, X. Potential application of titanium dioxide nanoparticles to improve the nutritional quality of coriander (Coriandrum sativum L.). J. Hazard. Mater. 2020, 389, 121837. [Google Scholar] [CrossRef] [PubMed]
- Kaleem, Z.; Xu, W.; Ulhassan, Z.; Shahbaz, H.; He, D.; Naeem, S.; Ali, S.; Shah, A.M.; Sheteiwy, M.S.; Zhou, W. Harnessing the potential of copper-based nanoparticles in mitigating abiotic and biotic stresses in crops. Environ. Sci. Pollut. Res. 2024, 31, 59727–59748. [Google Scholar] [CrossRef]
- Allará, C.; Ciccone, G.; Ciocca, M.; Vasquez, S.; Ibba, P.; Maver, M.; Mimmo, T.; Lugli, P.; Petti, L. Electronic nanomaterials for plants: A review on current advances and future prospects. Adv. Electron. Mater. 2025, 2500080. [Google Scholar] [CrossRef]
- Simonin, M.; Richaume, A. Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: A review. Environ. Sci. Pollut. Res. 2015, 22, 13710–13723. [Google Scholar] [CrossRef]
- Côa, F.; Bortolozzo, L.S.; Petry, R.; Da Silva, G.H.; Martins, C.H.; de Medeiros, A.M.; Sabino, C.M.; Costa, R.S.; Khan, L.U.; Delite, F.S.; et al. Environmental toxicity of nanopesticides against non-target organisms: The state of the art. In Nanopesticides: From Research and Development to Mechanisms of Action and Sustainable Use in Agriculture; Springer: Berlin/Heidelberg, Germany, 2020; pp. 227–279. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmood, C.H.; Rasul, K.S.; Halshoy, H.S. Mitigating Salinity Stress in Solanaceae: The Role of Nanoparticles in Seed Germination and Growth Development. Crops 2025, 5, 62. https://doi.org/10.3390/crops5050062
Mahmood CH, Rasul KS, Halshoy HS. Mitigating Salinity Stress in Solanaceae: The Role of Nanoparticles in Seed Germination and Growth Development. Crops. 2025; 5(5):62. https://doi.org/10.3390/crops5050062
Chicago/Turabian StyleMahmood, Chinur Hadi, Kamaran Salh Rasul, and Hawar Sleman Halshoy. 2025. "Mitigating Salinity Stress in Solanaceae: The Role of Nanoparticles in Seed Germination and Growth Development" Crops 5, no. 5: 62. https://doi.org/10.3390/crops5050062
APA StyleMahmood, C. H., Rasul, K. S., & Halshoy, H. S. (2025). Mitigating Salinity Stress in Solanaceae: The Role of Nanoparticles in Seed Germination and Growth Development. Crops, 5(5), 62. https://doi.org/10.3390/crops5050062