Bibliometric Study of Electrochemical Advanced Oxidation Processes (EAOPs) for Wastewater Treatment
Abstract
1. Introduction
2. Materials and Methods
Data Collection and Analysis
3. Results and Discussion
3.1. Publications Trends
3.2. The Collaboration Network Analysis
3.2.1. Co-Authorship Countries
3.2.2. Co-Authorship Organizations
3.2.3. Co-Authorship Authors
3.3. Most Cited Articles
3.4. Co-Citation Network Analysis
3.4.1. Document Co-Citation Network
3.4.2. Author Co-Citation Network
3.4.3. Journal Co-Citation Analysis
3.5. Keywords Analysis
3.6. Past and Future Research Trends of EAOP Based on Bibliometric Analysis
- Development of Electrode Materials
- Optimization of the EF process
- Integration with Other Treatment Technologies
- Mechanism Studies and ROS Generation
- The Integration and Adaptation of EAOPs
- Scalability and Industrial Applications
- Environmental Impact and Sustainability
- Economic Feasibility and Cost Reduction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, M.T.; Shah, I.A.; Ihsanullah, I.; Naushad, M.; Ali, S.; Shah, S.H.A.; Mohammad, A.W. Hospital Wastewater as a Source of Environmental Contamination: An Overview of Management Practices, Environmental Risks, and Treatment Processes. J. Water Process Eng. 2021, 41, 101990. [Google Scholar] [CrossRef]
- Khan, M.T.; Ahmad, R.; Liu, G.; Zhang, L.; Santagata, R.; Lega, M.; Casazza, M. Potential Environmental Impacts of a Hospital Wastewater Treatment Plant in a Developing Country. Sustainability 2024, 16, 2233. [Google Scholar] [CrossRef]
- Koul, B.; Yadav, D.; Singh, S.; Kumar, M.; Song, M. Insights into the Domestic Wastewater Treatment (DWWT) Regimes: A Review. Water 2022, 14, 3542. [Google Scholar] [CrossRef]
- Ochando-Pulido, J.M.; Vellido-Pérez, J.A.; González-Hernández, R.; Martínez-Férez, A. Optimization and Modeling of Two-Phase Olive-Oil Washing Wastewater Integral Treatment and Phenolic Compounds Recovery by Novel Weak-Base Ion Exchange Resins. Sep. Purif. Technol. 2020, 249, 117084. [Google Scholar] [CrossRef]
- Zhang, J.; Li, F.; Zhou, S.; Li, T.; Wu, M.; Li, X.; Li, H. Potassium Hydroxide-Treated Walnut Shell Residue Biochar for Wastewater Treatment: Phenol Adsorption and Mechanism Study. Desalin. Water Treat. 2022, 254, 15–24. [Google Scholar] [CrossRef]
- Zagklis, D.P.; Papageorgiou, C.S.; Paraskeva, C.A. Technoeconomic Analysis of the Recovery of Phenols from Olive Mill Wastewater through Membrane Filtration and Resin Adsorption/Desorption. Sustainability 2021, 13, 2376. [Google Scholar] [CrossRef]
- Liew, W.L.; Kassim, M.A.; Muda, K.; Loh, S.K.; Affam, A.C. Conventional Methods and Emerging Wastewater Polishing Technologies for Palm Oil Mill Effluent Treatment: A Review. J. Environ. Manag. 2015, 149, 222–235. [Google Scholar] [CrossRef] [PubMed]
- Moreira, F.C.; Boaventura, R.A.R.; Brillas, E.; Vilar, V.J.P. Electrochemical Advanced Oxidation Processes: A Review on Their Application to Synthetic and Real Wastewaters. Appl. Catal. B Environ. 2017, 202, 217–261. [Google Scholar] [CrossRef]
- Moradi, M.; Vasseghian, Y.; Khataee, A.; Kobya, M.; Arabzade, H.; Dragoi, E.-N. Service Life and Stability of Electrodes Applied in Electrochemical Advanced Oxidation Processes: A Comprehensive Review. J. Ind. Eng. Chem. 2020, 87, 18–39. [Google Scholar] [CrossRef]
- Qiao, J.; Xiong, Y. Electrochemical Oxidation Technology: A Review of Its Application in High-Efficiency Treatment of Wastewater Containing Persistent Organic Pollutants. J. Water Process Eng. 2021, 44, 102308. [Google Scholar] [CrossRef]
- Brillas, E.; Sirés, I.; Oturan, M.A. Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton’s Reaction Chemistry. Chem. Rev. 2009, 109, 6570–6631. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Narváez, O.M.; Picos, A.R.; Bravo-Yumi, N.; Pacheco-Alvarez, M.; Martínez-Huitle, C.A.; Peralta-Hernández, J.M. Electrochemical Oxidation Technology to Treat Textile Wastewaters. Curr. Opin. Electrochem. 2021, 29, 100806. [Google Scholar] [CrossRef]
- El-Ghzizel, S.; Tahaikt, M.; Dhiba, D.; Elmidaouia, A.; Taky, M. Desalination and Water Treatment www.Deswater.Com. Desalin. Water Treat. 2021, 231, 1–15. [Google Scholar] [CrossRef]
- Mehrkhah, R.; Park, S.Y.; Lee, J.H.; Kim, S.Y.; Lee, B.H. Prospective Performance Assessment of Enhanced Electrochemical Oxidation Technology: Insights into Fundamentals and Influencing Factors for Reducing Energy Requirements in Industrial Wastewater Treatment. Environ. Technol. Innov. 2023, 32, 103336. [Google Scholar] [CrossRef]
- Alfonso-Muniozguren, P.; Cotillas, S.; Boaventura, R.A.R.; Moreira, F.C.; Lee, J.; Vilar, V.J.P. Single and Combined Electrochemical Oxidation Driven Processes for the Treatment of Slaughterhouse Wastewater. J. Clean. Prod. 2020, 270, 121858. [Google Scholar] [CrossRef]
- Brillas, E.; Garcia-Segura, S.; Skoumal, M.; Arias, C. Electrochemical Incineration of Diclofenac in Neutral Aqueous Medium by Anodic Oxidation Using Pt and Boron-Doped Diamond Anodes. Chemosphere 2010, 79, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Xie, G.; Pan, Z.; Zhou, X.; Lai, W.; Zheng, L.; Xu, Y. A Novel Pb/PbO2 Electrodes Prepared by the Method of Thermal Oxidation-Electrochemical Oxidation: Characteristic and Electrocatalytic Oxidation Performance. J. Alloys Compd. 2021, 851, 156834. [Google Scholar] [CrossRef]
- Duan, X.; Ma, F.; Yuan, Z.; Jin, X.; Chang, L. Electrochemical Degradation of Phenol in Aqueous Solution Using PbO2 Anode. J. Taiwan Inst. Chem. Eng. 2013, 44, 95–102. [Google Scholar] [CrossRef]
- Martínez-Huitle, C.A.; De Battisti, A.; Ferro, S.; Reyna, S.; Cerro-López, M.; Quiro, M.A. Removal of the Pesticide Methamidophos from Aqueous Solutions by Electrooxidation Using Pb/PbO2, Ti/SnO2, and Si/BDD Electrodes. Environ. Sci. Technol. 2008, 42, 6929–6935. [Google Scholar] [CrossRef]
- Mu, Y.; Huang, C.; Li, H.; Chen, L.; Zhang, D.; Yang, Z. Electrochemical Degradation of Ciprofloxacin with a Sb-Doped SnO2 Electrode: Performance, Influencing Factors and Degradation Pathways. RSC Adv. 2019, 9, 29796–29804. [Google Scholar] [CrossRef]
- Rajoria, S.; Vashishtha, M.; Sangal, V.K. Electroplating Wastewater Treatment by Electro-Oxidation Using Synthesized New Electrode: Experimental, Optimization, Kinetics, and Cost Analysis. Process Saf. Environ. Prot. 2024, 183, 735–756. [Google Scholar] [CrossRef]
- Cui, Y.; Li, X.; Chen, G. Electrochemical Degradation of Bisphenol A on Different Anodes. Water Res. 2009, 43, 1968–1976. [Google Scholar] [CrossRef]
- Xiao, H.; Xu, F.; Chen, J.; Hao, Y.; Guo, Y.; Zhu, C.; Luo, S.; Jiang, B. Electrogenerated Oxychlorides Induced Overlooked Negative Effects on Electro-Oxidation Wastewater Treatment in Terms of over-Evaluated COD Removal Efficiency and Biotoxicity. J. Hazard. Mater. 2023, 456, 131667. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhao, H.; Liang, J.; Yue, L.; Li, T.; Luo, Y.; Liu, Q.; Lu, S.; Asiri, A.M.; Gong, Z.; et al. Anodic Oxidation for the Degradation of Organic Pollutants: Anode Materials, Operating Conditions and Mechanisms. A Mini Review. Electrochem. Commun. 2021, 123, 106912. [Google Scholar] [CrossRef]
- Babuponnusami, A.; Muthukumar, K. A Review on Fenton and Improvements to the Fenton Process for Wastewater Treatment. J. Environ. Chem. Eng. 2014, 2, 557–572. [Google Scholar] [CrossRef]
- Zhang, M.H.; Dong, H.; Zhao, L.; Wang, D.X.; Meng, D. A Review on Fenton Process for Organic Wastewater Treatment Based on Optimization Perspective. Sci. Total Environ. 2019, 670, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Brillas, E. Fenton, Photo-Fenton, Electro-Fenton, and Their Combined Treatments for the Removal of Insecticides from Waters and Soils. A Review. Sep. Purif. Technol. 2022, 284, 120290. [Google Scholar] [CrossRef]
- Marcal, J.; Bishop, T.; Hofman, J.; Shen, J. From Pollutant Removal to Resource Recovery: A Bibliometric Analysis of Municipal Wastewater Research in Europe. Chemosphere 2021, 284, 131267. [Google Scholar] [CrossRef]
- Liu, Z.; Yin, Y.; Liu, W.; Dunford, M. Visualizing the Intellectual Structure and Evolution of Innovation Systems Research: A Bibliometric Analysis. Scientometrics 2015, 103, 135–158. [Google Scholar] [CrossRef]
- Jiang, H.; Chen, H.; Duan, Z.; Huang, Z.; Wei, K. Research Progress and Trends of Biochar in the Field of Wastewater Treatment by Electrochemical Advanced Oxidation Processes (EAOPs): A Bibliometric Analysis. J. Hazard. Mater. Adv. 2023, 10, 100305. [Google Scholar] [CrossRef]
- Huang, W.; Liu, S.; Zhang, T.; Wu, H.; Pu, S. Bibliometric Analysis and Systematic Review of Electrochemical Methods for Environmental Remediation. J. Environ. Sci. 2023, 144, 113–136. [Google Scholar] [CrossRef] [PubMed]
- Adegoke, K.A.; Giwa, S.O.; Adegoke, O.R.; Maxakato, N.W. Bibliometric Evaluation of Nanoadsorbents for Wastewater Treatment and Way forward in Nanotechnology for Clean Water Sustainability. Sci. Afr. 2023, 21, e01753. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, M.; Zhuang, D. Wastewater Treatment and Emerging Contaminants: Bibliometric Analysis. Chemosphere 2022, 297, 133932. [Google Scholar] [CrossRef]
- Macías-Quiroga, I.F.; Henao-Aguirre, P.A.; Marín-Flórez, A.; Arredondo-López, S.M.; Sanabria-González, N.R. Bibliometric Analysis of Advanced Oxidation Processes (AOPs) in Wastewater Treatment: Global and Ibero-American Research Trends. Environ. Sci. Pollut. Res. 2021, 28, 23791–23811. [Google Scholar] [CrossRef]
- Zhao, L.; Dai, T.; Qiao, Z.; Sun, P.; Hao, J.; Yang, Y. Application of Artificial Intelligence to Wastewater Treatment: A Bibliometric Analysis and Systematic Review of Technology, Economy, Management, and Wastewater Reuse. Process Saf. Environ. Prot. 2020, 133, 169–182. [Google Scholar] [CrossRef]
- Ismail, S.A.; Ang, W.L.; Mohammad, A.W. Electro-Fenton Technology for Wastewater Treatment: A Bibliometric Analysis of Current Research Trends, Future Perspectives and Energy Consumption Analysis. J. Water Process Eng. 2021, 40, 101952. [Google Scholar] [CrossRef]
- Brdarić, T.P.; Aćimović, D.D.; Savić Rosić, B.G.; Simić, M.D.; Stojanović, K.D.; Vranješ, Z.M.; Vasić Anićijević, D. Bibliometric Analysis of Nanostructured Anodes for Electro-Oxidative Wastewater Treatment. Sustainability 2024, 16, 3982. [Google Scholar] [CrossRef]
- Sirés, I.; Brillas, E.; Oturan, M.A.; Rodrigo, M.A.; Panizza, M. Electrochemical Advanced Oxidation Processes: Today and Tomorrow. A Review. Environ. Sci. Pollut. Res. 2014, 21, 8336–8367. [Google Scholar] [CrossRef]
- Chaplin, B.P. Critical Review of Electrochemical Advanced Oxidation Processes for Water Treatment Applications. Environ. Sci. Process. Impacts 2014, 16, 1182–1203. [Google Scholar] [CrossRef]
- Brosler, P.; Girão, A.V.; Silva, R.F.; Tedim, J.; Oliveira, F.J. Electrochemical Advanced Oxidation Processes Using Diamond Technology: A Critical Review. Environments 2023, 10, 15. [Google Scholar] [CrossRef]
- Priyadarshini, M.; Das, I.; Ghangrekar, M.M.; Blaney, L. Advanced Oxidation Processes: Performance, Advantages, and Scale-up of Emerging Technologies. J. Environ. Manag. 2022, 316, 115295. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, C.; Liu, Z.; Hu, Z.; Wang, X. Methodological Functions of CiteSpace Knowledge Graphs. Stud. Sci. Sci. 2015, 33, 242–253. [Google Scholar]
- Zhang, Q.; Zhou, M.; Ren, G.; Li, Y.; Li, Y.; Du, X. Highly Efficient Electrosynthesis of Hydrogen Peroxide on a Superhydrophobic Three-Phase Interface by Natural Air Diffusion. Nat. Commun. 2020, 11, 1731. [Google Scholar] [CrossRef]
- Chanikya, P.; Nidheesh, P.V.; Syam Babu, D.; Gopinath, A.; Suresh Kumar, M. Treatment of Dyeing Wastewater by Combined Sulfate Radical Based Electrochemical Advanced Oxidation and Electrocoagulation Processes. Sep. Purif. Technol. 2021, 254, 117570. [Google Scholar] [CrossRef]
- Olvera-Vargas, H.; Gore-Datar, N.; Garcia-Rodriguez, O.; Mutnuri, S.; Lefebvre, O. Electro-Fenton Treatment of Real Pharmaceutical Wastewater Paired with a BDD Anode: Reaction Mechanisms and Respective Contribution of Homogeneous and Heterogeneous OH. Chem. Eng. J. 2021, 404, 126524. [Google Scholar] [CrossRef]
- Du, X.; Fu, W.; Su, P.; Cai, J.; Zhou, M. Internal-Micro-Electrolysis-Enhanced Heterogeneous Electro-Fenton Process Catalyzed by Fe/Fe3C@PC Core–Shell Hybrid for Sulfamethazine Degradation. Chem. Eng. J. 2020, 398, 125681. [Google Scholar] [CrossRef]
- Ghanbari, F.; Wang, Q.; Hassani, A.; Wacławek, S.; Rodríguez-Chueca, J.; Lin, K.-Y.A. Electrochemical Activation of Peroxides for Treatment of Contaminated Water with Landfill Leachate: Efficacy, Toxicity and Biodegradability Evaluation. Chemosphere 2021, 279, 130610. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Qiu, S.; Feng, H.; Hu, T.; Wu, Y.; Luo, T.; Tang, W.; Wang, D. Efficient Degradation of Tetracycline Using Core–Shell Fe@Fe2O3-CeO2 Composite as Novel Heterogeneous Electro-Fenton Catalyst. Chem. Eng. J. 2022, 428, 131403. [Google Scholar] [CrossRef]
- Zhang, C.; Li, F.; Wen, R.; Zhang, H.; Elumalai, P.; Zheng, Q.; Chen, H.; Yang, Y.; Huang, M.; Ying, G. Heterogeneous Electro–Fenton Using Three–Dimension NZVI–BC Electrodes for Degradation of Neonicotinoid Wastewater. Water Res. 2020, 182, 115975. [Google Scholar] [CrossRef]
- Ghanbari, F.; Wu, J.; Khatebasreh, M.; Ding, D.; Lin, K.-Y.A. Efficient Treatment for Landfill Leachate through Sequential Electrocoagulation, Electrooxidation and PMS/UV/CuFe2O4 Process. Sep. Purif. Technol. 2020, 242, 116828. [Google Scholar] [CrossRef]
- Nidheesh, P.V.; Kumar, A.; Syam Babu, D.; Scaria, J.; Suresh Kumar, M. Treatment of Mixed Industrial Wastewater by Electrocoagulation and Indirect Electrochemical Oxidation. Chemosphere 2020, 251, 126437. [Google Scholar] [CrossRef]
- García, O.; Isarain-Chávez, E.; El-Ghenymy, A.; Brillas, E.; Peralta-Hernández, J.M. Degradation of 2,4-D Herbicide in a Recirculation Flow Plant with a Pt/Air-Diffusion and a BDD/BDD Cell by Electrochemical Oxidation and Electro-Fenton Process. J. Electroanal. Chem. 2014, 728, 1–9. [Google Scholar] [CrossRef]
- Assumpção, M.H.M.T.; De Souza, R.F.B.; Reis, R.M.; Rocha, R.S.; Steter, J.R.; Hammer, P.; Gaubeur, I.; Calegaro, M.L.; Lanza, M.R.V.; Santos, M.C. Low Tungsten Content of Nanostructured Material Supported on Carbon for the Degradation of Phenol. Appl. Catal. B Environ. 2013, 142–143, 479–486. [Google Scholar] [CrossRef]
- Barhoumi, N.; Oturan, N.; Olvera-Vargas, H.; Brillas, E.; Gadri, A.; Ammar, S.; Oturan, M.A. Pyrite as a Sustainable Catalyst in Electro-Fenton Process for Improving Oxidation of Sulfamethazine. Kinetics, Mechanism and Toxicity Assessment. Water Res. 2016, 94, 52–61. [Google Scholar] [CrossRef]
- Luo, T.; Feng, H.; Tang, L.; Lu, Y.; Tang, W.; Chen, S.; Yu, J.; Xie, Q.; Ouyang, X.; Chen, Z. Efficient Degradation of Tetracycline by Heterogeneous Electro-Fenton Process Using Cu-Doped Fe@Fe2O3: Mechanism and Degradation Pathway. Chem. Eng. J. 2020, 382, 122970. [Google Scholar] [CrossRef]
- Ganiyu, S.O.; Oturan, N.; Ra, S.; Cretin, M.; Causserand, C.; Oturan, M.A. Efficiency of Plasma Elaborated Sub-Stoichiometric Titanium Oxide (Ti4O7) Ceramic Electrode for Advanced Electrochemical Degradation of Paracetamol in Di Ff Erent Electrolyte Media. Sep. Purif. Technol. 2018, 208, 142–152. [Google Scholar] [CrossRef]
- Martínez-Huitle, C.A.; Panizza, M. Electrochemical Oxidation of Organic Pollutants for Wastewater Treatment. Curr. Opin. Electrochem. 2018, 11, 62–71. [Google Scholar] [CrossRef]
- Ganiyu, S.O.; Oturan, N.; Raffy, S.; Cretin, M.; Esmilaire, R.; van Hullebusch, E.; Esposito, G.; Oturan, M.A. Sub-Stoichiometric Titanium Oxide (Ti4O7) as a Suitable Ceramic Anode for Electrooxidation of Organic Pollutants: A Case Study of Kinetics, Mineralization and Toxicity Assessment of Amoxicillin. Water Res. 2016, 106, 171–182. [Google Scholar] [CrossRef]
- Ma, L.; Zhou, M.; Ren, G.; Yang, W.; Liang, L. A Highly Energy-Efficient Flow-through Electro-Fenton Process for Organic Pollutants Degradation. Electrochim. Acta 2016, 200, 222–230. [Google Scholar] [CrossRef]
- Sopaj, F.; Oturan, N.; Pinson, J.; Podvorica, F.; Oturan, M.A. Effect of the Anode Materials on the Efficiency of the Electro-Fenton Process for the Mineralization of the Antibiotic Sulfamethazine. Appl. Catal. B Environ. 2016, 199, 331–341. [Google Scholar] [CrossRef]
- He, H.; Zhou, Z. Electro-Fenton Process for Water and Wastewater Treatment. Crit. Rev. Environ. Sci. Technol. 2017, 47, 2100–2131. [Google Scholar] [CrossRef]
- Ganiyu, S.O.; Huong Le, T.X.; Bechelany, M.; Esposito, G.; van Hullebusch, E.D.; Oturan, M.A.; Cretin, M. A Hierarchical CoFe-Layered Double Hydroxide Modified Carbon-Felt Cathode for Heterogeneous Electro-Fenton Process. J. Mater. Chem. A 2017, 5, 3655–3666. [Google Scholar] [CrossRef]
- Qi, H.; Sun, X.; Sun, Z. Porous Graphite Felt Electrode with Catalytic Defects for Enhanced Degradation of Pollutants by Electro-Fenton Process. Chem. Eng. J. 2021, 403, 126270. [Google Scholar] [CrossRef]
- Giannakis, S.; Lin, K.-Y.A.; Ghanbari, F. A Review of the Recent Advances on the Treatment of Industrial Wastewaters by Sulfate Radical-Based Advanced Oxidation Processes (SR-AOPs). Chem. Eng. J. 2021, 406, 127083. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, T.; Yin, K.; Liu, C.; Wei, Y. Selective H2O2 Production on N-Doped Porous Carbon from Direct Carbonization of Metal Organic Frameworks for Electro-Fenton Mineralization of Antibiotics. Chem. Eng. J. 2020, 383, 123184. [Google Scholar] [CrossRef]
- Hasani, K.; Hosseini, S.; Gholizadeh, H.; Dargahi, A.; Vosoughi, M. Degradation of Oxytetracycline by Electrochemical, Fenton and Electro-Fenton Processes Using SS316 and SS316/β-PbO2 Anodes: Process Optimization Using Rsm-Ccd, Bioassay Test and Degradation Pathway. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Iglesias, O.; Meijide, J.; Bocos, E.; Sanromán, M.Á.; Pazos, M. New Approaches on Heterogeneous Electro-Fenton Treatment of Winery Wastewater. Electrochim. Acta 2015, 169, 134–141. [Google Scholar] [CrossRef]
- Simić, M.D.; Savić, B.G.; Ognjanović, M.R.; Stanković, D.M.; Relić, D.J.; Aćimović, D.D.; Brdarić, T.P. Degradation of Bisphenol A on SnO2-MWCNT Electrode Using Electrochemical Oxidation. J. Water Process Eng. 2023, 51, 103416. [Google Scholar] [CrossRef]
- Gao, G.; Zhang, Y.; Zhang, C.; Li, Y.; Li, F.; He, Y.; Zhai, L.; Li, L.; Chen, X. The Efficiency and Mechanism of Electrochemical Oxidation of Levofloxacin Using Ti/RuO2-TiO2-SnO2 Anodes. Water Air Soil Pollut. 2023, 234, 637. [Google Scholar] [CrossRef]
- Aćimović, D.D.; Karić, S.D.; Nikolić, Ž.M.; Brdarić, T.P.; Tasić, G.S.; Marčeta Kaninski, M.P.; Nikolić, V.M. Electrochemical Oxidation of the Polycyclic Aromatic Hydrocarbons in Polluted Concrete of the Residential Buildings. Environ. Pollut. 2017, 220, 393–399. [Google Scholar] [CrossRef]
- Simić, M.D.; Brdarić, T.P.; Savić Rosić, B.G.; Švorc, Ľ.; Relić, D.J.; Aćimović, D.D. Degradation of Bisphenol A via the Electro–Fenton Process Using Nanostructured Carbon-Metal Oxide Anodes: Intermediates and Reaction Mechanisms Study. J. Environ. Chem. Eng. 2024, 12, 113369. [Google Scholar] [CrossRef]
- Martínez-Sánchez, C.; Robles, I.; Godínez, L.A. Review of Recent Developments in Electrochemical Advanced Oxidation Processes: Application to Remove Dyes, Pharmaceuticals, and Pesticides. Int. J. Environ. Sci. Technol. 2022, 19, 12611–12678. [Google Scholar] [CrossRef]
- Trellu, C.; Olvera Vargas, H.; Mousset, E.; Oturan, N.; Oturan, M.A. Electrochemical Technologies for the Treatment of Pesticides. Curr. Opin. Electrochem. 2021, 26, 100677. [Google Scholar] [CrossRef]
- Villaseñor-Basulto, D.L.; Medina-Orendain, D.A.; Karri, R.R.; Rodríguez-Narvaez, O.M. Electrochemical Advanced Oxidation Processes for the Removal of Pesticides from Water and Wastewater. A Review. In Pesticides Remediation Technologies from Water and Wastewater; Elsevier: Amsterdam, The Netherlands, 2022; pp. 99–126. ISBN 9780323908931. [Google Scholar]
- Panizza, M.; Cerisola, G. Direct And Mediated Anodic Oxidation of Organic Pollutants. Chem. Rev. 2009, 109, 6541–6569. [Google Scholar] [CrossRef]
- Savić, B.G.; Stanković, D.M.; Živković, S.M.; Ognjanović, M.R.; Tasić, G.S.; Mihajlović, I.J.; Brdarić, T.P. Electrochemical Oxidation of a Complex Mixture of Phenolic Compounds in the Base Media Using PbO2-GNRs Anodes. Appl. Surf. Sci. 2020, 529, 147120. [Google Scholar] [CrossRef]
- Ječmenica Dučić, M.; Krstić, A.; Zdolšek, N.; Aćimović, D.; Savić, B.; Brdarić, T.; Vasić Anićijević, D. Low-Cost Graphene-Based Composite Electrodes for Electrochemical Oxidation of Phenolic Dyes. Crystals 2023, 13, 125. [Google Scholar] [CrossRef]
- Ječmenica Dučić, M.; Aćimović, D.; Savić, B.; Rakočević, L.; Simić, M.; Brdarić, T.; Vasić Anićijević, D. Is It Possible to Restrain OER on Simple Carbon Electrodes to Efficiently Electrooxidize Organic Pollutants? Molecules 2022, 27, 5203. [Google Scholar] [CrossRef]
- Duan, X.; Zhao, C.; Liu, W.; Zhao, X.; Chang, L. Fabrication of a Novel PbO2 Electrode with a Graphene Nanosheet Interlayer for Electrochemical Oxidation of 2-Chlorophenol. Electrochim. Acta 2017, 240, 424–436. [Google Scholar] [CrossRef]
- Tong, S.P.; Ma, C.A.; Feng, H. A Novel PbO2 Electrode Preparation and Its Application in Organic Degradation. Electrochim. Acta 2008, 53, 3002–3006. [Google Scholar] [CrossRef]
- Zhong, C.; Wei, K.; Han, W.; Wang, L.; Sun, X.; Li, J. Electrochemical Degradation of Tricyclazole in Aqueous Solution Using Ti/SnO2-Sb/PbO2 Anode. J. Electroanal. Chem. 2013, 705, 68–74. [Google Scholar] [CrossRef]
- Sreekanth, T.V.M.; Prasad, K.; Yoo, J.; Kim, J.; Yoo, K. CuO-SnO2 Nanocomposites: Efficient and Cost-Effective Electrocatalysts for Urea Oxidation. Mater. Lett. 2023, 353, 10–13. [Google Scholar] [CrossRef]
- Duan, X.; Sui, X.; Wang, W.; Bai, W.; Chang, L. Fabrication of PbO2/SnO2 Composite Anode for Electrochemical Degradation of 3-Chlorophenol in Aqueous Solution. Appl. Surf. Sci. 2019, 494, 211–222. [Google Scholar] [CrossRef]
- Dhanabalan, A.; Yu, Y.; Li, X.; Chen, W.; Bechtold, K.; Gu, L.; Wang, C. Porous SnO2/CNT Composite Anodes: Influence of Composition and Deposition Temperature on the Electrochemical Performance. J. Mater. Res. 2010, 25, 1554–1560. [Google Scholar] [CrossRef]
- Ramalho, A.M.Z.; Martínez-Huitle, C.A.; Silva, D.R. da Application of Electrochemical Technology for Removing Petroleum Hydrocarbons from Produced Water Using a DSA-Type Anode at Different Flow Rates. Fuel 2010, 89, 531–534. [Google Scholar] [CrossRef]
- Jiang, Y.; Hu, Z.; Zhou, M.; Zhou, L.; Xi, B. Efficient Degradation of P-Nitrophenol by Electro-Oxidation on Fe Doped Ti/TiO2 Nanotube/PbO2 Anode. Sep. Purif. Technol. 2014, 128, 67–71. [Google Scholar] [CrossRef]
- Sun, Z.; Ni, Y.; Wu, Y.; Yue, W.; Zhang, G.; Bai, J. Electrocatalytic Degradation of Methyl Orange and 4-Nitrophenol on a Ti/TiO2-NTA/La-PbO2 Electrode: Electrode Characterization and Operating Parameters. Environ. Sci. Pollut. Res. 2023, 30, 6262–6274. [Google Scholar] [CrossRef]
- Wu, W.; Huang, Z.; Hu, Z.-T.; He, C.; Lim, T. High Performance Duplex-Structured SnO2-Sb-CNT Composite Anode for Bisphenol A Removal. Sep. Purif. Technol. 2017, 179, 25–35. [Google Scholar] [CrossRef]
- Li, D.; Tang, J.; Zhou, X.; Li, J.; Sun, X.; Shen, J.; Wang, L.; Han, W. Electrochemical Degradation of Pyridine by Ti/SnO2-Sb Tubular Porous Electrode. Chemosphere 2016, 149, 49–56. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, L.; He, J.; Zhang, J. Preparation of Ti/SnO2-Sb Electrodes Modified by Carbon Nanotube for Anodic Oxidation of Dye Wastewater and Combination with Nanofiltration. Electrochim. Acta 2014, 117, 192–201. [Google Scholar] [CrossRef]
- Zhang, Z.; Yi, G.; Li, P.; Wang, X.; Wang, X.; Zhang, C.; Zhang, Y.; Sun, Q. Electrochemical Oxidation of Hydroquinone Using Eu-Doped PbO2 Electrodes: Electrode Characterization, Influencing Factors and Degradation Pathways. J. Electroanal. Chem. 2021, 895, 115493. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Z.; Hao, C.; Zhang, Y.; Chai, S.; Han, G.; Xu, H.; Lu, J.; Dang, Y.; Sun, X.; et al. Electrocatalysis Enhancement of α, β-PbO2 Nanocrystals Induced via Rare Earth Er(III) Doping Strategy: Principle, Degradation Application and Electrocatalytic Mechanism. Electrochim. Acta 2020, 333, 135535. [Google Scholar] [CrossRef]
- Yang, C.; Shang, S.; Li, X. Fabrication of Sulfur-Doped TiO2 Nanotube Array as a Conductive Interlayer of PbO2 Anode for Efficient Electrochemical Oxidation of Organic Pollutants. Sep. Purif. Technol. 2021, 258, 118035. [Google Scholar] [CrossRef]
- Xia, Y.; Bian, X.; Xia, Y.; Zhou, W.; Wang, L.; Fan, S.; Xiong, P.; Zhan, T.; Dai, Q.; Chen, J. Effect of Indium Doping on the PbO2 Electrode for the Enhanced Electrochemical Oxidation of Aspirin: An Electrode Comparative Study. Sep. Purif. Technol. 2020, 237, 116321. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, Y.; Wang, J. Fenton/Fenton-like Processes with in-Situ Production of Hydrogen Peroxide/Hydroxyl Radical for Degradation of Emerging Contaminants: Advances and Prospects. J. Hazard. Mater. 2021, 404, 124191. [Google Scholar] [CrossRef]
- Ganiyu, S.O.; Martínez-Huitle, C.A.; Oturan, M.A. Electrochemical Advanced Oxidation Processes for Wastewater Treatment: Advances in Formation and Detection of Reactive Species and Mechanisms. Curr. Opin. Electrochem. 2021, 27, 100678. [Google Scholar] [CrossRef]
- Nidheesh, P.V.; Olvera-Vargas, H.; Oturan, N.; Oturan, M.A. Heterogeneous Electro-Fenton Process: Principles and Applications. In Electro-Fenton Process: New Trends and Scale-Up; Zhou, M., Oturan, M.A., Sirés, I., Eds.; Springer: Singapore, 2017; pp. 85–110. ISBN 978-981-10-6406-7. [Google Scholar]
- Brillas, E. Progress of Homogeneous and Heterogeneous Electro-Fenton Treatments of Antibiotics in Synthetic and Real Wastewaters. A Critical Review on the Period 2017–2021. Sci. Total Environ. 2022, 819, 153102. [Google Scholar] [CrossRef]
- Zhao, H.; Ma, X.; Lu, M.; He, F.; Lin, F.; Zhang, Y.; Zhang, J.; Dong, P.; Zhao, C.; Sun, H. Melamine Foam Derived Nitrogen and Boron Co-Doped Metal-Free Electrode for Enhanced Electro-Fenton Degradation of Metronidazole. Chem. Eng. J. 2023, 455, 140593. [Google Scholar] [CrossRef]
- Su, P.; Zhou, M.; Song, G.; Du, X.; Lu, X. Efficient H2O2 Generation and Spontaneous OH Conversion for In-Situ Phenol Degradation on Nitrogen-Doped Graphene: Pyrolysis Temperature Regulation and Catalyst Regeneration Mechanism. J. Hazard. Mater. 2020, 397, 122681. [Google Scholar] [CrossRef]
- Sun, C.; Chen, T.; Huang, Q.; Duan, X.; Zhan, M.; Ji, L.; Li, X.; Wang, S.; Yan, J. Biochar Cathode: Reinforcing Electro-Fenton Pathway against Four-Electron Reduction by Controlled Carbonization and Surface Chemistry. Sci. Total Environ. 2021, 754, 142136. [Google Scholar] [CrossRef] [PubMed]
- Ganiyu, S.O.; de Araújo, M.J.G.; de Araújo Costa, E.C.T.; Santos, J.E.L.; dos Santos, E.V.; Martínez-Huitle, C.A.; Pergher, S.B.C. Design of Highly Efficient Porous Carbon Foam Cathode for Electro-Fenton Degradation of Antimicrobial Sulfanilamide. Appl. Catal. B Environ. 2021, 283, 119652. [Google Scholar] [CrossRef]
- Wang, X.; Xu, C.; Zhu, Y.; Zhou, C.; Yang, Y.; Miao, J.; Zhou, W.; Shao, Z. The Recent Progress of Cathode Materials for Heterogeneous Electro-Fenton Reactions. Surf. Interfaces 2024, 44, 103820. [Google Scholar] [CrossRef]
- Cui, L.; Zhao, X.; Xie, H.; Zhang, Z. Overcoming the Activity–Stability Trade-Off in Heterogeneous Electro-Fenton Catalysis: Encapsulating Carbon Cloth-Supported Iron Oxychloride within Graphitic Layers. ACS Catal. 2022, 12, 13334–13348. [Google Scholar] [CrossRef]
- Zhao, K.; Quan, X.; Su, Y.; Qin, X.; Chen, S.; Yu, H. Enhanced Chlorinated Pollutant Degradation by the Synergistic Effect between Dechlorination and Hydroxyl Radical Oxidation on a Bimetallic Single-Atom Catalyst. Environ. Sci. Technol. 2021, 55, 14194–14203. [Google Scholar] [CrossRef]
- Shen, X.; Xiao, F.; Zhao, H.; Chen, Y.; Fang, C.; Xiao, R.; Chu, W.; Zhao, G. In Situ-Formed PdFe Nanoalloy and Carbon Defects in Cathode for Synergic Reduction–Oxidation of Chlorinated Pollutants in Electro-Fenton Process. Environ. Sci. Technol. 2020, 54, 4564–4572. [Google Scholar] [CrossRef]
- Souza, F.L.; Lanza, M.R.V.; Llanos, J.; Sáez, C.; Rodrigo, M.A.; Cañizares, P. A Wind-Powered BDD Electrochemical Oxidation Process for the Removal of Herbicides. J. Environ. Manag. 2015, 158, 36–39. [Google Scholar] [CrossRef] [PubMed]
- Paz, E.C.; Pinheiro, V.S.; Joca, J.F.S.; de Souza, R.A.S.; Gentil, T.C.; Lanza, M.R.V.; de Oliveira, H.P.M.; Neto, A.M.P.; Gaubeur, I.; Santos, M.C. Removal of Orange II (OII) Dye by Simulated Solar Photoelectro-Fenton and Stability of WO2.72/Vulcan XC72 Gas Diffusion Electrode. Chemosphere 2020, 239, 124670. [Google Scholar] [CrossRef]
- Khaleel, G.F.; Ismail, I.; Abbar, A.H. Application of Solar Photo-Electro-Fenton Technology to Petroleum Refinery Wastewater Degradation: Optimization of Operational Parameters. Heliyon 2023, 9, e15062. [Google Scholar] [CrossRef] [PubMed]
- Brillas, E. Solar Photoelectro-Fenton: A Very Effective and Cost-Efficient Electrochemical Advanced Oxidation Process for the Removal of Organic Pollutants from Synthetic and Real Wastewaters. Chemosphere 2023, 327, 138532. [Google Scholar] [CrossRef] [PubMed]
- Clematis, D.; Panizza, M. Electro-Fenton, Solar Photoelectro-Fenton and UVA Photoelectro-Fenton: Degradation of Erythrosine B Dye Solution. Chemosphere 2021, 270, 129480. [Google Scholar] [CrossRef]
- Murrieta, M.F.; Brillas, E.; Nava, J.L.; Sirés, I. Solar Photoelectro-Fenton-like Process with Anodically-Generated HClO in a Flow Reactor: Norfloxacin as a Pollutant with a Particular Structure. Sep. Purif. Technol. 2023, 308, 122893. [Google Scholar] [CrossRef]
- Herrera-Muñoz, J.; Cabrera-Reina, A.; Miralles-Cuevas, S.; Piña, S.; Salazar-González, R. Simultaneous Degradation of Contaminants of Emerging Concern and Disinfection by Solar Photoelectro-Fenton Process at Circumneutral PH in a Solar Electrochemical Raceway Pond Reactor. Chemosphere 2023, 341, 139978. [Google Scholar] [CrossRef] [PubMed]
- Radeef, A.Y.; Najim, A.A. Microbial Fuel Cell: The Renewable and Sustainable Magical System for Wastewater Treatment and Bioenergy Recovery. Energy 360 2024, 1, 100001. [Google Scholar] [CrossRef]
- Arun, J.; SundarRajan, P.; Grace Pavithra, K.; Priyadharsini, P.; Shyam, S.; Goutham, R.; Hoang Le, Q.; Pugazhendhi, A. New Insights into Microbial Electrolysis Cells (MEC) and Microbial Fuel Cells (MFC) for Simultaneous Wastewater Treatment and Green Fuel (Hydrogen) Generation. Fuel 2024, 355, 129530. [Google Scholar] [CrossRef]
- Islam, A.K.K.; Dunlop, P.S.; Bhattacharya, G.; Mokim, M.; Hewitt, N.J.; Huang, Y.; Gogulancea, V.; Zhang, K.; Brandoni, C. Comparative Performance of Sustainable Anode Materials in Microbial Fuel Cells (MFCs) for Electricity Generation from Wastewater. Results Eng. 2023, 20, 101385. [Google Scholar] [CrossRef]
- Zahran, M. Iron- and Carbon-Based Nanocomposites as Anode Modifiers in Microbial Fuel Cells for Wastewater Treatment and Power Generation Applications. J. Water Process Eng. 2024, 64, 105679. [Google Scholar] [CrossRef]
- Santos, J.S.; Tarek, M.; Sikora, M.S.; Praserthdam, S.; Praserthdam, P. Anodized TiO2 Nanotubes Arrays as Microbial Fuel Cell (MFC) Electrodes for Wastewater Treatment: An Overview. J. Power Sources 2023, 564, 232872. [Google Scholar] [CrossRef]
Nb. | Document | Title | Journal | Citations | Links |
---|---|---|---|---|---|
1 | Zhang (2020d) [43] | Highly efficient electrosynthesis of hydrogen peroxide on a superhydrophobic three-phase interface by natural air diffusion | Nature Communications, 11 (2020), 1731 | 414 | 18 |
2 | Chanikya (2021) [44] | Treatment of dyeing wastewater by combined sulfate radical based electrochemical advanced oxidation and electrocoagulation processes | Separation and Purification Technology 254 (2021) 117570 | 144 | 5 |
3 | Olvera-Vargas (2021) [45] | Electro-Fenton treatment of real pharmaceutical wastewater paired with a BDD anode: Reaction mechanisms and respective contribution of homogeneous and heterogeneous OH | Chemical Engineering Journal, 404 (2021), 126524 | 133 | 15 |
4 | Du (2020) [46] | Internal-micro-electrolysis-enhanced heterogeneous electro-Fenton process catalyzed by Fe/Fe3C@PC core–shell hybrid for sulfamethazine degradation | Chemical Engineering Journal 398 (2020) 125681 | 119 | 7 |
5 | Ghanbari (2020a) [47] | Efficient treatment for landfill leachate through sequential electrocoagulation, electrooxidation and PMS/UV/CuFe2O4 process | Separation and Purification Technology 242 (2020) 116828 | 115 | 2 |
6 | Zhang (2022a) [48] | Efficient degradation of tetracycline using core–shell Fe@Fe2O3-CeO2 composite as novel heterogeneous electro-Fenton catalyst | Chemical Engineering Journal 428 (2022) 131403 | 111 | 6 |
7 | Zhang (2020a) [49] | Heterogeneous electro–Fenton using three–dimension NZVI–BC electrodes for degradation of neonicotinoid wastewater | Water Research 182 (2020) 115975 | 102 | 4 |
8 | Ghanbari (2021) [50] | Electrochemical activation of peroxides for treatment of contaminated water with landfill leachate: Efficacy, toxicity and biodegradability evaluation | Chemosphere 279 (2021) 130610 | 99 | 2 |
9 | Nidheesh (2020) [51] | Electrochemical oxidation of ofloxacin using a TiO2-based SnO2-Sb/polytetrafluoroethylene resin-PbO2 electrode: Reaction kinetics and mass transfer impact | Chemosphere 251 (2020) 126437 | 93 | 4 |
Technology | Advantages | Disadvantages | Safety |
---|---|---|---|
Anodic oxidation |
|
|
|
Electro-Fenton |
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brdarić, T.P.; Aćimović, D.D.; Švorc, Ľ.; Vasić Anićijević, D.D. Bibliometric Study of Electrochemical Advanced Oxidation Processes (EAOPs) for Wastewater Treatment. Coatings 2024, 14, 1060. https://doi.org/10.3390/coatings14081060
Brdarić TP, Aćimović DD, Švorc Ľ, Vasić Anićijević DD. Bibliometric Study of Electrochemical Advanced Oxidation Processes (EAOPs) for Wastewater Treatment. Coatings. 2024; 14(8):1060. https://doi.org/10.3390/coatings14081060
Chicago/Turabian StyleBrdarić, Tanja P., Danka D. Aćimović, Ľubomír Švorc, and Dragana D. Vasić Anićijević. 2024. "Bibliometric Study of Electrochemical Advanced Oxidation Processes (EAOPs) for Wastewater Treatment" Coatings 14, no. 8: 1060. https://doi.org/10.3390/coatings14081060
APA StyleBrdarić, T. P., Aćimović, D. D., Švorc, Ľ., & Vasić Anićijević, D. D. (2024). Bibliometric Study of Electrochemical Advanced Oxidation Processes (EAOPs) for Wastewater Treatment. Coatings, 14(8), 1060. https://doi.org/10.3390/coatings14081060