Cellular and Molecular Mechanisms of Nephropathic Cystinosis

A special issue of Cells (ISSN 2073-4409). This special issue belongs to the section "Cellular Pathology".

Deadline for manuscript submissions: closed (31 October 2021) | Viewed by 41533

Printed Edition Available!
A printed edition of this Special Issue is available here.

Special Issue Editor


E-Mail Website
Guest Editor
Department of Pediatric Nephrology, Development and Regeneration, University Hospitals Leuven, KU Leuven—University of Leuven, Herestraat 49, Box 817, 3000 Leuven, Belgium
Interests: nephrology; pediatrics; genetics; cellular biology; tubulopathy

Special Issue Information

Dear Colleagues,

Nephropathic cystinosis (MIM # 219800) is a rare autosomal recessive disorder caused by mutations in the lysosomal cystine transporter cystinosin, encoded by the CTNS gene (17p13.2). The disease is characterized by lysosomal cystine accumulation in all cells of the body. Cystinosis usually manifests as a general proximal dysfunction, also called renal Fanconi syndrome; however, during the course of the disease, many other organs (eyes, endocrine glands, muscles, central and peripheral neural systems, bones, and liver) become affected. While lysosomal cystine storage is a key feature of the disease and the main target of current therapy, recent groundbreaking research has revealed that cystinosin has diverse functions in cells, being involved in vesicle trafficking, energy homeostasis, and cell death mechanisms. These discoveries deepen our understanding of mechanisms of cystinosis and of lysosomal biology in general.

In this Special Issue, we will highlight the state-of-the-art in our understanding of cellular and molecular mechanisms of nephropathic cystinosis, opening new horizons for innovative treatment strategies for cystinosis and potentially other lysosomal storage diseases.

Prof. Dr. Elena N. Levtchenko
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Cells is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nephropathic cystinosis
  • lysosomal storage disease
  • cystinosin
  • autophagy
  • oxidative stress
  • apoptosis
  • energy homeostasis
  • vesicle trafficking
  • inflammation

Published Papers (15 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review

8 pages, 1082 KiB  
Editorial
A Personal History of Cystinosis by Dr. Jerry Schneider
by Jerry Schneider and Elena Levtchenko
Cells 2022, 11(6), 945; https://doi.org/10.3390/cells11060945 - 10 Mar 2022
Viewed by 2176
Abstract
Cystinosis is a rare lysosomal storage disease that is tightly linked with the name of the American physician and scientist Dr. Jerry Schneider. Dr. Schneider (1937–2021) received his medical degree from Northwestern University, followed by a pediatrics residency at Johns Hopkins University and [...] Read more.
Cystinosis is a rare lysosomal storage disease that is tightly linked with the name of the American physician and scientist Dr. Jerry Schneider. Dr. Schneider (1937–2021) received his medical degree from Northwestern University, followed by a pediatrics residency at Johns Hopkins University and a fellowship in inherited disorders of metabolism. He started to work on cystinosis in J. Seegmiller’s laboratory at the National Institutes of Health (NIH) and subsequently moved to the UC San Diego School of Medicine, where he devoted his entire career to people suffering from this devastating lysosomal storage disorder. In 1967, Dr. Schneider’s seminal Science paper ‘Increased cystine in leukocytes from individuals homozygous and heterozygous for cystinosis’ opened a new era of research towards understanding the pathogenesis and finding treatments for cystinosis patients. His tremendous contribution transformed cystinosis from a fatal disorder of childhood to a treatable chronic disease, with a new generation of cystinosis patients being now in their 40th and 50th years. Dr. Schneider wrote a fascinating ‘Personal History of Cystinosis’ highlighting the major milestones of cystinosis research. Unfortunately, he passed away before this manuscript could be published. Fifty-five years after his first paper on cystinosis, the ‘Personal History of Cystinosis’ by Dr. Schneider is a tribute to his pioneering discoveries in the field and an inspiration for young doctors and scientists who have taken over the torch of cystinosis research towards finding a cure for cystinosis. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Nephropathic Cystinosis)
Show Figures

Figure 1

Research

Jump to: Editorial, Review

21 pages, 2498 KiB  
Article
Urine-Derived Kidney Progenitor Cells in Cystinosis
by Koenraad Veys, Sante Princiero Berlingerio, Dries David, Tjessa Bondue, Katharina Held, Ahmed Reda, Martijn van den Broek, Koen Theunis, Mirian Janssen, Elisabeth Cornelissen, Joris Vriens, Francesca Diomedi-Camassei, Rik Gijsbers, Lambertus van den Heuvel, Fanny O. Arcolino and Elena Levtchenko
Cells 2022, 11(7), 1245; https://doi.org/10.3390/cells11071245 - 06 Apr 2022
Cited by 3 | Viewed by 2513
Abstract
Nephropathic cystinosis is an inherited lysosomal storage disorder caused by pathogenic variants in the cystinosin (CTNS) gene and is characterized by the excessive shedding of proximal tubular epithelial cells (PTECs) and podocytes into urine, development of the renal Fanconi syndrome and [...] Read more.
Nephropathic cystinosis is an inherited lysosomal storage disorder caused by pathogenic variants in the cystinosin (CTNS) gene and is characterized by the excessive shedding of proximal tubular epithelial cells (PTECs) and podocytes into urine, development of the renal Fanconi syndrome and end-stage kidney disease (ESKD). We hypothesized that in compensation for epithelial cell losses, cystinosis kidneys undertake a regenerative effort, and searched for the presence of kidney progenitor cells (KPCs) in the urine of cystinosis patients. Urine was cultured in a specific progenitor medium to isolate undifferentiated cells. Of these, clones were characterized by qPCR, subjected to a differentiation protocol to PTECs and podocytes and assessed by qPCR, Western blot, immunostainings and functional assays. Cystinosis patients voided high numbers of undifferentiated cells in urine, of which various clonal cell lines showed a high capacity for self-renewal and expressed kidney progenitor markers, which therefore were assigned as cystinosis urine-derived KPCs (Cys-uKPCs). Cys-uKPC clones showed the capacity to differentiate between functional PTECs and/or podocytes. Gene addition with wild-type CTNS using lentiviral vector technology resulted in significant reductions in cystine levels. We conclude that KPCs present in the urine of cystinosis patients can be isolated, differentiated and complemented with CTNS in vitro, serving as a novel tool for disease modeling. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Nephropathic Cystinosis)
Show Figures

Figure 1

18 pages, 6420 KiB  
Article
Bioengineered Cystinotic Kidney Tubules Recapitulate a Nephropathic Phenotype
by Elena Sendino Garví, Rosalinde Masereeuw and Manoe J. Janssen
Cells 2022, 11(1), 177; https://doi.org/10.3390/cells11010177 - 05 Jan 2022
Cited by 2 | Viewed by 2421
Abstract
Nephropathic cystinosis is a rare and severe disease caused by disruptions in the CTNS gene. Cystinosis is characterized by lysosomal cystine accumulation, vesicle trafficking impairment, oxidative stress, and apoptosis. Additionally, cystinotic patients exhibit weakening and leakage of the proximal tubular segment of the [...] Read more.
Nephropathic cystinosis is a rare and severe disease caused by disruptions in the CTNS gene. Cystinosis is characterized by lysosomal cystine accumulation, vesicle trafficking impairment, oxidative stress, and apoptosis. Additionally, cystinotic patients exhibit weakening and leakage of the proximal tubular segment of the nephrons, leading to renal Fanconi syndrome and kidney failure early in life. Current in vitro cystinotic models cannot recapitulate all clinical features of the disease which limits their translational value. Therefore, the development of novel, complex in vitro models that better mimic the disease and exhibit characteristics not compatible with 2-dimensional cell culture is of crucial importance for novel therapies development. In this study, we developed a 3-dimensional bioengineered model of nephropathic cystinosis by culturing conditionally immortalized proximal tubule epithelial cells (ciPTECs) on hollow fiber membranes (HFM). Cystinotic kidney tubules showed lysosomal cystine accumulation, increased autophagy and vesicle trafficking deterioration, the impairment of several metabolic pathways, and the disruption of the epithelial monolayer tightness as compared to control kidney tubules. In particular, the loss of monolayer organization and leakage could be mimicked with the use of the cystinotic kidney tubules, which has not been possible before, using the standard 2-dimensional cell culture. Overall, bioengineered cystinotic kidney tubules recapitulate better the nephropathic phenotype at a molecular, structural, and functional proximal tubule level compared to 2-dimensional cell cultures. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Nephropathic Cystinosis)
Show Figures

Figure 1

16 pages, 4021 KiB  
Article
Benefits and Toxicity of Disulfiram in Preclinical Models of Nephropathic Cystinosis
by Anna Taranta, Mohamed A. Elmonem, Francesco Bellomo, Ester De Leo, Sara Boenzi, Manoe J. Janssen, Amer Jamalpoor, Sara Cairoli, Anna Pastore, Cristiano De Stefanis, Manuela Colucci, Laura R. Rega, Isabella Giovannoni, Paola Francalanci, Lambertus P. van den Heuvel, Carlo Dionisi-Vici, Bianca M. Goffredo, Rosalinde Masereeuw, Elena Levtchenko and Francesco Emma
Cells 2021, 10(12), 3294; https://doi.org/10.3390/cells10123294 - 24 Nov 2021
Cited by 5 | Viewed by 2824
Abstract
Nephropathic cystinosis is a rare disease caused by mutations of the CTNS gene that encodes for cystinosin, a lysosomal cystine/H+ symporter. The disease is characterized by early-onset chronic kidney failure and progressive development of extra-renal complications related to cystine accumulation in all tissues. [...] Read more.
Nephropathic cystinosis is a rare disease caused by mutations of the CTNS gene that encodes for cystinosin, a lysosomal cystine/H+ symporter. The disease is characterized by early-onset chronic kidney failure and progressive development of extra-renal complications related to cystine accumulation in all tissues. At the cellular level, several alterations have been demonstrated, including enhanced apoptosis, altered autophagy, defective intracellular trafficking, and cell oxidation, among others. Current therapy with cysteamine only partially reverts some of these changes, highlighting the need to develop additional treatments. Among compounds that were identified in a previous drug-repositioning study, disulfiram (DSF) was selected for in vivo studies. The cystine depleting and anti-apoptotic properties of DSF were confirmed by secondary in vitro assays and after treating Ctns-/- mice with 200 mg/kg/day of DSF for 3 months. However, at this dosage, growth impairment was observed. Long-term treatment with a lower dose (100 mg/kg/day) did not inhibit growth, but failed to reduce cystine accumulation, caused premature death, and did not prevent the development of renal lesions. In addition, DSF also caused adverse effects in cystinotic zebrafish larvae. DSF toxicity was significantly more pronounced in Ctns-/- mice and zebrafish compared to wild-type animals, suggesting higher cell toxicity of DSF in cystinotic cells. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Nephropathic Cystinosis)
Show Figures

Graphical abstract

15 pages, 963 KiB  
Article
Response to Cysteamine in Osteoclasts Obtained from Patients with Nephropathic Cystinosis: A Genotype/Phenotype Correlation
by Thomas Quinaux, Aurélia Bertholet-Thomas, Aude Servais, Olivia Boyer, Isabelle Vrillon, Julien Hogan, Sandrine Lemoine, Ségolène Gaillard, Candide Alioli, Sophie Vasseur, Cécile Acquaviva, Olivier Peyruchaud, Irma Machuca-Gayet and Justine Bacchetta
Cells 2021, 10(9), 2498; https://doi.org/10.3390/cells10092498 - 21 Sep 2021
Cited by 4 | Viewed by 2065
Abstract
Bone complications of cystinosis have been recently described. The main objectives of this paper were to determine in vitro the impact of CTNS mutations and cysteamine therapy on human osteoclasts and to carry out a genotype-phenotype analysis related to osteoclastic differentiation. Human osteoclasts [...] Read more.
Bone complications of cystinosis have been recently described. The main objectives of this paper were to determine in vitro the impact of CTNS mutations and cysteamine therapy on human osteoclasts and to carry out a genotype-phenotype analysis related to osteoclastic differentiation. Human osteoclasts were differentiated from peripheral blood mononuclear cells (PBMCs) and were treated with increasing doses of cysteamine (0, 50, 200 µM) and then assessed for osteoclastic differentiation. Results are presented as median (min-max). A total of 17 patients (mainly pediatric) were included, at a median age of 14 (2–61) years, and a eGFR of 64 (23–149) mL/min/1.73 m2. Most patients (71%) were under conservative kidney management (CKM). The others were kidney transplant recipients. Three functional groups were distinguished for CTNS mutations: cystinosin variant with residual cystin efflux activity (RA, residual activity), inactive cystinosin variant (IP, inactive protein), and absent protein (AP). PBMCs from patients with residual cystinosin activity generate significantly less osteoclasts than those obtained from patients of the other groups. In all groups, cysteamine exerts an inhibitory effect on osteoclastic differentiation at high doses. This study highlights a link between genotype and osteoclastic differentiation, as well as a significant impact of cysteamine therapy on this process in humans. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Nephropathic Cystinosis)
Show Figures

Graphical abstract

Review

Jump to: Editorial, Research

12 pages, 594 KiB  
Review
Biomarkers in Nephropathic Cystinosis: Current and Future Perspectives
by Francesco Emma, Giovanni Montini, Marco Pennesi, Licia Peruzzi, Enrico Verrina, Bianca Maria Goffredo, Fabrizio Canalini, David Cassiman, Silvia Rossi and Elena Levtchenko
Cells 2022, 11(11), 1839; https://doi.org/10.3390/cells11111839 - 04 Jun 2022
Cited by 2 | Viewed by 2520
Abstract
Early diagnosis and effective therapy are essential for improving the overall prognosis and quality of life of patients with nephropathic cystinosis. The severity of kidney dysfunction and the multi-organ involvement as a consequence of the increased intracellular concentration of cystine highlight the necessity [...] Read more.
Early diagnosis and effective therapy are essential for improving the overall prognosis and quality of life of patients with nephropathic cystinosis. The severity of kidney dysfunction and the multi-organ involvement as a consequence of the increased intracellular concentration of cystine highlight the necessity of accurate monitoring of intracellular cystine to guarantee effective treatment of the disease. Cystine depletion is the only available treatment, which should begin immediately after diagnosis, and not discontinued, to significantly slow progression of renal and extra-renal organ damage. This review aims to discuss the importance of the close monitoring of intracellular cystine concentration to optimize cystine depletion therapy. In addition, the role of new biomarkers in the management of the disease, from timely diagnosis to implementing treatment during follow-up, is overviewed. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Nephropathic Cystinosis)
Show Figures

Graphical abstract

12 pages, 501 KiB  
Review
Newborn Screening: Review of its Impact for Cystinosis
by Katharina Hohenfellner, Ewa Elenberg, Gema Ariceta, Galina Nesterova, Neveen A. Soliman and Rezan Topaloglu
Cells 2022, 11(7), 1109; https://doi.org/10.3390/cells11071109 - 25 Mar 2022
Cited by 3 | Viewed by 2463
Abstract
Newborn screening (NBS) programmes are considered to be one of the most successful secondary prevention measures in childhood to prevent or reduce morbidity and/or mortality via early disease identification and subsequent initiation of therapy. However, while many rare diseases can now be detected [...] Read more.
Newborn screening (NBS) programmes are considered to be one of the most successful secondary prevention measures in childhood to prevent or reduce morbidity and/or mortality via early disease identification and subsequent initiation of therapy. However, while many rare diseases can now be detected at an early stage using appropriate diagnostics, the introduction of a new target disease requires a detailed analysis of the entire screening process, including a robust scientific background, analytics, information technology, and logistics. In addition, ethics, financing, and the required medical measures need to be considered to allow the benefits of screening to be evaluated at a higher level than its potential harm. Infantile nephropathic cystinosis (INC) is a very rare lysosomal metabolic disorder. With the introduction of cysteamine therapy in the early 1980s and the possibility of renal replacement therapy in infancy, patients with cystinosis can now reach adulthood. Early diagnosis of cystinosis remains important as this enables initiation of cysteamine at the earliest opportunity to support renal and patient survival. Using molecular technologies, the feasibility of screening for cystinosis has been demonstrated in a pilot project. This review aims to provide insight into NBS and discuss its importance for nephropathic cystinosis using molecular technologies. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Nephropathic Cystinosis)
Show Figures

Figure 1

12 pages, 3073 KiB  
Review
Central Nervous System Complications in Cystinosis: The Role of Neuroimaging
by Aude Servais, Jennifer Boisgontier, Ana Saitovitch, Aurélie Hummel and Nathalie Boddaert
Cells 2022, 11(4), 682; https://doi.org/10.3390/cells11040682 - 15 Feb 2022
Cited by 3 | Viewed by 2074
Abstract
Despite improvement in the specific treatment, clinical and anatomo-functional central nervous system (CNS) abnormalities of various severities are still observed in cystinosis patients. Patients who develop CNS complications today have a worse compliance to cysteamine treatment. Radiological studies have shown that cortical or [...] Read more.
Despite improvement in the specific treatment, clinical and anatomo-functional central nervous system (CNS) abnormalities of various severities are still observed in cystinosis patients. Patients who develop CNS complications today have a worse compliance to cysteamine treatment. Radiological studies have shown that cortical or central (ventriculomegaly) atrophy is observed in more than two thirds of cystinosis patients’ magnetic resonance imaging (MRI) and correlates with the intelligence quotient score. Half of cystinosis patients have marked aspecific white matter hyperintensities. The development of advanced neuroimaging techniques provides new tools to further investigate CNS complications. A recent neuroimaging study using a voxel-based morphometry approach showed that cystinosis patients present a decreased grey matter volume in the left middle frontal gyrus. Diffusion tensor imaging studies have shown white matter microstructure abnormalities in children and adults with cystinosis, respectively in areas of the dorsal visual pathway and within the corpus callosum’s body. Finally, leucocyte cystine levels are associated with decreased resting cerebral blood flow, measured by arterial spin labelling, in the frontal cortex, which could be associated with the neurocognitive deficits described in these patients. These results reinforce the relevance of neuroimaging studies to further understand the mechanisms that underline CNS impairments. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Nephropathic Cystinosis)
Show Figures

Figure 1

8 pages, 250 KiB  
Review
Programmed Cell Death in Cystinosis
by Elizabeth G. Ames and Jess G. Thoene
Cells 2022, 11(4), 670; https://doi.org/10.3390/cells11040670 - 15 Feb 2022
Cited by 3 | Viewed by 1798
Abstract
Cystinosis is a lethal autosomal recessive disease that has been known clinically for over 100 years. There are now specific treatments including dialysis, renal transplantation and the orphan drug, cysteamine, which greatly improve the duration and quality of patient life, however, the cellular [...] Read more.
Cystinosis is a lethal autosomal recessive disease that has been known clinically for over 100 years. There are now specific treatments including dialysis, renal transplantation and the orphan drug, cysteamine, which greatly improve the duration and quality of patient life, however, the cellular mechanisms responsible for the phenotype are unknown. One cause, programmed cell death, is clearly involved. Study of extant literature via Pubmed on “programmed cell death” and “apoptosis” forms the basis of this review. Most of such studies involved apoptosis. Numerous model systems and affected tissues in cystinosis have shown an increased rate of apoptosis that can be partially reversed with cysteamine. Proposed mechanisms have included changes in protein signaling pathways, autophagy, gene expression programs, and oxidative stress. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Nephropathic Cystinosis)
19 pages, 2751 KiB  
Review
Defective Cystinosin, Aberrant Autophagy−Endolysosome Pathways, and Storage Disease: Towards Assembling the Puzzle
by Laura Rita Rega, Ester De Leo, Daniela Nieri and Alessandro Luciani
Cells 2022, 11(3), 326; https://doi.org/10.3390/cells11030326 - 19 Jan 2022
Cited by 1 | Viewed by 2637
Abstract
Epithelial cells that form the kidney proximal tubule (PT) rely on an intertwined ecosystem of vesicular membrane trafficking pathways to ensure the reabsorption of essential nutrients—a key requisite for homeostasis. The endolysosome stands at the crossroads of this sophisticated network, internalizing molecules through [...] Read more.
Epithelial cells that form the kidney proximal tubule (PT) rely on an intertwined ecosystem of vesicular membrane trafficking pathways to ensure the reabsorption of essential nutrients—a key requisite for homeostasis. The endolysosome stands at the crossroads of this sophisticated network, internalizing molecules through endocytosis, sorting receptors and nutrient transporters, maintaining cellular quality control via autophagy, and toggling the balance between PT differentiation and cell proliferation. Dysregulation of such endolysosome-guided trafficking pathways might thus lead to a generalized dysfunction of PT cells, often causing chronic kidney disease and life-threatening complications. In this review, we highlight the biological functions of endolysosome-residing proteins from the perspectives of understanding—and potentially reversing—the pathophysiology of rare inherited diseases affecting the kidney PT. Using cystinosis as a paradigm of endolysosome disease causing PT dysfunction, we discuss how the endolysosome governs the homeostasis of specialized epithelial cells. This review also provides a critical analysis of the molecular mechanisms through which defects in autophagy pathways can contribute to PT dysfunction, and proposes potential interventions for affected tissues. These insights might ultimately accelerate the discovery and development of new therapeutics, not only for cystinosis, but also for other currently intractable endolysosome-related diseases, eventually transforming our ability to regulate homeostasis and health. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Nephropathic Cystinosis)
Show Figures

Figure 1

16 pages, 3180 KiB  
Review
Nephropathic Cystinosis: Pathogenic Roles of Inflammation and Potential for New Therapies
by Mohamed A. Elmonem, Koenraad R. P. Veys and Giusi Prencipe
Cells 2022, 11(2), 190; https://doi.org/10.3390/cells11020190 - 06 Jan 2022
Cited by 7 | Viewed by 3088
Abstract
The activation of several inflammatory pathways has recently been documented in patients and different cellular and animal models of nephropathic cystinosis. Upregulated inflammatory signals interact with many pathogenic aspects of the disease, such as enhanced oxidative stress, abnormal autophagy, inflammatory cell recruitment, enhanced [...] Read more.
The activation of several inflammatory pathways has recently been documented in patients and different cellular and animal models of nephropathic cystinosis. Upregulated inflammatory signals interact with many pathogenic aspects of the disease, such as enhanced oxidative stress, abnormal autophagy, inflammatory cell recruitment, enhanced cell death, and tissue fibrosis. Cysteamine, the only approved specific therapy for cystinosis, ameliorates many but not all pathogenic aspects of the disease. In the current review, we summarize the inflammatory mechanisms involved in cystinosis and their potential impact on the disease pathogenesis and progression. We further elaborate on the crosstalk between inflammation, autophagy, and apoptosis, and discuss the potential of experimental drugs for suppressing the inflammatory signals in cystinosis. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Nephropathic Cystinosis)
Show Figures

Figure 1

11 pages, 1520 KiB  
Review
Muscle and Bone Impairment in Infantile Nephropathic Cystinosis: New Concepts
by Dieter Haffner, Maren Leifheit-Nestler, Candide Alioli and Justine Bacchetta
Cells 2022, 11(1), 170; https://doi.org/10.3390/cells11010170 - 05 Jan 2022
Cited by 2 | Viewed by 2752
Abstract
Cystinosis Metabolic Bone Disease (CMBD) has emerged during the last decade as a well-recognized, long-term complication in patients suffering from infantile nephropathic cystinosis (INC), resulting in significant morbidity and impaired quality of life in teenagers and adults with INC. Its underlying pathophysiology is [...] Read more.
Cystinosis Metabolic Bone Disease (CMBD) has emerged during the last decade as a well-recognized, long-term complication in patients suffering from infantile nephropathic cystinosis (INC), resulting in significant morbidity and impaired quality of life in teenagers and adults with INC. Its underlying pathophysiology is complex and multifactorial, associating complementary, albeit distinct entities, in addition to ordinary mineral and bone disorders observed in other types of chronic kidney disease. Amongst these long-term consequences are renal Fanconi syndrome, hypophosphatemic rickets, malnutrition, hormonal abnormalities, muscular impairment, and intrinsic cellular bone defects in bone cells, due to CTNS mutations. Recent research data in the field have demonstrated abnormal mineral regulation, intrinsic bone defects, cysteamine toxicity, muscle wasting and, likely interleukin-1-driven inflammation in the setting of CMBD. Here we summarize these new pathophysiological deregulations and discuss the crucial interplay between bone and muscle in INC. In future, vitamin D and/or biotherapies targeting the IL1β pathway may improve muscle wasting and subsequently CMBD, but this remains to be proven. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Nephropathic Cystinosis)
Show Figures

Figure 1

20 pages, 1074 KiB  
Review
In Vitro and In Vivo Models to Study Nephropathic Cystinosis
by Pang Yuk Cheung, Patrick T. Harrison, Alan J. Davidson and Jennifer A. Hollywood
Cells 2022, 11(1), 6; https://doi.org/10.3390/cells11010006 - 21 Dec 2021
Cited by 7 | Viewed by 3747
Abstract
The development over the past 50 years of a variety of cell lines and animal models has provided valuable tools to understand the pathophysiology of nephropathic cystinosis. Primary cultures from patient biopsies have been instrumental in determining the primary cause of cystine accumulation [...] Read more.
The development over the past 50 years of a variety of cell lines and animal models has provided valuable tools to understand the pathophysiology of nephropathic cystinosis. Primary cultures from patient biopsies have been instrumental in determining the primary cause of cystine accumulation in the lysosomes. Immortalised cell lines have been established using different gene constructs and have revealed a wealth of knowledge concerning the molecular mechanisms that underlie cystinosis. More recently, the generation of induced pluripotent stem cells, kidney organoids and tubuloids have helped bridge the gap between in vitro and in vivo model systems. The development of genetically modified mice and rats have made it possible to explore the cystinotic phenotype in an in vivo setting. All of these models have helped shape our understanding of cystinosis and have led to the conclusion that cystine accumulation is not the only pathology that needs targeting in this multisystemic disease. This review provides an overview of the in vitro and in vivo models available to study cystinosis, how well they recapitulate the disease phenotype, and their limitations. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Nephropathic Cystinosis)
Show Figures

Graphical abstract

11 pages, 1304 KiB  
Review
Fertility in Cystinosis
by Ahmed Reda, Koenraad Veys and Martine Besouw
Cells 2021, 10(12), 3539; https://doi.org/10.3390/cells10123539 - 15 Dec 2021
Cited by 3 | Viewed by 2482
Abstract
Cystinosis is a rare inheritable lysosomal storage disorder characterized by cystine accumulation throughout the body, chronic kidney disease necessitating renal replacement therapy mostly during adolescence, and multiple extra-renal complications. The majority of male cystinosis patients are infertile due to azoospermia, in contrast to [...] Read more.
Cystinosis is a rare inheritable lysosomal storage disorder characterized by cystine accumulation throughout the body, chronic kidney disease necessitating renal replacement therapy mostly during adolescence, and multiple extra-renal complications. The majority of male cystinosis patients are infertile due to azoospermia, in contrast to female patients who are fertile. Over recent decades, the fertility status of male patients has evolved from a primary hypogonadism in the era before the systematic treatment with cysteamine to azoospermia in the majority of cysteamine-treated infantile cystinosis patients. In this review, we provide a state-of-the-art overview on the available clinical, histopathological, animal, and in vitro data. We summarize current insights on both cystinosis males and females, and their clinical implications including the potential effect of cysteamine on fertility. In addition, we identify the remaining challenges and areas for future research. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Nephropathic Cystinosis)
Show Figures

Figure 1

13 pages, 13439 KiB  
Review
Hematopoietic Stem Cell Gene Therapy for Cystinosis: From Bench-to-Bedside
by Stephanie Cherqui
Cells 2021, 10(12), 3273; https://doi.org/10.3390/cells10123273 - 23 Nov 2021
Cited by 10 | Viewed by 4129
Abstract
Cystinosis is an autosomal recessive metabolic disease that belongs to the family of lysosomal storage disorders. The gene involved is the CTNS gene that encodes cystinosin, a seven-transmembrane domain lysosomal protein, which is a proton-driven cystine transporter. Cystinosis is characterized by the lysosomal [...] Read more.
Cystinosis is an autosomal recessive metabolic disease that belongs to the family of lysosomal storage disorders. The gene involved is the CTNS gene that encodes cystinosin, a seven-transmembrane domain lysosomal protein, which is a proton-driven cystine transporter. Cystinosis is characterized by the lysosomal accumulation of cystine, a dimer of cysteine, in all the cells of the body leading to multi-organ failure, including the failure of the kidney, eye, thyroid, muscle, and pancreas, and eventually causing premature death in early adulthood. The current treatment is the drug cysteamine, which is onerous and expensive, and only delays the progression of the disease. Employing the mouse model of cystinosis, using Ctns−/− mice, we first showed that the transplantation of syngeneic wild-type murine hematopoietic stem and progenitor cells (HSPCs) led to abundant tissue integration of bone marrow-derived cells, a significant decrease in tissue cystine accumulation, and long-term kidney, eye and thyroid preservation. To translate this result to a potential human therapeutic treatment, given the risks of mortality and morbidity associated with allogeneic HSPC transplantation, we developed an autologous transplantation approach of HSPCs modified ex vivo using a self-inactivated lentiviral vector to introduce a functional version of the CTNS cDNA, pCCL-CTNS, and showed its efficacy in Ctns−/− mice. Based on these promising results, we held a pre-IND meeting with the Food and Drug Administration (FDA) to carry out the FDA agreed-upon pharmacological and toxicological studies for our therapeutic candidate, manufacturing development, production of the GMP lentiviral vector, design Phase 1/2 of the clinical trial, and filing of an IND application. Our IND was cleared by the FDA on 19 December 2018, to proceed to the clinical trial using CD34+ HSPCs from the G-CSF/plerixafor-mobilized peripheral blood stem cells of patients with cystinosis, modified by ex vivo transduction using the pCCL-CTNS vector (investigational product name: CTNS-RD-04). The clinical trial evaluated the safety and efficacy of CTNS-RD-04 and takes place at the University of California, San Diego (UCSD) and will include up to six patients affected with cystinosis. Following leukapheresis and cell manufacturing, the subjects undergo myeloablation before HSPC infusion. Patients also undergo comprehensive assessments before and after treatment to evaluate the impact of CTNS-RD-04 on the clinical outcomes and cystine and cystine crystal levels in the blood and tissues for 2 years. If successful, this treatment could be a one-time therapy that may eliminate or reduce renal deterioration as well as the long-term complications associated with cystinosis. In this review, we will describe the long path from bench-to-bedside for autologous HSPC gene therapy used to treat cystinosis. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Nephropathic Cystinosis)
Show Figures

Figure 1

Back to TopTop