Special Issue "Greenhouse Technology"

A special issue of Agronomy (ISSN 2073-4395). This special issue belongs to the section "Agricultural Engineering".

Deadline for manuscript submissions: 20 October 2020.

Special Issue Editor

Dr. Diego Luis Valera Martínez
Website
Guest Editor
Engineering Department, University of Almería, 04120 La Cañada, Almería, Spain
Interests: greenhouse technology, climate control, ventilation, water efficiency, desalination, agricultural sustainability
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

Greenhouse technology has evolved from being a niche cultivation system for specialty crops to becoming the backbone of intensive agriculture both in developed economies and in new emerging markets. From a consumer point of view, greenhouse technology has provided a wide availability of high-quality fresh produce all year round at affordable prices, a factor that has undoubtedly changed the market dynamics in a permanent manner. From a technological point of view, the reasons for the rapid expansion of greenhouse technology and, in particular, of greenhouse horticulture are manifold, but one main factor arises above all other considerations. Indeed, the possibility to control the microclimate inside the greenhouse independently of outside environmental conditions has made it possible to cultivate a wide range of high-demand crops in latitudes where, due to their harsh cold or warm environmental conditions, horticulture would otherwise be limited to seasonal, lower-productivity crops. This delicate balance between the microclimate inside the greenhouse and external environmental conditions has not come without a cost. Indeed, the expansion of greenhouse agriculture has resulted in a number of scientific challenges in a plethora of scientific fields. This, in turn, requires new multidisciplinary scientific and technological solutions in the fields of insect pest management, food safety and public health, water and underground water quality, climate control and energy engineering, plant breeding, soil science, and agricultural economics, to name only a few of the most pressing challenges in this highly dynamic and emerging scientific domain.

Dr. Diego Luis Valera Martínez
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Agronomy is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Greenhouse
  • Horticulture
  • Plant protection
  • Crops
  • Insect pest management
  • Food safety
  • Greenhouse structures
  • Water
  • Climate control
  • Energy
  • Plant breeding
  • Soil science
  • Agricultural economic

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
The Management of Agricultural Waste Biomass in the Framework of Circular Economy and Bioeconomy: An Opportunity for Greenhouse Agriculture in Southeast Spain
Agronomy 2020, 10(4), 489; https://doi.org/10.3390/agronomy10040489 - 01 Apr 2020
Cited by 2
Abstract
For decades, non-renewable resources have been the basis of worldwide economic development. The extraction rate of natural resources has increased by 113% since 1990, which has led to overexploitation and generation of vast amounts of waste. For this reason, it is essential that [...] Read more.
For decades, non-renewable resources have been the basis of worldwide economic development. The extraction rate of natural resources has increased by 113% since 1990, which has led to overexploitation and generation of vast amounts of waste. For this reason, it is essential that a sustainable development model is adopted—one which makes it possible to produce more food and energy with fewer fossil fuels, low pollutant gas emissions and minimal solid waste. Certain management policies and approaches, such as the strategy of a circular ecocomy or bioeconomy, are oriented towards sustainable production and consumption. The present study focuses on the importance of intensive horticulture in the Mediterranean region, specifically in the province of Almería (Spain). After having conducted a study of the main crops in this area, it was determined that the waste biomass generated presented strong potential for exploitation. With the proper regulatory framework, which promotes and prioritises the circularity of agricultural waste, there are several opportunities for improving the current waste management model. In the same way, the results of the economic evaluation demonstrate that the alternative of self-management of waste biomass is profitable, specifically from tomato crops. Compost and green fertilizer production also prove to be a key strategy in the transition towards a more circular and sustainable agricultural production model. As for the said transition, government support is vital in terms of carrying out awareness campaigns and training activities and providing financing for Research and Development (R&D). Full article
(This article belongs to the Special Issue Greenhouse Technology)
Show Figures

Figure 1

Open AccessArticle
Effects of Cover Whitening Concentrations on the Microclimate and on the Development and Yield of Tomato (Lycopersicon esculentum Mill.) Inside Mediterranean Greenhouses
Agronomy 2020, 10(2), 237; https://doi.org/10.3390/agronomy10020237 - 05 Feb 2020
Abstract
This work analyzes the influence of whitening a greenhouse roof on the microclimate and yield of a tomato crop. In the west sectors of two multi-span greenhouses, a whitening concentration of 0.250 kg L−1 was used as a control. In an autumn–winter [...] Read more.
This work analyzes the influence of whitening a greenhouse roof on the microclimate and yield of a tomato crop. In the west sectors of two multi-span greenhouses, a whitening concentration of 0.250 kg L−1 was used as a control. In an autumn–winter cycle, a lower (0.125 kg L−1) and an increased (0.500 kg L−1) concentration were used in the east sectors of greenhouses 1 and 2. In a spring–summer cycle, the whitening concentrations in the east were varied depending on outside temperature. The effect of whitening on photosynthetic activity, production, plants’ morphological parameters, and the quality of the fruits were also analyzed. To evaluate the effect on microclimate, solar and photosynthetically active (PAR) radiations, air and soil temperatures, and heat flux in the soil were measured in greenhouse 1. Results show that excessive whitening leads to reductions of inside PAR radiation that decreases photosynthesis and crop yield. A whitening concentration of 0.500 kg L−1 is proposed at the beginning of the autumn–winter crop cycle, washing the cover when inside temperature drops to 35 °C. At the end of the spring–summer cycle, a concentration of 0.125 kg L−1 is recommended when inside temperature increases to 35 °C. Full article
(This article belongs to the Special Issue Greenhouse Technology)
Show Figures

Figure 1

Open AccessArticle
Ultraviolet Index (UVI) inside an Almería-Type Greenhouse (Southeastern Spain)
Agronomy 2020, 10(1), 145; https://doi.org/10.3390/agronomy10010145 - 19 Jan 2020
Abstract
Greenhouse workers, despite being in a space beneath a plastic cover, may be susceptible to risks associated to ultraviolet (UV) radiation in skin and eyes. The present work focuses on experimentally analysing this risk throughout a complete year. For this purpose, a network [...] Read more.
Greenhouse workers, despite being in a space beneath a plastic cover, may be susceptible to risks associated to ultraviolet (UV) radiation in skin and eyes. The present work focuses on experimentally analysing this risk throughout a complete year. For this purpose, a network of sensors has been designed, comprising 12 UV radiation measuring stations inside the greenhouse and one outside. It is shown that the UVI risk limit established by World Health Organization (WHO) is exceeded for some particular dates and times, thus there exist risk of damage caused by UV radiation for greenhouse workers. The results allow to identify the UV risk periods for the location studied. A diagram called “UVIgram” has been created which offers weather and UV radiation information for a particular location, for each month, and also in general for the whole year. Finally, a series of recommendations and protection measures are given, highlighting the whitening of the plastic cover of the greenhouse and an alarm system which has been designed to alert workers when UV risk exists. Full article
(This article belongs to the Special Issue Greenhouse Technology)
Show Figures

Figure 1

Open AccessArticle
An Integrated Yield Prediction Model for Greenhouse Tomato
Agronomy 2019, 9(12), 873; https://doi.org/10.3390/agronomy9120873 - 11 Dec 2019
Cited by 1
Abstract
The commonly used greenhouse crop yield prediction models today have their specific application scenarios, which may not ensure the accuracy of the results if the greenhouse environment changes. This greatly restricts their use in the greenhouse environment. To solve this problem, two widely [...] Read more.
The commonly used greenhouse crop yield prediction models today have their specific application scenarios, which may not ensure the accuracy of the results if the greenhouse environment changes. This greatly restricts their use in the greenhouse environment. To solve this problem, two widely used tomato growth models were compared in the study: TOMGRO and Vanthoor, and then an integrated model was obtained. Through the extended Fourier amplitude sensitivity test (EFAST), the model parameters were divided into three categories: optimized, fixed and ignored. In addition, Bayesian optimization was used as an optimization algorithm, through which the parameters applicable to the greenhouse can be optimized based on the greenhouse data. Compared with TOMGRO and Vanthoor, the output of the integrated model was more reasonable and universal, and the RMSE in the integrated model was 2.5974 while that in TOMGRO and Vanthoor both were over 17, reflecting the fact that the model output was closer to the actual value. According to the verification results of four-year greenhouse data, the model had high performance in predicting yield. Full article
(This article belongs to the Special Issue Greenhouse Technology)
Show Figures

Figure 1

Open AccessArticle
Application of Semi-Empirical Ventilation Models in A Mediterranean Greenhouse with Opposing Thermal and Wind Effects. Use of Non-Constant Cd (Pressure Drop Coefficient Through the Vents) and Cw (Wind Effect Coefficient)
Agronomy 2019, 9(11), 736; https://doi.org/10.3390/agronomy9110736 - 10 Nov 2019
Abstract
The present work analyses the natural ventilation of a multi-span greenhouse with one roof vent and two side vents by means of sonic anemometry. Opening the roof vent to windward, one side vent to leeward, and the other side vents to windward (this [...] Read more.
The present work analyses the natural ventilation of a multi-span greenhouse with one roof vent and two side vents by means of sonic anemometry. Opening the roof vent to windward, one side vent to leeward, and the other side vents to windward (this last vent obstructed by another greenhouse), causes opposing thermal GT (m3 s−1) and wind effects Gw (m3 s−1), as outside air entering the greenhouse through the roof vent circulates downward, contrary to natural convection due to the thermal effect. In our case, the ventilation rate RM (h−1) in a naturally ventilated greenhouse fits a second order polynomial with wind velocity uo (RM = 0.37 uo2 + 0.03 uo + 0.75; R2 = 0.99). The opposing wind and thermal effects mean that ventilation models based on Bernoulli’s equation must be modified in order to add or subtract their effects accordingly—Model 1, in which the flow is driven by the sum of two independent pressure fields G M 1 = | G T 2 ± G w 2 | , or Model 2, in which the flow is driven by the sum of two independent fluxes G M 2 = | G T ± G w | . A linear relationship has been obtained, which allows us to estimate the discharge coefficient of the side vents (CdVS) and roof vent (CdWR) as a function of uo [CdVS = 0.028 uo + 0.028 (R2 = 0.92); CdWR = 0.036 uo + 0.040 (R2 = 0.96)]. The wind effect coefficient Cw was determined by applying models M1 and M2 proved not to remain constant for the different experiments, but varied according to the ratio uo/Tio0.5 or δ [CwM1 = exp(−2.693 + 1.160/δ) (R2 = 0.94); CwM2 = exp(−2.128 + 1.264/δ) (R2 = 0.98)]. Full article
(This article belongs to the Special Issue Greenhouse Technology)
Show Figures

Figure 1

Back to TopTop