The Impact of Mulching on Crop Production and Farmland Environment

A special issue of Agronomy (ISSN 2073-4395). This special issue belongs to the section "Farming Sustainability".

Deadline for manuscript submissions: 30 June 2025 | Viewed by 8868

Special Issue Editors


E-Mail Website
Guest Editor
Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Interests: plastic film mulching; plasticulture; microplastics; environmental impact assessment; life cycle assessment

E-Mail Website
Guest Editor
Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Interests: plastic film mulching; plasticulture; microplastics; water-saving agriculture; dryland agriculture

E-Mail Website
Guest Editor
Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
Interests: straw returning; carbon footprint; nitrogen management; nitrogen footprint; crop cultivation

Special Issue Information

Dear Colleagues,

Mulching is an important agricultural production measure that is beneficial for promoting crop yield, reducing water use efficiency, controlling weeds and pests, and preventing soil erosion. Various mulching materials (plastic film mulching, straw mulching, organic mulching, etc.) and mulching modes (furrow mulching, ridge mulching, etc.) have different impacts on crop production and the soil environment.

However, the inappropriate use of mulching, especially plastic film mulching, can lead to negative environmental impacts. Residual plastic film in the soil can damage its granular structure, reduce its permeability, and worsen its physical and chemical properties, directly affecting crop growth. Some plastic films degrade into microplastics or decompose into harmful substances, leading to the risk of polluting soil and water sources and damaging the agricultural ecological environment.

Therefore, this Special Issue seeks to publish related research on (1) the impacts of various mulching materials and modes on crop production, including but not limited to crop yield, water use efficiency, and nutrient recycling; and (2) the active and negative impacts of mulching on the farmland environment, including but not limited to greenhouse gas emissions, active nitrate leaching, ecosystem services, and microplastic pollution.

Dr. Jixiao Cui
Prof. Dr. Wen-Qing He
Dr. Yingxing Zhao
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Agronomy is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • plastic film mulching
  • straw mulching
  • soil surface mulching
  • organic mulching
  • microplastic
  • crop production
  • farmland environment
  • soil ecology

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

21 pages, 6284 KiB  
Article
Evaluating the Impact of Traditional and Biodegradable Mulch Film Residues on Heavy Metal Dynamics and Maize Productivity: Insights from Arbuscular Mycorrhizal Fungi Community Analysis
by Qian Sun, Ting Shen, Maolu Wei, Miaomiao Xie, Ge Wang and Dongyan Liu
Agronomy 2025, 15(4), 780; https://doi.org/10.3390/agronomy15040780 - 22 Mar 2025
Viewed by 594
Abstract
Microplastics and heavy metals (HMs) in soil pose significant environmental and health risks, yet the interactions between mulch film residues and HMs, and their effects on maize productivity, remain poorly understood. This study examined the impacts of long-term traditional polyethylene mulch film (TMF) [...] Read more.
Microplastics and heavy metals (HMs) in soil pose significant environmental and health risks, yet the interactions between mulch film residues and HMs, and their effects on maize productivity, remain poorly understood. This study examined the impacts of long-term traditional polyethylene mulch film (TMF) and biodegradable mulch film (BMF) residues on soil properties, maize root accumulation of HMs, the arbuscular mycorrhizal fungi (AMF) community, and maize productivity under open field conditions. TMF residues significantly increased the soil total carbon (TC), C/N ratio, and bioaccumulation coefficients (BACs) of arsenic (As) and cadmium (Cd) while lowering soil pH and water content. These changes altered AMF colonization and enriched the Paraglomus genus, leading to enhanced maize leaf antioxidant activity and reduced chlorophyll content, although maize growth was not statistically affected. In contrast, they improved soil nutrient availability (e.g., nitrogen and phosphorus), increased TC and the C/N ratio, and reduced soil pH. Notably, BMF residues decreased the BACs of As and Cd, reduced AMF spore density without altering community structure, and ultimately enhanced maize biomass. These effects were associated with BMF’s ability to lower pH and chelate HMs, thereby mitigating their bioavailability and promoting plant growth. Furthermore, the enriched abundance of AMF species, particularly from the Claroideoglomus genus, facilitated heavy metal chelation and reduced HM accumulation in plants. The findings underscore the potential of BMF and AMF for co-remediation of microplastics and HMs, highlighting the importance of mulching strategies for sustainable agriculture. Full article
(This article belongs to the Special Issue The Impact of Mulching on Crop Production and Farmland Environment)
Show Figures

Figure 1

18 pages, 3489 KiB  
Article
Plastic Film Residue Reshaped Protist Communities and Induced Soil Nutrient Deficiency Under Field Conditions
by Ge Wang, Qian Sun, Maolu Wei, Miaomiao Xie, Ting Shen and Dongyan Liu
Agronomy 2025, 15(2), 419; https://doi.org/10.3390/agronomy15020419 - 7 Feb 2025
Cited by 1 | Viewed by 626
Abstract
The use of plastic agricultural mulching films presents a “double-edged sword”: while these films enhance crop yields, they also lead to the accumulation of plastic film residues in the soil, creating new pollutants (microplastics). Our understanding of the “plastisphere”, a niche formed by [...] Read more.
The use of plastic agricultural mulching films presents a “double-edged sword”: while these films enhance crop yields, they also lead to the accumulation of plastic film residues in the soil, creating new pollutants (microplastics). Our understanding of the “plastisphere”, a niche formed by agricultural film residues in the soil, where unique microbial communities and soil conditions converge remains limited. This is particularly true for protists, which are recognized as key determinants of soil health. Therefore, this study simulated a field experiment to analyze the effects of long-term plastic film residues on the structure of protist microbial communities in the rhizosphere, bulk soil and plastisphere of oilseed rape as well as their effects on soil nutrients. The results revealed that the residual plastic films underwent significant structural and chemical degradations. Protist diversity and co-occurrence network complexity were markedly reduced in plastisphere soils. In addition, soil moisture content, inorganic nitrogen and available phosphorus levels declined, leading to deficiencies in soil nutrients. Functional shifts in consumer protists and phototrophs along with weakened network interactions, have been identified as key drivers of impaired nutrient turnover. Our study underscores the critical role of protist communities in maintaining soil nutrient cycling and highlights the profound adverse effects of plastic film residues on soil ecosystems. These findings provide valuable insights into mitigating plastic residue accumulation to preserve long-term soil fertility and ensure sustainable agricultural productivity. Full article
(This article belongs to the Special Issue The Impact of Mulching on Crop Production and Farmland Environment)
Show Figures

Figure 1

21 pages, 4579 KiB  
Article
Differentiated In-Row Soil Management in a High-Density Olive Orchard: Effects on Weed Control, Tree Growth and Yield, and Economic and Environmental Sustainability
by Enrico Maria Lodolini, Nadia Palmieri, Alberto de Iudicibus, Pompea Gabriella Lucchese, Matteo Zucchini, Veronica Giorgi, Samuele Crescenzi, Kaies Mezrioui, Davide Neri, Corrado Ciaccia and Alberto Assirelli
Agronomy 2024, 14(9), 2051; https://doi.org/10.3390/agronomy14092051 - 7 Sep 2024
Viewed by 1277
Abstract
Two different in-row soil management techniques were compared in the Olive Orchard Innovation Long-term experiment of the Council for Agricultural Research and Economics, Research Centre for Olive, Fruit, and Citrus Crops in Rome, Italy. Rows were managed with an in-row rotary tiller and [...] Read more.
Two different in-row soil management techniques were compared in the Olive Orchard Innovation Long-term experiment of the Council for Agricultural Research and Economics, Research Centre for Olive, Fruit, and Citrus Crops in Rome, Italy. Rows were managed with an in-row rotary tiller and with synthetic mulching using permeable polypropylene placed after cultivar Maurino olive trees planting. The effects of the two treatments were assessed through weed soil coverage and the growth of the olive trees. Results showed better agronomic performance associated with synthetic mulching. The weed control effect along the row of a young high-density olive orchard was higher with the synthetic mulching compared to hoeing. The effect of the synthetic mulching seemed to disappear when removed from the ground (spring 2023) since no significant differences were found for tree size and yield in the two tested in-row soil management systems at the end of 2023. Finally, the growth of the young olive trees (Trunk Cross Sectional Area, Height, and Canopy expansion) measured across the three years, was higher for the synthetic mulched row than the hoed one. The use of synthetic mulching along the row positively forced the vegetative growth of the young olive trees and anticipated the onset of fruit production compared to periodical hoeing: a significantly higher fruit production was registered three years after planting. Root diameter was higher under synthetic mulching one year after planting, and no differences were observed in the following sampling dates showing similar fluctuations linked to the seasonal growth pattern. The life cycle assessment and costing highlighted that the application of mulching had a higher eco- and economic-efficiency than the periodical in-row soil hoeing. Full article
(This article belongs to the Special Issue The Impact of Mulching on Crop Production and Farmland Environment)
Show Figures

Figure 1

14 pages, 2042 KiB  
Communication
Comparative Analysis of Biodegradable Mulches on Soil Bacterial Community and Pepper Cultivation
by Tuo Jin, Lin Li, Kewei Peng, Wei Li, Decai Jin, Wu Chen and Jianwei Peng
Agronomy 2024, 14(5), 905; https://doi.org/10.3390/agronomy14050905 - 26 Apr 2024
Cited by 2 | Viewed by 1299
Abstract
Biodegradable mulch films (BMFs) are becoming increasingly popular in agricultural practices. However, research on the ecological impact of biodegradable mulch films on pepper–soil systems is still scarce. To compare the differential effects of BMFs and polyethylene (PE) mulch on soil chemical properties, soil [...] Read more.
Biodegradable mulch films (BMFs) are becoming increasingly popular in agricultural practices. However, research on the ecological impact of biodegradable mulch films on pepper–soil systems is still scarce. To compare the differential effects of BMFs and polyethylene (PE) mulch on soil chemical properties, soil bacterial community composition, and pepper cultivation, a study was conducted encompassing eight distinct treatments. These treatments included three varieties of polybutylene adipate terephthalate (PBAT) combined with polylactic acid (PLA) mulches: PP-JL, PP-SD, and PP-SH; a black polypropylene carbonate mulch (PPC-BK); a brown PPC mulch (PPC-BR); a polyethylene (PE) mulch; straw mulching (NCK); and an uncovered control (PCK). After applying mulches for 129 days, most PPC and PBAT + PLA films had reached the rupture phase, whereas the PE film was still in the induction phase. Pepper yield was obviously higher in all mulched treatments (4830 kg hm−1) than in the un-mulched control (3290 kg hm−1), especially the BMF PP-JL treatment, which showed the most notable improvements in yield. Although BMF treatments maintained a lower soil temperature than the PE film mulch, they were still higher than the un-mulched control. Furthermore, the soil bacterial community composition and ecological network were not markedly affected by different mulching conditions. However, the PP-SH treatment significantly increased the abundance of Pseudomonas, Nitrosomonas, and Streptomyces genera. Moreover, Lactobacillus and Gp16 were substantially more abundant in the PPC-black (BK) and PPC-brown (BR) treatments compared to the PE mulching treatment. This study could provide valuable insights into the ecological benefits of BMFs in pepper cultivation. However, as our experiments were conducted for only one season, it is imperative to undertake long-term experiments across consecutive seasons and years for a thorough understanding and comprehensive study. Full article
(This article belongs to the Special Issue The Impact of Mulching on Crop Production and Farmland Environment)
Show Figures

Figure 1

20 pages, 3008 KiB  
Article
Environmental Impact of Various Rice Cultivation Methods in Northeast China through Life Cycle Assessment
by Yu Wang, Wenqing He, Changrong Yan, Haihe Gao, Jixiao Cui and Qin Liu
Agronomy 2024, 14(2), 267; https://doi.org/10.3390/agronomy14020267 - 25 Jan 2024
Cited by 4 | Viewed by 2880
Abstract
Rice, a crucial staple in China, is cultivated through various techniques, including seedling transplanting, dry direct seeding, and film mulching. Despite its significance, rice production is a considerable environmental burden. Using a life cycle assessment (LCA) methodology, this study aimed to evaluate the [...] Read more.
Rice, a crucial staple in China, is cultivated through various techniques, including seedling transplanting, dry direct seeding, and film mulching. Despite its significance, rice production is a considerable environmental burden. Using a life cycle assessment (LCA) methodology, this study aimed to evaluate the environmental impacts of four rice cultivation methods (transplanting rice, dry direct-seeding rice, dry direct-seeding rice with polyethylene film (PE), and dry direct-seeding rice with biodegradable film) in Northeast China. The results indicate that the magnitude of environmental impacts among treatments was consistent across years. The potential values of all environmental impacts of the four different cultivation methods of rice in the 2021 field trial were smaller than the results of the same cultivation method of rice system in the 2022 field trial. Among the four rice cultivation methods, the consumption of energy showed inconsistency over the two years, with the highest energy consumption in the first year being for dry seeding with PE film and in the second year for dry seeding without film. Additionally, transplanting exhibited the highest impact on water resource consumption and climate change. Dry direct-seeding rice displayed the highest eutrophication and ecotoxicity. Dry direct-seeding rice with a biodegradable film had the least impact in terms of acidification. Moreover, dry direct-seeding rice with a biodegradable film minimized water consumption and greenhouse gas emissions without compromising yield. Full article
(This article belongs to the Special Issue The Impact of Mulching on Crop Production and Farmland Environment)
Show Figures

Figure 1

Review

Jump to: Research

21 pages, 1377 KiB  
Review
Energy Compensation for Crop Growth under Plastic Mulching: Theories, Models, and Limitations
by Dianyuan Ding, Ting Li, Lihong Wu, Xi Zhang, Ying Zhao, Hao Feng, Chao Zhang and Ole Wendroth
Agronomy 2024, 14(5), 1005; https://doi.org/10.3390/agronomy14051005 - 9 May 2024
Viewed by 1393
Abstract
Plastic film mulching (PM) is a useful agronomic means to adapt to the environmental conditions of dryland agriculture and improve crop production. To improve the theoretical framework of PM technology, this study focuses on the interaction between the soil temperature change caused by [...] Read more.
Plastic film mulching (PM) is a useful agronomic means to adapt to the environmental conditions of dryland agriculture and improve crop production. To improve the theoretical framework of PM technology, this study focuses on the interaction between the soil temperature change caused by PM and crop growth. The definition, action mechanism, and simulation of the compensatory effect of PM on growing degree days are introduced to reveal the effect of soil temperature under PM on crop development and growth. Our summary shows that the strength of the warming effect changes with the growth and development of crops, strengthening during the early stage of crop growth and gradually weakening as a crop canopy develops. Generally, the warming effect has a good promotion effect on crop growth, but the crop growth is hampered even with a yield reduction when the increased soil temperature caused by PM exceeds the tolerant temperature for plant growth. Moreover, the compensatory effect of PM could be used to quantify the growth and development of crops under PM and has been widely applied to cotton, corn, winter wheat, and rice. The compensation coefficient is larger in the early stage of crop growth than in the later stage. The compensation coefficient has certain differences for the same crop because of the influence of climate factors, soil moisture content, and soil microtopography. In future research, the theoretical integration of the safety period of PM and the time threshold of the compensatory effect could be theoretically interpreted, and the construction of the compensatory effect module in the crop models will also be an important issue. Full article
(This article belongs to the Special Issue The Impact of Mulching on Crop Production and Farmland Environment)
Show Figures

Figure 1

Back to TopTop