Extracellular Vesicles as Biomarkers for Human Disease

A special issue of Cells (ISSN 2073-4409). This special issue belongs to the section "Intracellular and Plasma Membranes".

Deadline for manuscript submissions: closed (31 May 2025) | Viewed by 6997

Special Issue Editor


E-Mail Website
Guest Editor
Università Cattolica del Sacro Cuore, Campus di Roma, Rome, Italy
Interests: cancer diagnosis

Special Issue Information

Dear Colleagues,

The role of extracellular vesicles (EVs) as potential biomarkers for human disease has emerged as a critical area of research. These small, membrane-bound vesicles are released by various cell types and carry a cargo of proteins, nucleic acids, and lipids. Understanding the diverse functions and contents of EVs holds promise for diagnostic and prognostic applications in the context of different diseases, including metabolic, vascular, neurological diseases, and cancers.

This Special Issue aims to explore the identification and characterization of distinct EV subtypes relevant to specific human diseases. Topics to be covered include innovative methods for isolating and analyzing EVs from diverse biological samples, as well as the development of novel diagnostic strategies utilizing EVs as disease biomarkers. Furthermore, submissions on the impact of aging on EV-mediated signaling and advancements in EV-based therapies will be welcomed.

We invite researchers to submit their original work on EV biology, isolation techniques, and clinical applications to shed light on the potential of extracellular vesicles as transformative tools for disease diagnosis and monitoring.

Dr. Riccardo Di Santo
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Cells is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • extracellular vesicles
  • exosomes
  • biomarkers
  • human diseases
  • diagnostic applications
  • prognostic indicators
  • EV subtypes
  • isolation techniques

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

21 pages, 4829 KiB  
Article
Temporal and Severity-Dependent Alterations in Plasma Extracellular Vesicle Profiles Following Spinal Cord Injury
by Jamie Cooper, Scott Tait Airey, Eric Patino, Theo Andriot, Mousumi Ghosh and Damien D. Pearse
Cells 2025, 14(14), 1065; https://doi.org/10.3390/cells14141065 - 11 Jul 2025
Viewed by 302
Abstract
Spinal cord injury (SCI) triggers both local and systemic pathological responses that evolve over time and differ with injury severity. Small extracellular vesicles (sEVs), known mediators of intercellular communication, may serve as biomarkers reflecting these complex dynamics. In this study, we investigated whether [...] Read more.
Spinal cord injury (SCI) triggers both local and systemic pathological responses that evolve over time and differ with injury severity. Small extracellular vesicles (sEVs), known mediators of intercellular communication, may serve as biomarkers reflecting these complex dynamics. In this study, we investigated whether SCI severity modulates the composition and abundance of circulating plasma-derived sEVs across subacute and chronic phases. Using a graded thoracic contusion model in mice, plasma was collected at defined timepoints post-injury. sEVs were isolated via size-exclusion chromatography and characterized using nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and MACSPlex surface marker profiling. We observed an SCI-dependent increase in sEVs during the subacute (7 days) phase, most notably in moderate injuries (50 kdyne), with overall vesicle counts lower chronically (3 months). CD9 emerged as the predominant tetraspanin sEV marker, while CD63 and CD81 were generally present at low levels across all injury severities and timepoints. Surface sEV analysis revealed dynamic regulation of CD41+, CD44+, and CD61+ in the CD9+ sEV subset, suggesting persistent systemic signaling activity. These markers, traditionally associated with platelet function, may also reflect immune or reparative responses following SCI. Our findings highlight the evolving nature of sEV profiles after SCI and support their potential as non-invasive biomarkers for monitoring injury progression. Full article
(This article belongs to the Special Issue Extracellular Vesicles as Biomarkers for Human Disease)
Show Figures

Figure 1

18 pages, 3380 KiB  
Article
A Simple and Scalable Assay for Multiplexed Flow Cytometric Profiling of Surface Markers on Small Extracellular Vesicles
by Deborah Polignano, Valeria Barreca, Massimo Sanchez, Massimo Sargiacomo and Maria Luisa Fiani
Cells 2025, 14(13), 989; https://doi.org/10.3390/cells14130989 - 28 Jun 2025
Viewed by 359
Abstract
Extracellular vesicles (EVs), including small EVs (sEVs) such as exosomes, play crucial roles in intercellular communication and disease pathology. Their heterogeneous nature, shaped by cellular origin and activation state, requires precise and multiplexed profiling of surface markers for effective characterization. Despite recent advances, [...] Read more.
Extracellular vesicles (EVs), including small EVs (sEVs) such as exosomes, play crucial roles in intercellular communication and disease pathology. Their heterogeneous nature, shaped by cellular origin and activation state, requires precise and multiplexed profiling of surface markers for effective characterization. Despite recent advances, current analytical methods remain complex, costly, or inaccessible for routine laboratory use. Here, we present a simple and cost-effective flow cytometry-based assay for the multiplexed analysis of tetraspanin markers (CD63, CD81, CD9) on fluorescently labeled sEVs. Our method combines metabolic labeling with paraformaldehyde fixation and low-speed centrifugation using a benchtop centrifuge, enabling efficient removal of unbound antibodies and minimizing nonspecific signals while preserving vesicle integrity. Using either metabolically labeled exosomes or bulk sEVs stained with carboxyfluorescein succinimidyl ester (CFSE), we demonstrate robust recovery and accurate, semi-quantitative profiling of tetraspanin expression. The assay reveals substantial variability in tetraspanin distribution across different cell lines and does not require ultracentrifugation or immunocapture. Notably, this versatile and reproducible method supports high sEV recovery and is adaptable to additional protein markers. Its compatibility with standard laboratory equipment makes it a practical and scalable alternative to more complex techniques, expanding access to multiplex sEV analysis for both research and clinical applications. Full article
(This article belongs to the Special Issue Extracellular Vesicles as Biomarkers for Human Disease)
Show Figures

Figure 1

17 pages, 9752 KiB  
Article
Circulating Exosomal miRNA Profiles in Non-Small Cell Lung Cancers
by Abeer A. I. Hassanin and Kenneth S. Ramos
Cells 2024, 13(18), 1562; https://doi.org/10.3390/cells13181562 - 17 Sep 2024
Cited by 8 | Viewed by 2044
Abstract
A growing number of studies have shown that microRNAs (miRNAs) can exert oncogenic or tumor suppressor activities in a variety of cancers, including lung cancer. Given their presence in exosome preparations, microRNA molecules may in fact participate in exosomal intercellular transfers and signaling. [...] Read more.
A growing number of studies have shown that microRNAs (miRNAs) can exert oncogenic or tumor suppressor activities in a variety of cancers, including lung cancer. Given their presence in exosome preparations, microRNA molecules may in fact participate in exosomal intercellular transfers and signaling. In the present study, we examined the profile of 25 circulating exosomal microRNAs in ostensibly healthy controls compared to patients with squamous cell lung cancers (SQCLC) or lung adenocarcinomas (LUAD). Eight miRNAs, namely, miR-21-5p, miR-126-3p, miR-210-3p, miR-221-3p, Let-7b-5p, miR-146a-5p, miR-222-3p, and miR-9-5p, were highly enriched in the cohort and selected for further analyses. All miRNAs were readily detected in non-small cell lung cancer (NSCLC) patients of both sexes at all cancer stages, and their levels in exosomes correlated with the clinicopathological characteristics of tumors. Thus, the presence of these miRNAs in circulating exosomes may contribute to the regulation of oncogenic activity in patients with NSCLC. Full article
(This article belongs to the Special Issue Extracellular Vesicles as Biomarkers for Human Disease)
Show Figures

Figure 1

Review

Jump to: Research, Other

19 pages, 2007 KiB  
Review
Emerging Biomarker Potential of Extracellular Vesicle-Enclosed MicroRNAs for Liver Fibrosis Detection
by Sharmila Fagoonee, Valeria Menchise, Daniela Delli Castelli and Stefania Bruno
Cells 2025, 14(13), 1025; https://doi.org/10.3390/cells14131025 - 4 Jul 2025
Viewed by 485
Abstract
Liver fibrosis is a frequent pathological outcome of long-term liver diseases, arising from sustained damage to the liver. Two main types of liver damage can trigger fibrotic progression: hepatocellular injury, often caused by viral infections, alcohol, or metabolic disorders, and cholestatic injury, associated [...] Read more.
Liver fibrosis is a frequent pathological outcome of long-term liver diseases, arising from sustained damage to the liver. Two main types of liver damage can trigger fibrotic progression: hepatocellular injury, often caused by viral infections, alcohol, or metabolic disorders, and cholestatic injury, associated with impaired bile flow due to autoimmune or congenital conditions. Despite diverse etiologies, liver fibrosis exhibits conserved biological processes, including hepatocyte death, chronic inflammation, disruption of epithelial or endothelial barriers, and excessive deposition of extracellular matrix (ECM) components. These coordinated events reflect the complex interplay among parenchymal damage, immune activation, and fibrogenic signaling pathways. If unresolved, fibrosis may progress to cirrhosis, liver failure, or hepatocellular carcinoma. In the pursuit of non-invasive biomarkers for early detection and monitoring of fibrosis, extracellular vesicles (EVs) have garnered significant attention. Among the diverse cargoes within EVs, microRNAs (miRNAs) have emerged as particularly promising due to their stability, disease-specific expression patterns, and involvement in fibrogenic signaling. This review explores the role of EV-associated miRNAs in liver fibrosis, highlighting key candidates implicated in hepatocellular and cholestatic injury and their clinical potential as diagnostic and prognostic biomarkers, with special focus on MAFLD/MASH, primary sclerosing cholangitis, primary biliary cholangitis, and biliary atresia as representatives. Full article
(This article belongs to the Special Issue Extracellular Vesicles as Biomarkers for Human Disease)
Show Figures

Figure 1

28 pages, 4872 KiB  
Review
Post-Secretion Processes and Modification of Extracellular Vesicles
by Artem Ten, Natalia Yudintceva, Konstantin Samochernykh, Stephanie E. Combs, Hem Chandra Jha, Huile Gao and Maxim Shevtsov
Cells 2025, 14(6), 408; https://doi.org/10.3390/cells14060408 - 11 Mar 2025
Viewed by 1242
Abstract
Extracellular vesicles (EVs) are an important mediator of intercellular communication and the regulation of processes occurring in cells and tissues. The processes of EVs secretion by cells into the extracellular space (ECS) leads to their interaction with its participants. The ECS is a [...] Read more.
Extracellular vesicles (EVs) are an important mediator of intercellular communication and the regulation of processes occurring in cells and tissues. The processes of EVs secretion by cells into the extracellular space (ECS) leads to their interaction with its participants. The ECS is a dynamic structure that also takes direct part in many processes of intercellular communication and regulation. Changes in the ECS can also be associated with pathological processes, such as increased acidity during the development of solid tumors, changes in the composition and nature of the organization of the extracellular matrix (ECM) during fibroblast activation, an increase in the content of soluble molecules during necrosis, and other processes. The interaction of these two systems, the EVs and the ESC, leads to structural and functional alteration in both participants. In the current review, we will focus on these alterations in the EVs which we termed post-secretory modification and processes (PSMPs) of EVs. PSPMs can have a significant effect on the immediate cellular environment and on the spread of the pathological process in the body as a whole. Thus, it can be assumed that PSPMs are one of the important stages in the regulation of intercellular communication, which has significant differences in the norm and in pathology. Full article
(This article belongs to the Special Issue Extracellular Vesicles as Biomarkers for Human Disease)
Show Figures

Graphical abstract

Other

Jump to: Research, Review

21 pages, 37647 KiB  
Technical Note
Human Differentiated Adipocytes as Surrogate Mature Adipocytes for Adipocyte-Derived Extracellular Vesicle Analysis
by Mangesh Dattu Hade, Bradley L. Butsch, Paola Loreto Palacio, Kim Truc Nguyen, Dharti Shantaram, Sabrena F. Noria, Stacy A. Brethauer, Bradley J. Needleman, Willa Hsueh, Eduardo Reátegui and Setty M. Magaña
Cells 2025, 14(11), 757; https://doi.org/10.3390/cells14110757 - 22 May 2025
Viewed by 658
Abstract
Obesity is a growing global health concern, contributing to diseases such as cancer, autoimmune disorders, and neurodegenerative conditions. Adipose tissue dysfunction, characterized by abnormal adipokine secretion and chronic inflammation, plays a key role in these conditions. Adipose-derived extracellular vesicles (ADEVs) have emerged as [...] Read more.
Obesity is a growing global health concern, contributing to diseases such as cancer, autoimmune disorders, and neurodegenerative conditions. Adipose tissue dysfunction, characterized by abnormal adipokine secretion and chronic inflammation, plays a key role in these conditions. Adipose-derived extracellular vesicles (ADEVs) have emerged as critical mediators in obesity-related diseases. However, the study of mature adipocyte-derived EVs (mAdipo-EVs) is limited due to the short lifespan of mature adipocytes in culture, low EV yields, and the low abundance of these EV subpopulations in the circulation. Additionally, most studies rely on rodent models, which have differences in adipose tissue biology compared to humans. To overcome these challenges, we developed a standardized approach for differentiating human preadipocytes (preAdipos) into mature differentiated adipocytes (difAdipos), which produce high-yield, human adipocyte EVs (Adipo-EVs). Using visceral adipose tissue from bariatric surgical patients, we isolated the stromal vascular fraction (SVF) and differentiated preAdipos into difAdipos. Brightfield microscopy revealed that difAdipos exhibited morphological characteristics comparable to mature adipocytes (mAdipos) directly isolated from visceral adipose tissue, confirming their structural similarity. Additionally, qPCR analysis demonstrated decreased preadipocyte markers and increased mature adipocyte markers, further validating successful differentiation. Functionally, difAdipos exhibited lipolytic activity comparable to mAdipos, supporting their functional resemblance to native adipocytes. We then isolated preAdipo-EVs and difAdipo-EVs using tangential flow filtration and characterized them using bulk and single EV analysis. DifAdipo-EVs displayed classical EV and adipocyte-specific markers, with significant differences in biomarker expression compared to preAdipo-EVs. These findings demonstrate that difAdipos serve as a reliable surrogate for mature adipocytes, offering a consistent and scalable source of adipocyte-derived EVs for studying obesity and its associated disorders. Full article
(This article belongs to the Special Issue Extracellular Vesicles as Biomarkers for Human Disease)
Show Figures

Figure 1

30 pages, 1140 KiB  
Systematic Review
Salivary Extracellular Vesicles in Detection of Cancers Other than Head and Neck: A Systematic Review
by Wojciech Owecki, Karolina Wojtowicz and Kacper Nijakowski
Cells 2025, 14(6), 411; https://doi.org/10.3390/cells14060411 - 11 Mar 2025
Cited by 1 | Viewed by 1126
Abstract
Cancer is one of the leading causes of death worldwide. Evidence indicates that extracellular vesicles are involved in cancer development and may be used as promising biomarkers in cancer detection. Concomitantly, saliva constitutes a non-invasive and inexpensive source of biomarkers. This systematic review [...] Read more.
Cancer is one of the leading causes of death worldwide. Evidence indicates that extracellular vesicles are involved in cancer development and may be used as promising biomarkers in cancer detection. Concomitantly, saliva constitutes a non-invasive and inexpensive source of biomarkers. This systematic review investigates the use of salivary extracellular vesicles in detecting cancers located outside of the head and neck. PubMed, Web of Science, Scopus, and Embase were thoroughly searched from database inception to 16 July 2024. Data from sixteen eligible studies were analyzed, including glioblastoma, lung, esophageal, gastric, prostate, hepatocellular, breast, and pancreatobiliary tract cancers. The findings highlight strong diagnostic potential for lung and esophageal cancers, where specific exosomal RNAs and proteins demonstrated high accuracy in distinguishing cancer patients from healthy individuals. Additionally, biomarkers in glioblastoma showed prognostic value, while those in hepatocellular and pancreatobiliary cancers exhibited potential for early detection. However, gastric and prostate cancer biomarkers showed limited reliability, and breast cancer biomarkers require further validation. In conclusion, salivary extracellular vesicles present potential in non-invasive detection across multiple cancer types; however, their diagnostic power needs further research, including standardization and large-scale validation. Full article
(This article belongs to the Special Issue Extracellular Vesicles as Biomarkers for Human Disease)
Show Figures

Graphical abstract

Back to TopTop