Bioengineering Strategies for Ophthalmic Diseases

A special issue of Bioengineering (ISSN 2306-5354). This special issue belongs to the section "Biomedical Engineering and Biomaterials".

Deadline for manuscript submissions: 30 September 2025 | Viewed by 456

Special Issue Editor


E-Mail Website
Guest Editor
Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
Interests: ophthalmology; cataract surgery; cornea
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The Special Issue "Bioengineering Strategies for Ophthalmic Diseases" explores the latest advancements, trends, and innovations in the field of ophthalmology. It aims to provide a comprehensive overview of the recent developments in diagnostic tools, therapeutic approaches, and techniques for various ophthalmic diseases.

This Special Issue begins by discussing the recent progress in the diagnosis of ophthalmic diseases, including advancements in imaging technology, genetic testing, and biomarker identification. It explores novel diagnostic approaches that enable earlier detection and more accurate assessment of disease progression.

This Special Issue highlights the latest therapeutic approaches for ophthalmic diseases, ranging from traditional pharmacotherapy to emerging modalities such as gene therapy, bioengineered corneal implants, retinal prostheses, and sustained-release drug delivery systems. It emphasizes the development of targeted therapies and personalized treatment strategies based on specific disease subtypes.

It also addresses the integration of artificial intelligence (AI) and machine learning in ophthalmology, including AI-based algorithms for disease classification, automated image analysis, and predictive modeling.

Overall, this Special Issue aims to provide insights into the recent advances and trends in ophthalmic disease treatment and future directions in bioengineered therapies for ophthalmic diseases.

Prof. Dr. Jae Yong Kim
Guest Editor

Basanta Bhujel
Guest Editor Assistant

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Bioengineering is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • ophthalmic diseases
  • imaging technology
  • artificial intelligence
  • retinal regeneration
  • corneal implants
  • drug delivery

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 4051 KiB  
Article
Change in Mechanical Property of Rat Brain Suffering from Chronic High Intraocular Pressure
by Yukai Zeng, Kunya Zhang, Zhengyuan Ma and Xiuqing Qian
Bioengineering 2025, 12(8), 787; https://doi.org/10.3390/bioengineering12080787 - 22 Jul 2025
Abstract
Glaucoma is a trans-synaptic neurodegenerative disease, and the pathological increase in intraocular pressure (IOP) is a major risk factor of glaucoma. High IOP alters microstructure and morphologies of the brain tissue. Since mechanical properties of the brain are sensitive to the alteration of [...] Read more.
Glaucoma is a trans-synaptic neurodegenerative disease, and the pathological increase in intraocular pressure (IOP) is a major risk factor of glaucoma. High IOP alters microstructure and morphologies of the brain tissue. Since mechanical properties of the brain are sensitive to the alteration of the tissue microstructure, we investigate how varying durations of chronic elevated IOP alter brain mechanical properties. A chronic high IOP rat model was induced by episcleral vein cauterization with subconjunctival injection of 5-Fluorouracil. At 2, 4 and 8 weeks after induction, indentation tests were performed on the brain slices to measure mechanical properties in the hippocampus, lateral geniculate nucleus and occipital lobe of both hemispheres. Meanwhile, the brain’s microstructure was assessed via F-actin and myelin staining. Compared to the blank control group, the Young’s modulus decreased in all three brain regions in the highIOP experimental groups. F-actin fluorescence intensity and myelin area fraction were reduced in the hippocampus, while β-amyloid levels and tau phosphorylation were elevated in the experimental groups. Our study provides insight into Alzheimer’s disease pathogenesis by demonstrating how chronic high IOP alters the brain’s mechanical properties. Full article
(This article belongs to the Special Issue Bioengineering Strategies for Ophthalmic Diseases)
Show Figures

Figure 1

Back to TopTop