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Abstract: Cotton is one of the most important fibers used in the textile industry. The dyeing of cotton
with synthetic anionic dyes consumes large amounts of salt and alkali, which makes it a challenge
for the environment. Furthermore, the relatively high percentage of synthetic dyes remaining in
the dyebath is a potential threat for the environment and human health. The application of plant-
derived natural dyes has recently been considered as a promising approach to overcome this problem.
Optimization of the dyeing process and prediction of the values of the color coordinates of dyed
textiles have always been among the most pronounced challenges in the textile industry, especially
when a mixture of dyes or mordants is used. In this study, alum was used for mordanting of cotton and
two natural dyes—namely, weld and madder—were used for the dyeing. The samples were dyed with
various combinations of mordant, weld, and madder for the weight of the fabric and statistical analysis
revealed that all three mentioned parameters were effective in determining the color coordinates. To
determine the best model to predict the color coordinates of cotton fabrics, the regression method and
ANN models weighted with back-propagation (BP) and optimization algorithms, such as the genetic
algorithm, particle swarm optimization, gray wolf optimization, FMINCON (a built-in function of
MATLAB software) and a combination of particle swarm optimization and FMINCON (PSO-FMIN),
were employed and compared based on the mean squared error (MSE). The obtained results revealed
that using the PSO-FMIN algorithm for ANN weighting led to higher accuracy in the prediction of
color coordinates. The MSEs obtained for ANN outputs and the corresponding actual values reached
2.02, 1.68 and 1.39 for the l*, a* and b* coordinates, which were 44%, 23% and 26% better than the
result obtained with BP, respectively.

Keywords: cotton fabric; artificial neural network; optimization algorithm; particle swarm optimization;
FMINCON

1. Introduction

The textile industry is responsible for around 17–20% of industrial water pollution
around the world. This pollution is mostly produced by dyeing processes that consume
large amounts of synthetic dyes. A considerable amount of the consumed dyes remain
in the wastewater, leading to several environmental and health problems. Removal of
these dyes using various technologies is the approach usually considered in the industry to
reduce their effect on the environments [1]. Another approach that has recently attracted a
lot of attention is the revival of natural dyes in the textile industry [2,3]. Natural dyes are
obtained from plant, animal or fungi origins and are mostly non-toxic. They are considered
eco-friendly alternatives to synthetic dyes [4,5]. Some natural dyes impart functional
properties, such as antibacterial and anti-odor properties, to the dyed textiles [6].

Besides their important advantages, such as their non-toxic nature (in most cases),
environmental friendliness, functionality and biodegradability, natural dyes have several
drawbacks, such as low affinity toward the textile fibers and medium to low fastness
properties. To overcome these problems, several approaches have been investigated. The
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use of ultrasonic [7,8] and microwave [9–11] energy; mordanting with metal salts [12,13]
and biological agents, such as tannin-rich plants, etc. [14,15]; plasma treatment [16,17];
cationization [7]; and pretreatment with chitosan [18] or dendrimer [19] are among the
various methods that have shown potential for the improvement of natural dyeing of textile
fibers, especially wool and cotton.

Cotton is the most widely used natural fiber in the textile and fashion industry owing
to its unique properties, such as absorbency, comfort and soft handle [20,21]. Natural
dyeing of cotton is difficult due to the low affinity and weak fastness of the natural dyes
in this fiber. Generally, metal salts are applied on cotton to improve the dye-binding and
fastness properties. However, some of the commonly used mordants, such as chromium
and stannous, are considered toxic and their usage on textiles is restricted. Aluminum salts
are considered safe and can be used as mordants in natural dyeing [22].

Another problem in natural dyeing of textiles is the reproduction of the obtained hues,
especially when a mixture of colorants or mordants is applied. To ensure the levelness
of the hues and the reproducibility of the results, natural dyes require careful extraction
and optimization of the dyeing procedure [3]. Artificial intelligence (AI) is one of the
emerging soft computing techniques used in recent years for reliable dye formulations,
color matching and fault detection in the coloration of textiles with synthetic dyes [23].

Artificial neural networks (ANNs), one of the sub-branches of AI, are one of the best
tools for modeling nonlinear engineering systems and, so far, they have been successfully
used in many cases in textile engineering, such as for the prediction of the properties of
fibrous composites, the handle and comfort of clothing, wastewater treatment, thermal
conductivity and the degradation of fibers [24–33]. They have also been employed in the
prediction of the color coordinates of textiles dyed with natural colorants [34–36]. In all
the mentioned cases, the goal was to predict one or more responses from the study system
and, for this purpose, ANN models were used alongside conventional approaches, such
as regression or theoretical models, and the reported results prove that ANNs are always
more accurate than other models in predicting system responses. Of course, like other
models, ANN models have parameters with variations that can change the output accuracy.
The number of hidden layers, the number of neurons in each hidden layer and the weights
and biases of the neurons can be considered the most important parameters of neural
networks. To obtain the highest accuracy with ANNs, the final numbers of hidden layers
and the neurons in them are usually determined using a trial and error method or with
optimization algorithms, such as the genetic algorithm (GA) [37]. On the other hand, the
initial weights and biases of ANNs are selected randomly at first and then, during the
training stage of the ANN, their final values are determined by a training algorithm, such as
error back-propagation (BP), which is one of the most widely used training algorithms [38].
It is worth mentioning that some researchers have even successfully used optimization
algorithms, such as the GA, to determine the initial values of ANN weights and biases in
order to further improve ANN performance [34,35,39,40]. This means that they tried to
optimize the starting point of BP to obtain higher accuracy with an ANN, and the reported
results from comparing the use of BP with random weights and biases show that they were
indeed successful.

Now, the question arises whether optimization algorithms can determine the final
values of ANN weights and biases directly in such a way that the ANN prediction accuracy
becomes acceptable or even better than that obtained using BP. In other words, is it possible
to obtain good accuracy for ANNs without using BP? Recently, Hadavandi et al. [41]
used different optimization algorithms for this purpose in the prediction of the strength
of siro-spun yarns with an ANN and reported promising results, such as that gray wolf
optimization (GWO) can produce fairly better results than BP. However, to the best of
the authors’ knowledge, there is no published work that encompasses the scope of color
coordinate prediction for cotton fabrics dyed with natural colorants and one mordant
simultaneously by using an ANN model directly weighted with optimization algorithms.
Therefore, in this study, we tried to evaluate the ability of different optimization algorithms
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in directly determining the final values of ANN weights and biases for the prediction of
the color coordinates of cotton fabrics dyed with blends of two natural dyes.

2. Material and Method
2.1. Materials

Yazdbaf Co., Yazd, Iran, provided the cotton fabric used in this study. The fabric had a
plain weave with a mass per unit area of 110 g/m2. Non-ionic surfactant (Triton X-100),
sodium hydroxide and aluminum potassium sulfate were purchased from Sigma-Aldrich,
St. Louis, MO, USA. Two natural dyes—namely, madder (Rubia tinctorum) and weld
(Reseda luteola)—were purchased from a local market in Ardakan, Iran.

2.2. Methods

Pretreatment: Before mordanting and dyeing, the cotton fabric was scoured in a bath
containing 2 g/L Triton X-100 and 1 g/L NaOH. The liquor-to-goods ratio was 40:1, and
the fabric was scoured for 30 min at 60 ◦C. Finally, the fabric was rinsed with distilled water
thoroughly, dried at ambient temperature and cut to the required size.

Mordanting: The affinity of natural dyes toward cellulosic fibers is low compared to
protein fibers. Mordanting with metal salts or tannin can improve the adsorption of natural
dyes by cotton. Among the various metal salts traditionally used as mordants, alum is
considered the safest from the ecological and human friendliness point of view [42]. In
the mordanting process, cotton samples were added to baths containing 2, 5 or 10%owf of
alum (according to the experimental design) at 40 ◦C (L:G = 40:1). The temperature was
increased to boiling point at a rate of 2 ◦C/min and kept constant at a boil for 1 h. Finally,
the bath was cooled and the samples were rinsed and air-dried.

Dyeing: Among the diverse range of dye-yielding plants traditionally used for natural
dyeing in Iran, weld and madder are known as the most important sources for yellow and
red colorants, respectively. They are usually used in blends with various concentrations
to obtain a wide range of shades on wool and cotton. In this study, the concentration
of each dye was varied in the range from 0 to 100%owf and dyeing was performed on
non-mordanted and mordanted (2–10%owf) cotton samples. No auxiliary (acid, alkali or
salt) was used in the dyeing stage and the dyeing was started at 40 ◦C. The rate of heating
was 2 ◦C/min until boiling, at which level the samples were kept for 1 h. Finally, the dyed
samples were scoured and dried.

Color measurement: A total of 120 samples with varying concentrations of alum,
madder and weld were dyed. The colorimetry analyses were performed using a reflectance
spectrophotometer (Color Eye 7000A, X-rite, Grand Rapids, MI, USA). The color coordinates
(l*, a*, b*) and reflectance of the dyed samples in the range from 400 to 750 nm were measured
under illuminant D65 and 10◦ standard observer. The concentrations of alum, madder and
weld were considered as the inputs and the color coordinates of the dyed samples (l*, a*, b*)
were considered as the outputs of the ANN.

2.3. ANN

A neural network is basically a data processor, the smallest unit of which is called
a neuron. The neurons are located in three layers: input, hidden and output layers. The
communication of each neuron with the neurons of the next layer is accomplished through
weights and biases. Figure 1 shows a schematic view of an ANN model with two, three
and one neurons in the input, hidden and output layers, respectively. The final answer of
the network is calculated according to Equation (2).

hj = f

(
∑
i=1

wijxi + bj

)
(1)

Finalanswer = f

(
∑
j=1

wjkhj + bk

)
(2)
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where xi is the ith input signal; f(x) is the activation function; wij is the associated weight
between the ith and jth neurons in the input and hidden layers, respectively; smf wjk is
the associated weight between the jth and kth neurons in the hidden and output layers,
respectively. Hyperbolic tangent and linear functions are two of the most widely used
activation functions.
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2.4. GA

The genetic algorithm (GA) is one of the most well-known optimization algorithms
and it is used in many engineering applications. In this method, all the parameters that
are used in solving the problem are considered as a string called the chromosome. Then, a
set of possible chromosomes is created and the problem is evaluated for each one through
the objective function; consequently, each chromosome is scored according to its perfor-
mance. In the next step, GA operators, such as crossover and mutation, are applied to the
chromosomes to reproduce a new population of them, which is scored again. This process
continues until the stop condition is reached [43].

2.5. PSO

In this method, each set of problem-solving parameters is called a particle. A set of
particles is first created randomly and each one is assigned a velocity and scored by the
objective function. The particles are then assigned new velocities and re-scored after being
moved. This process continues until the stop conditions are met [44].

2.6. GWO

This algorithm has recently been introduced and is inspired by the behavior of gray
wolves [45]. The strongest wolf, who is also the leader of the group, is called the alpha wolf
and the next positions belong to the beta, delta and omega wolves, respectively. In GWO,
alpha, beta and delta wolves estimate the prey’s position; the omega wolves accordingly
update their positions, the prey’s position is re-estimated and the omega wolves’ positions
are updated again. This cycle continues until the prey’s change in position stops [41].
Finally, the position of the alpha wolf is presented as the best obtained solution.

2.7. FMINCON

Unlike the algorithms mentioned above, which are all nature-inspired, the FMINCON
algorithm (FMIN), is a gradient-based mathematical method available as a built-in function
in Matlab software [46]. It can be used to minimize a function under certain conditions,
such as input values at specified intervals. It starts with an initial guess and, according
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to the update scheme, it stops at a point where the first-order optimization and other
conditions are fulfilled. In this study, the interior-point method was used as an update
scheme to approximate the optimization problem based on the Lagrangian method and
Karush–Kuhn–Tucker equation [47].

2.8. Weighting ANN

As mentioned in the introduction, this study tried to determine the final values of ANN
weights and biases (Equations (1) and (2)) with the mentioned optimization algorithms
without using BP. For this purpose, all ANN weights and biases were considered in one
vector and, on the other hand, the objective function was defined in such a way that it took
that vector and distributed it to the neurons on different layers of the ANN. Then, the mean
squared error (MSE), as the output of the objective function, was calculated according to
Equation (3) for the ANN outputs (ANN prediction) and the corresponding actual values
(the lower the MSE, the better the solution):

MSE =
1
n

1

∑
i=1

(yi − ti)
2 (3)

where yi and ti are the ANN output and corresponding actual value, respectively. It is
worth mentioning that, in the objective function, only the ANN structure was used and
there was no training step where BP was applied to determine the weights and biases.
Therefore, we tried to obtain a vector using the GA, PSO, GWO and FMIN that led to the
minimum MSE. In light of the literature, this study used an ANN structure with just one
hidden layer, and one to seven neurons in that layer were considered for investigation.
Therefore, using three inputs for the ANN model (mordant, weld and madder) and one
neuron for the output (a color coordinate), the vector length would range from 6 to 36
elements, respectively. Figure 2 presents a schematic view of the weights and biases vector
for the ANN with seven neurons in hidden layer.
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in the hidden layer.

The activation functions for the hidden and output layers were the hyperbolic tangent
and linear functions, respectively. In addition, to investigate the effects of combining
optimization algorithms on the weighting of the ANN, PSO and FMIN were used in hybrid
mode so that the end point of the PSO was used as the starting point of FMIN (PSO-
FMIN). It should be mentioned that a separate ANN model was considered for each color
coordinate, and all the required codes in this study were developed using MATLAB R2016a
software.

3. Result and Discussion

In the first step in data interpretation, one-way analysis of variance (ANOVA) can
be used to investigate the statistical significance of the relationship between independent
and dependent parameters. At a 90% confidence interval, if the P-value is higher than
0.1, it means that the independent parameter statistically affects the dependent one. The
results of the ANOVA for all color coordinates are presented in Tables 1–3. As can be seen,
all p-values were higher than 0.1, so it can be said that the three independent parameters
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considered were statistically effective in determining the color coordinates and each color
coordinate could be modeled based on them.

Table 1. Results of ANOVA for l* color coordinate.

Source DF Adj SS Adj MS F-Value p-Value

Mordant 3.00 2034.00 678.05 13.41 0.00

Error 116.00 5867.00 50.58 - -

Total 119.00 7902.00 - - -

Weld 5.00 5432.00 1086.50 50.16 0.00

Error 114.00 2469.00 21.66 - -

Total 119.00 7902.00 - - -

Madder 5.00 660.60 132.11 2.08 0.07

Error 114.00 7241.10 63.52 - -

Total 119.00 7901.60 - - -

Table 2. Results of ANOVA for a* color coordinate.

Source DF Adj SS Adj MS F-Value p-Value

Mordant 3.00 1092.00 363.89 5.68 0.00

Error 116.00 7432.00 64.07 - -

Total 119.00 8524.00 - - -

Weld 5.00 6673.00 1334.51 82.17 0.00

Error 114.00 1851.00 16.24 - -

Total 119.00 8524.00 - - -

Madder 5.00 769.50 153.91 2.26 0.05

Error 114.00 7754.50 68.02 - -

Total 119.00 8524.00 - - -

Table 3. Results of ANOVA for b* color coordinate.

Source DF Adj SS Adj MS F-Value p-Value

Mordant 3.00 1473.00 491.10 12.94 0.00

Error 116.00 4402.00 37.95 - -

Total 119.00 5875.00 - - -

Weld 5.00 1933.00 386.62 11.18 0.00

Error 114.00 3942.00 34.58 - -

Total 119.00 5875.00 - - -

Madder 5.00 1103.00 220.59 5.27 0.00

Error 114.00 4772.00 41.86 - -

Total 119.00 5875.00 - - -

One of the most common methods for modeling is the linear regression method. An
attempt was thus made to model the relationship between dyeing parameters and color
coordinates separately using this method. All data were used to determine the regression
coefficients presented in Equations (4)–(6), and the MSEs between the regression outputs
and corresponding actual values calculated for the l*, a* and b* coordinates were 22.55, 28.70
and 28.59, respectively. It is quite clear that MSE values close to zero are ideal; therefore,
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the accuracy of the regression method was not acceptable. In other words, the regression
equation was not even able to accurately predict the data used to derive its own equation
and the relationship between the considered parameters was highly nonlinear, so a more
efficient model, such as a neural network, is certainly required.

lreg = 67.63 − 0.67 × A − 0.17 × M + 0.08 × W (4)

areg = 14.88 + 0.52 × A + 0.17 × M − 0.08 × W (5)

breg = 21.29 + 0.48 × A − 0.11 × M + 0.08 × W (6)

As mentioned above, the purpose of this study was to investigate the efficiency of
optimization algorithms compared to BP. Thus, at first, a neural network was trained with
BP as a benchmark. When using BP, the data are usually divided into three different groups
called the training, validation and test sets. The training and validation sets are used only
in the training step of the ANN and the test set is used to assess the ANN performance
by means of indexes, such as the MSE (the lower the MSE, the higher the accuracy in
prediction). In this study, 70% of the data were randomly selected as the training group,
15% as the validation group and 15% as the test group. In the first step, ANN models were
weighted by BP (ANN-BP) and, afterward, the same ANN models were weighted using
the GA, PSO, GWO, FMIN and PSO-FMIN and referred to as the ANN-GA, ANN-PSO,
ANN-GWO, ANN-FMIN, ANN-PSO-FMIN models, respectively. To make the conditions
equal for BP and the other optimization algorithms, the same training group was used for
the weighting of all the ANNs.

Due to the random initial selection of weights and biases in all optimization algorithms,
for each number of neurons in the hidden layer, the MSEs obtained for the ANNs weighted
with different optimization algorithms were higher than the MSE of the ANN trained with
BP. As a result, the weights and biases obtained for the ANN-BP model were considered
as the starting point for the search with the optimization algorithms. Since the operators
of optimization algorithms, such as crossover, use random variables, each optimization
algorithm was run three times and the best results were considered for these runs. If an
optimization algorithm worked successfully, a lower MSE than the MSE of the ANN-BP
model should have been obtained. For example, in predicting the l* coordinate, the MSE
of the training group for the ANN-BP model with three neurons in the hidden layer was
12.76, while the MSE values for the same ANN weighted with the GA, PSO, GWO, FMIN
and PSO-FMIN were 10.17, 6.30, 6.41, 5.51 and 4.11, respectively. Figure 3 demonstrates the
reduction in the MSE value for each of the optimization algorithms in successive iterations
(at each iteration, the lowest MSE obtained (best answer) is plotted).

The final evaluation of the ANN was determined by the accuracy of the test group
prediction, and, in this case, the MSE values of the ANN-BP, ANN-GA, ANN-PSO, ANN-
GWO, ANN-FMIN and ANN-PSO-FMIN models for the test group were 3.60, 4.55, 7.02,
7.97, 10.76 and 2.02, respectively. The chart displayed in Figure 4 indicates the applied
approach for weighting the ANN with different algorithms. The same approach was
applied for each color coordinate and for different number of neurons.
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Tables 4–6 show the obtained MSE values of ANN models with different numbers of
neurons in the hidden layer weighted with various algorithms.
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Table 4. Obtained results for the prediction of the l* color coordinate.

N
um

be
r

of
N

eu
ro

ns MSE for Training Group MSE for Test Group * MSE Change
(%)

BP GA PSO GWO FMIN PSO-
FMIN BP GA PSO GWO FMIN PSO-

FMIN
Training
Group

Test
Group

1 19.28 18.73 18.65 18.51 18.10 18.10 6.63 5.94 5.81 5.51 5.01α 5.01 6.14 24.45

2 18.58 16.27 9.62 16.24 13.56 7.67 5.81 8.45 7.05 8.22 7.04 4.45 α 58.73 23.48

3 12.76 10.17 6.30 6.41 5.51 4.11 3.60 4.55 7.02 7.97 10.76 2.02 α 67.78 43.94

4 2.60 2.54 2.54 2.59 2.33 2.33 3.47 3.41 3.52 3.39 α 3.39 3.39 0.18 2.28

5 1.91 1.90 1.89 1.91 1.73 1.73 3.63 3.64 3.66 3.63 α 3.92 3.92 0.00 0.00

6 1.94 1.81 1.67 1.88 1.38 1.35 3.32 3.57 3.74 3.52 α 4.62 4.10 3.52 −5.89

7 2.37 2.21 2.12 2.25 1.18 1.15 4.36 4.37 4.79 4.15 α 7.24 7.66 5.34 4.87

α: The lowest MSE obtained by optimization algorithms for the test group. *: Percentage change for the MSE
indicated by α (row above) compared to the MSE with BP for the test group and corresponding training group.

Table 5. Obtained results for the prediction of the a* color coordinate.

N
um

be
r

of
N

eu
ro

ns MSE for Training Group MSE for Test Group * MSE Change
(%)

BP GA PSO GWO FMIN PSO-
FMIN BP GA PSO GWO FMIN PSO-

FMIN
Training
Group

Test
Group

1 17.52 16.50 16.44 16.46 16.50 16.44 4.44 4.89 α 5.16 5.53 4.89 α 5.19 5.82 −10.06

2 10.61 10.56 10.55 10.57 10.56 10.49 3.94 4.31 4.31 4.26 4.31 3.77 α 1.17 4.42

3 4.26 4.03 3.79 4.18 4.03 3.39 4.05 4.30 4.29 3.33 4.30 2.26 α 20.38 44.09

4 1.59 1.59 1.58 1.59 1.59 1.49 2.18 2.18 2.24 2.18 2.18 1.68 α 6.46 22.80

5 3.13 2.97 2.91 3.02 2.34 2.29 4.12 3.66 3.43 3.69 2.79 2.20 α 26.73 46.69

6 3.62 3.30 3.14 3.49 2.21 2.15 13.67 13.26 13.60 11.83 3.81 3.44 α 40.54 74.87

7 2.91 2.81 2.76 2.89 0.71 0.69 3.40 3.27 α 3.64 3.39 4.52 4.12 3.23 3.70

α: The lowest MSE obtained by optimization algorithms for the test group. *: Percentage change for the MSE
indicated by α (row above) compared to the MSE with BP for the test group and corresponding training group.

Table 6. Obtained results for the prediction of the b* color coordinate.

N
um

be
r

of
N

eu
ro

ns MSE for Training Group MSE for Test Group * MSE Change
(%)

BP GA PSO GWO FMIN PSO-
FMIN BP GA PSO GWO FMIN PSO-

FMIN
Training
Group

Test
Group

1 31.44 28.18 27.44 29.54 31.44 27.43 9.60 14.13 20.34 14.37
α 20.85 20.85 6.04 −49.75

2 25.25 24.99 24.67 25.03 25.25 11.33 23.47 26.25 28.06 26.58 16.48
α 17.73 48.01 29.78

3 5.48 4.92 4.86 5.12 5.48 4.65 1.87 1.45 1.40 2.01 1.39 1.39 α 15.02 25.81

4 4.37 4.21 4.18 4.28 4.37 3.41 2.05 1.42 1.41 1.31 α 1.87 1.82 2.13 35.99

5 2.52 2.51 2.49 2.52 2.52 2.10 5.79 5.76 5.71 5.79 3.95 α 4.71 23.35 31.72

6 21.39 16.18 13.04 14.18 21.39 2.09 16.85 13.50 15.91 17.83 5.94 5.43 α 90.24 67.76

7 4.40 3.71 3.47 3.88 4.40 1.43 3.49 4.33 4.02 α 4.96 6.80 5.61 21.27 −15.25

α: The lowest MSE obtained by optimization algorithms for the test group. *: Percentage change for the MSE
indicated by α (row above) compared to the MSE with BP for the test group and corresponding training group.

A closer look at Tables 4–6 reveals several points. Firstly, as the number of neurons in
the hidden layer increased, the BP error decreased first and then increased. The lower MSE
values with BP were obtained with the presence of three or four neurons in the hidden layer.
Secondly, the use of optimization algorithms did not necessarily reduce the MSE, such as
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with the ANN with five neurons in the hidden layer when predicting the l* color coordinate
(Table 4). Thirdly, considering the positive numbers of the MSE change column, it can be
said that the use of optimization algorithms led to more accurate prediction for the training
group. However, the presence of negative numbers in the MSE change column for the test
group indicates that, in those cases, the final performance of the optimization algorithms
was weaker than BP. This was due to the fact that BP has several mechanisms, such as the
maximum number of failures in the validation group, to control the training process and
determine weights and biases [48], while in the optimization algorithms the goal is only to
minimize the amount of the objective function. Fourthly, in predicting all color coordinates,
although the performances of optimization algorithms and BP were close to each other,
ultimately the performance of the hybrid algorithm PSO-FMIN led to a smaller MSE than
other cases. Not only did the prediction accuracy of the test groups increase remarkably (by
almost 44%, 23% and 26% for l*, a* and b* coordinates, respectively) compared to the use of
BP but the prediction accuracy of the training groups was also higher (by almost 68%, 6.5%
and 15% for l*, a* and b* coordinates, respectively). Therefore, the best prediction of l*, a*

and b* color coordinates was achieved by the ANN models weighted by PSO-FMIN with
three, four and three neurons in the hidden layer, resulting in MSEs of 2.02, 1.68 and 1.39
for the test group, respectively. Figure 5 illustrates the outputs of the best values obtained
with the ANNs and corresponding actual values for the test groups.
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4. Conclusion

Dyeing of cotton with two natural dyes was investigated as an ecofriendly and sustain-
able approach for coloration of cellulosic fibers. In this study, 120 samples of cotton fabrics
were dyed with various combinations of weld and madder natural dyes after mordanting
with different concentrations of alum. In the first step, the statistical analysis revealed
that there was a significant relationship between the mordant, weld and madder, as the
independent parameters, and all color coordinates. In the next step, the color coordinates of
the samples were modeled using linear regression, but the results did not present acceptable
accuracy. Hence, an ANN, which is a more powerful model, was applied. To prepare the
ANN model to predict the color coordinates, BP and other optimization algorithms were
used to determine the final weights and biases of the ANN structure. The results indicated
that using only optimization algorithms to set the final weights and biases of the ANN
model did not present high accuracy, which can be considered a limitation of the presented
method. However, when the final weights and biases of BP were used as the starting
point of the search in the optimization algorithms, the prediction accuracy of the color
coordinates increased significantly compared to using only BP or optimization algorithms.
Finally, it was revealed that using PSO-FMIN in weighting the ANN model with three,
four and three neurons in hidden layer led to the highest accuracy in the prediction of l*, a*
and b* color coordinates, respectively. In comparison with BP, using PSO-FMIN increased
the accuracy of prediction for test groups by at least 20% and by at least 6.5% for training
groups, which indicates the flexibility of the ANN model, as well as the combination power
of optimization algorithms.

In the future, we intend to collect the color coordinate data of other fabrics, such
as polyester, viscose, etc., and, based on the results obtained in this study (weighing the
ANN using PSO-FMIN), a comprehensive model to predict the color coordinates before the
dyeing process will be presented. Furthermore, we intend to use other artificial intelligence
methods, such as fuzzy logic and support vector machines, to predict the color coordinates
and compare the outcome with the current results.
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