Previous Issue
Volume 6, September
 
 

Automation, Volume 6, Issue 4 (December 2025) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
21 pages, 2133 KB  
Article
Intelligent Terrain Mapping with a Quadruped Spider Robot: A Bluetooth-Enabled Mobile Platform for Environmental Reconnaissance
by Sandeep Gupta, Shamim Kaiser and Kanad Ray
Automation 2025, 6(4), 50; https://doi.org/10.3390/automation6040050 - 24 Sep 2025
Viewed by 99
Abstract
This paper introduces a new quadruped spider robot platform specializing in environmental reconnaissance and mapping. The robot measures 180 mm × 180 mm × 95 mm and weighs 385 g, including the battery, providing a compact yet capable platform for reconnaissance missions. The [...] Read more.
This paper introduces a new quadruped spider robot platform specializing in environmental reconnaissance and mapping. The robot measures 180 mm × 180 mm × 95 mm and weighs 385 g, including the battery, providing a compact yet capable platform for reconnaissance missions. The robot consists of an ESP32 microcontroller and eight servos that are disposed in a biomimetic layout to achieve the biological gait of an arachnid. One of the major design revolutions is in the power distribution network (PDN) of the robot, in which two DC-DC buck converters (LM2596M) are used to isolate the power domains of the computation and the mechanical subsystems, thereby enhancing reliability and the lifespan of the robot. The theoretical analysis demonstrates that this dual-domain architecture reduces computational-domain voltage fluctuations by 85.9% compared to single-converter designs, with a measured voltage stability improving from 0.87 V to 0.12 V under servo load spikes. Its proprietary Bluetooth protocol allows for both the sending and receiving of controls and environmental data with fewer than 120 ms of latency at up to 12 m of distance. The robot’s mapping system employs a novel motion-compensated probabilistic algorithm that integrates ultrasonic sensor data with IMU-based motion estimation using recursive Bayesian updates. The occupancy grid uses 5 cm × 5 cm cells with confidence tracking, where each cell’s probability is updated using recursive Bayesian inference with confidence weighting to guide data fusion. Experimental verification in different environments indicates that the mapping accuracy (92.7% to ground-truth measurements) and stable pattern of the sensor reading remain, even when measuring the complex gait transition. Long-range field tests conducted over 100 m traversals in challenging outdoor environments with slopes of up to 15° and obstacle densities of 0.3 objects/m2 demonstrate sustained performance, with 89.2% mapping accuracy. The energy saving of the robot was an 86.4% operating-time improvement over the single-regulator designs. This work contributes to the championing of low-cost, high-performance robotic platforms for reconnaissance tasks, especially in search and rescue, the exploration of hazardous environments, and educational robotics. Full article
(This article belongs to the Section Robotics and Autonomous Systems)
Show Figures

Figure 1

28 pages, 1117 KB  
Review
Modern Control Techniques and Operational Challenges in Permanent Magnet Synchronous Motors: A Comprehensive Review
by Mahmoud M. Elkholy, Mohamed M. Algendy and Enas A. El-Hay
Automation 2025, 6(4), 49; https://doi.org/10.3390/automation6040049 - 23 Sep 2025
Viewed by 399
Abstract
This paper presents a comprehensive overview of permanent magnet synchronous motors (PMSMs), including their classifications, applications, and vector control strategies. It explores various control techniques, including maximum torque per ampere (MTPA), maximum current (MC), field weakening (FW), maximum torque per voltage (MTPV), sensorless [...] Read more.
This paper presents a comprehensive overview of permanent magnet synchronous motors (PMSMs), including their classifications, applications, and vector control strategies. It explores various control techniques, including maximum torque per ampere (MTPA), maximum current (MC), field weakening (FW), maximum torque per voltage (MTPV), sensorless control, and parameter identification, as discussed in this paper. These methods address key challenges in PMSM control, such as improving motor efficiency and accurately estimating rotor position and speed. Additionally, this paper presents the PMSM parameters due to many factors such as electric current, phase angle, saturation, and temperature. The survey findings provide a deeper understanding of PMSMs’ control strategies, aiding in the more efficient and reliable motor studies. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop