Smart Strategies and Technologies for Sustainability and Biodiversity in Herbaceous and Horticultural Crops—2nd Edition

A special issue of Agronomy (ISSN 2073-4395). This special issue belongs to the section "Horticultural and Floricultural Crops".

Deadline for manuscript submissions: 20 May 2025 | Viewed by 14626

Special Issue Editors


E-Mail Website
Guest Editor

E-Mail Website
Guest Editor
Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy
Interests: farm mechanization and farm machinery; precision agriculture; conservation agriculture; nonchemical weed control; machine for turfgrass and landscape management
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Following the success of the first Special Issue “Smart Strategies and Technologies for Sustainability and Biodiversity in Herbaceous and Horticultural Crops” in Agronomy, the Editorial Office is pleased to launch a second series of the Special Issue.

The current trend of modern farming systems leans toward technical solutions to improve the sustainability and biodiversity of agroecosystems. Innovative agronomical strategies and new technologies can help farmers to reduce or eliminate chemical inputs, preserve soil and water quality, decrease exhaust and greenhouse gas emissions, prevent pollution, and lower the energy demand. Sustainable management is also aimed at enhancing biodiversity in order to lengthen the “life” of agroecosystems. Herbaceous and horticultural crops are the major crops and can contribute to achieving this goal.

In this Special Issue, all contributions regarding innovative technologies, machines, and strategies for the sustainable management of herbaceous and horticultural crops are welcome, including applications in organic farming systems, conservation agriculture, integrated or non-chemical weed and pest control, cover crops and intercropping use, precision and digital farming technologies, and robotic technologies for sustainability.

Thus, we invite experts and researchers to contribute original research, reviews, and opinion pieces covering the topics of this Special Issue.

Dr. Christian Frasconi
Dr. Marco Fontanelli
Dr. Daniele Antichi
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Agronomy is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • conservation agriculture
  • organic agriculture
  • cover crops
  • intercropping
  • integrated/non-chemical weed and pest control
  • precision and digital agriculture for sustainability

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (12 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 8339 KiB  
Article
Identification of PIF Gene Family and Functional Study of PbPIF3a/PbPIF4 in Anthocyanin Biosynthesis of Pear
by Haiyan Wang, Diya Lei, Xuan Zhou, Shangyun Li, Yunting Zhang, Yuanxiu Lin, Qing Chen, Ya Luo, Haoru Tang and Yong Zhang
Agronomy 2025, 15(4), 959; https://doi.org/10.3390/agronomy15040959 - 15 Apr 2025
Viewed by 227
Abstract
Anthocyanins are key metabolites that determine red pigmentation in pear skin (Pyrus spp.) and their biosynthesis is controlled by multiple transcription factors. Although phytochrome-interacting factors (PIFs) of the bHLH family have been shown to regulate anthocyanin biosynthesis in Arabidopsis thaliana, their [...] Read more.
Anthocyanins are key metabolites that determine red pigmentation in pear skin (Pyrus spp.) and their biosynthesis is controlled by multiple transcription factors. Although phytochrome-interacting factors (PIFs) of the bHLH family have been shown to regulate anthocyanin biosynthesis in Arabidopsis thaliana, their genome-wide identification and regulatory mechanisms in pear (Pyrus spp.) anthocyanin synthesis remain unclear. Here, we characterized PIFs family in pear, identifying eight PbPIF proteins. Promoter cis-elements and expression patterns analysis suggested that PbPIF3a and PbPIF4 might be involved in anthocyanin biosynthesis. Subcellular localization confirmed nuclear enrichment of PbPIF3a and PbPIF4. Functional studies demonstrated that overexpression of PbPIF3a and PbPIF4 significantly suppressed anthocyanin accumulation in fruit skins, downregulating key biosynthetic genes such as PbDFR and PbUFGT. In contrast, the silencing of related genes led to an enhancement of anthocyanin accumulation. Dual-luciferase reporter assays and yeast one-hybrid assays confirmed that PbPIF3a directly bound to the promoters of PbDFR and PbUFGT and repressed their transcriptional activation, while PbPIF4 specifically inhibited the activity of the PbDFR promoter. Taken together, we demonstrated that PbPIF3a and PbPIF4 negatively regulated pear fruit coloration by directly repressing the transcriptional activity of key anthocyanin biosynthesis genes, providing novel insights into PIF-mediated regulation of anthocyanin biosynthesis. Full article
Show Figures

Figure 1

15 pages, 1406 KiB  
Article
Evaluation of Strawberry Colletotrichum spp. Genetic Diversity in Lithuania
by Armina Morkeliūnė, Neringa Rasiukevičiūtė, Birutė Frercks, Vidmantas Bendokas, Raminta Antanynienė, Ingrida Mažeikienė, Viktorija Vaštakaitė-Kairienė, Rasa Karklelienė and Alma Valiuškaitė
Agronomy 2025, 15(3), 720; https://doi.org/10.3390/agronomy15030720 - 16 Mar 2025
Viewed by 475
Abstract
Strawberry anthracnose is becoming more important from a scientific and economic standpoint. The Colletotrichum spp. pathogen complex includes C. fragariae, C. gloeosporioides and C. acutatum. The aim was to use microsatellite (SSR) markers to assess the genetic diversity of Colletotrichum species. We [...] Read more.
Strawberry anthracnose is becoming more important from a scientific and economic standpoint. The Colletotrichum spp. pathogen complex includes C. fragariae, C. gloeosporioides and C. acutatum. The aim was to use microsatellite (SSR) markers to assess the genetic diversity of Colletotrichum species. We used seven SSR primer pairs previously developed for the C. acutatum (3) and C. gloeosporioides (4) species. To analyze the genetic diversity of C. fragariae, it was discovered that SSR primer pairs created for C. gloeosporioides were helpful. SSR molecular markers were used in this study for the first time to identify the species of C. fragariae. The average polymorphism information content (PIC) value across all SSR primer pairs was 0.72, making them all informative. The most informative SSR primers were CG22 and CG30, with PIC values of 0.83 and 0.82, respectively. We believe these primers are suitable for the genetic diversity analysis of C. fragariae species. Therefore, the SSR primer pairs CG20 and CG30 are suggested for the genetic investigation of C. acutatum and C. gloeosporioides. A higher incidence of Colletotrichum spp. polymorphism in Lithuania can be linked to adaptation to survival in our environment, according to this study’s findings on the number of alleles and the degree of genetic diversity, which are higher than the results reported in the literature. Full article
Show Figures

Figure 1

20 pages, 4655 KiB  
Article
The Timing of Sugar Beet Harvesting Significantly Influences Roots Yield and Quality Characteristics
by Radosław Nowicki, Edward Wilczewski and Michał Kłosowski
Agronomy 2025, 15(3), 704; https://doi.org/10.3390/agronomy15030704 - 14 Mar 2025
Viewed by 403
Abstract
The accumulation of sugar beet (Beta vulgaris L.) root yield across Central and Eastern Europe typically occurs mostly from July to September but can vary substantially depending on precipitation patterns. When summer rainfall is insufficient, the period of intensive yield accumulation may [...] Read more.
The accumulation of sugar beet (Beta vulgaris L.) root yield across Central and Eastern Europe typically occurs mostly from July to September but can vary substantially depending on precipitation patterns. When summer rainfall is insufficient, the period of intensive yield accumulation may be delayed, often affecting the technological quality of the roots. Conversely, as light and thermal conditions deteriorate in autumn, growth processes slow down, and each cultivar’s response to late-season conditions may vary. To investigate these dynamics, we examined nine sugar beet cultivars (Zeltic, Pacific, Mariza, Everest, BTS 2205N, Jaromir, Jantar, Eliska KWS, and Klara) under three harvest dates (8–10 September—first date; 7–8 October—second date; and 3–5 November—third date) during the 2020–2021 growing seasons. Both cultivar and harvest timing had a significant impact on root yield, sucrose content, and the concentrations of molasses-forming elements (K, Na, and α-amino N), though the magnitude of these effects strongly depended on weather conditions. In 2020, which was characterized by very high precipitation in June and August, harvesting in early September resulted in optimal yield for most cultivars, with no significant benefit from delaying harvest. However, in 2021, when precipitation was moderate and more evenly distributed, later harvest dates enhanced both yield and sucrose content in several cultivars (e.g., Eliska KWS and Jantar). Among all cultivars tested, Eliska KWS consistently demonstrated high root yield and sucrose content. The sucrose content in the roots was strongly influenced by weather conditions in each study year. In 2021, which had average water availability, sucrose content was high, and delaying the harvest led to an increase in sucrose content while reducing molasses-forming elements in the roots. In contrast, in 2020, during summer rainfall, the effect of harvest date on quality traits was significantly weaker and largely dependent on the cultivar. These findings underscore that choosing the optimal harvest date is highly site- and season-dependent, shaped by precipitation distribution, late-season temperatures, and cultivar genotype. In practical terms, these results can help producers and sugar processors align harvest schedules with local conditions to optimize both root yield and technological quality. Full article
Show Figures

Figure 1

21 pages, 3169 KiB  
Article
Using Legume-Enriched Cover Crops to Improve Grape Yield and Quality in Hillside Vineyards
by Oriana Silvestroni, Edoardo Dottori, Luca Pallotti, Tania Lattanzi, Rodolfo Santilocchi and Vania Lanari
Agronomy 2024, 14(11), 2528; https://doi.org/10.3390/agronomy14112528 - 28 Oct 2024
Cited by 2 | Viewed by 1530
Abstract
Natural covering (NATC) has spread on hillside vineyards of central Italy as a replacement for tillage to reduce soil erosion, although it increased nitrogen and water needs. Therefore, in the current context of global warming, using cover crops (CCs) that require less water [...] Read more.
Natural covering (NATC) has spread on hillside vineyards of central Italy as a replacement for tillage to reduce soil erosion, although it increased nitrogen and water needs. Therefore, in the current context of global warming, using cover crops (CCs) that require less water and provide nitrogen becomes crucial. The effects of two low-competition legume-enriched CCs in a rainfed hillside vineyard—a perennial legume–grass mixture (PLGM) and an annual legume cover crop of Trifolium alexandrinum (ALTA)—were compared with NATC over three years. PLGM and ALTA provided good levels of soil coverage, slightly lower than NATC, which had a negligible presence of legumes. PLGM and ALTA, due to low competition, enhanced vine vigor, resulting in thicker and wider canopies (as indicated by total leaf area and leaf layer number), higher pruning weight, and increased yield. PLGM and ALTA led to good qualitative levels, with higher grapes acidities, lower pH and total soluble solids content and, additionally, significantly higher yeast assimilable nitrogen content. In conclusion, implementing low-competition legume species in CCs is an effective tool to avoid soil erosion in a climate change scenario, leading to increased productivity, higher acidity, and improved nitrogen content in the grapes. Full article
Show Figures

Figure 1

14 pages, 1464 KiB  
Article
Effects of Increasing Ozone Levels on Leaf Biochemistry and Flower Development in Petunia Varieties with Different Floral Pigmentation
by Ning Yang, Xiaoke Wang, Lorenzo Cotrozzi, Cristina Nali, Elisa Pellegrini, Gemma Bianchi, Claudia Pisuttu and Feixiang Zheng
Agronomy 2024, 14(9), 2027; https://doi.org/10.3390/agronomy14092027 - 5 Sep 2024
Viewed by 760
Abstract
In this work, we assessed the effects of increasing ozone (O3) on four petunia varieties with different floral pigmentation (pink, red, rose-red, and white). Plants were exposed, in open-top chambers located in China, to three O3 concentrations, i.e., (i) ambient [...] Read more.
In this work, we assessed the effects of increasing ozone (O3) on four petunia varieties with different floral pigmentation (pink, red, rose-red, and white). Plants were exposed, in open-top chambers located in China, to three O3 concentrations, i.e., (i) ambient air (AA), (ii) AA + 60 ppb O3 (AA + 60), and (iii) AA + 120 ppb O3 (AA + 120), for 85 days (9 h day−1). Flower diameter and duration were assessed, together with leaf chlorophyll and flavonoid contents. White petunia showed a reduced flower diameter and longevity under AA + 60 (−7 and −6%, respectively, in comparison to AA), whereas pink and red petunias only showed this under AA + 120 (−8 and −7%, on average, respectively). Chlorophyll loss occurred in all varieties under AA + 60 (−30%, on average), and at AA + 120 in white and red petunias (−54%, on average). The total flavonoid content in the pink and white varieties increased only under AA + 120 (around +85%), while it grew at both AA + 60 and AA + 120 (+92% and two-fold higher, respectively) in the red variety. Increasing O3 concentrations did not affect particularly the red-rose variety. The white variety showed the strongest correlations among flower and leaf properties, confirming a variety-related O3 response, as well as demonstrating that it had the highest O3 sensitivity. Full article
Show Figures

Figure 1

17 pages, 9731 KiB  
Article
CsNWD Encoding VPS62 Emerges as a Candidate Gene Conferring the Glabrous Phenotype in Cucumber
by Yuelong Zhou, Mingyuan Xu, Yong Zhou, Zhaoyang Hu and Shiqiang Liu
Agronomy 2024, 14(9), 2019; https://doi.org/10.3390/agronomy14092019 - 4 Sep 2024
Cited by 1 | Viewed by 1133
Abstract
The commercial value of cucumbers is influenced by the presence of spines or trichomes on their fruit, while the trichomes found on other parts of the plant are essential for protecting the cucumber against a range of biotic and abiotic stresses. In our [...] Read more.
The commercial value of cucumbers is influenced by the presence of spines or trichomes on their fruit, while the trichomes found on other parts of the plant are essential for protecting the cucumber against a range of biotic and abiotic stresses. In our research, we identified a glabrous nwd mutant from EMS-induced cucumber (Cucumis sativus L.) mutant lines. This mutant displays a consistent glabrous phenotype across all plant organs. Upon analysis, it was revealed that the nwd mutation is governed by a lone recessive nuclear gene. The nwd plants show a significant reduction in both their photosynthetic capacity and chlorophyll a content when compared to the wild-type. Furthermore, there are notable changes in the antioxidant enzyme activities, soluble protein levels, and malondialdehyde content of the nwd mutant. Genotyping and MutMap approaches identified the CsNWD gene, encoding a VPS protein, as a candidate responsible for the glabrous trait. Transcriptome analysis indicated that 15 trichome-related genes exhibit significant expression changes in the nwd mutant, implying that CsNWD may regulate trichome development through interactions with these genes. This study contributes to the understanding of VPS proteins in trichome initiation and the underlying mechanisms of trichome development. Full article
Show Figures

Figure 1

21 pages, 2695 KiB  
Article
Ecophysiological Recovery of Micropropagated Olive Cultivars: Field Research in an Irrigated Super-High-Density Orchard
by Francesco Maldera, Simone Pietro Garofalo and Salvatore Camposeo
Agronomy 2024, 14(7), 1560; https://doi.org/10.3390/agronomy14071560 - 18 Jul 2024
Cited by 6 | Viewed by 1657
Abstract
This research focuses on the seasonal patterns of the ecophysiological recovery of four olive cultivars (Arbequina, Coratina, Frantoio, and Urano), both micropropagated and self-rooted, grown in a mature, irrigated, super high-density (SHD) orchard under Mediterranean conditions (Southern of Italy). The aim was to [...] Read more.
This research focuses on the seasonal patterns of the ecophysiological recovery of four olive cultivars (Arbequina, Coratina, Frantoio, and Urano), both micropropagated and self-rooted, grown in a mature, irrigated, super high-density (SHD) orchard under Mediterranean conditions (Southern of Italy). The aim was to observe the impact of the micropropagation method on the ecophysiological responses. Ecophysiological parameters, including leaf water potential (LWP), stomatal conductance (gs), net photosynthetic rate (Pn), and transpiration rate (E) were assessed. Self-rooted trees consistently exhibited superior gs, E, and Pn recovery compared to the micropropagated ones. ‘Arbequina’ maintained elevated levels of Pn under water-deficit conditions. ‘Coratina’ exhibited increases in gs and E after irrigation. ‘Frantoio’ demonstrated recovery capabilities, with lower LWP and higher Pn under stress. ‘Urano’ micropropagated trees achieved higher gs values in mid-summer, while self-rooted trees sustained higher Pn later in the season. This field research highlighted the important role of the propagation method in optimizing the physiological performance of olive cultivars in SHD orchards. Furthermore, it highlighted the necessity of long-term studies on the effects of propagation methods and their interactions with other farming practices. Full article
Show Figures

Figure 1

15 pages, 3028 KiB  
Article
Effect of Salt-Induced Stress on the Calorific Value of Two Miscanthus sacchariflorus (Amur Silvergrass) Varieties
by Hailong Lu, Ling Li, Jingbo Chen, Jackson Nkoh Nkoh, Dongli Hao, Jianjian Li, Jingjing Wang, Dandan Li, Jianxiu Liu, Hailin Guo and Junqin Zong
Agronomy 2024, 14(6), 1259; https://doi.org/10.3390/agronomy14061259 - 11 Jun 2024
Cited by 1 | Viewed by 1066
Abstract
This study was designed to investigate the relationship between the caloric value and salt tolerance of two varieties of Miscanthus sacchariflorus (Amur silvergrass: M127 and M022). The salt tolerance capacity, photosynthetic characteristics, Na+ and K+ uptake by the roots and aboveground [...] Read more.
This study was designed to investigate the relationship between the caloric value and salt tolerance of two varieties of Miscanthus sacchariflorus (Amur silvergrass: M127 and M022). The salt tolerance capacity, photosynthetic characteristics, Na+ and K+ uptake by the roots and aboveground parts, and caloric value of different parts of the aboveground parts were obtained under hydroponic conditions. The results showed that M022 was more tolerant to salt stress than M127 and the former had a higher photosynthetic efficiency as well as a lower aboveground Na+ accumulation, K+ efflux, and larger K+/Na+ ratio. The calorific values of stems, spear leaves, aging leaves, and functional leaves of the two varieties showed a decreasing trend with increasing NaCl concentration. At 270 mM NaCl, the calorific values of the stems, aging leaves, functional leaves, and spear leaves was reduced by 18.10%, 46.73%, 26.11%, and 18.35% for M022 and 41.99%, 39.41%, 34.82%, and 45.09% for M127 compared to the controls, respectively. We observed that the aging leaves of M022 had a faster decline rate in calorific value than those of M127, indicating that the aging leaves of M022 preferentially isolated the harmful Na+ ion, reduced its accumulation in other parts, and increased the K+/Na+ ratio in the corresponding parts, thus inhibiting the decrease in calorific value. Following this result, it can be inferred that M022 inhibited the decline in calorific values during stress by efficiently compartmentalizing the distribution of Na+ and K+. Our results provide a theoretical basis and technical support for the efficient cultivation of salt-tolerant energy plants in saline–alkaline soil. Full article
Show Figures

Figure 1

17 pages, 3159 KiB  
Article
Identification and Evaluation of Celery Germplasm Resources for Salt Tolerance
by Limei Wu, Jiageng Du, Yidan Zhang, Yuqin Xue, Chengyao Jiang, Wei Lu, Yangxia Zheng, Chengbo Zhou, Aisheng Xiong and Mengyao Li
Agronomy 2024, 14(5), 1048; https://doi.org/10.3390/agronomy14051048 - 15 May 2024
Cited by 3 | Viewed by 1486
Abstract
This study evaluated the salt tolerance in 40 celery germplasm resources to clarify the different salt tolerances of celery germplasm. A gradient treatment with different concentrations of NaCl solutions (100, 200, and 300 mmol·L−1) was used to simulate salt stress. After [...] Read more.
This study evaluated the salt tolerance in 40 celery germplasm resources to clarify the different salt tolerances of celery germplasm. A gradient treatment with different concentrations of NaCl solutions (100, 200, and 300 mmol·L−1) was used to simulate salt stress. After 15 days of salt treatment, 14 indicators related to plant growth, physiology, and biochemistry were determined. The results showed that different celery varieties responded differently to salt stress. Notably, there were significant variations in below-ground dry weight, root–crown ratio, antioxidant enzyme activity, and soluble protein content among the accessions under salt stress. Principal component analysis was used to identify important indices for evaluating salt tolerance, including plant height, spread, content of soluble protein, and so on. A comprehensive evaluation was conducted utilizing the salt damage index, principal component analysis, affiliation function analysis, and cluster analysis. The 40 celery germplasms were classified into five highly salt-tolerant, seven salt-tolerant, fifteen moderately salt-tolerant, nine salt-sensitive, and four highly salt-sensitive germplasms. SHHXQ, MXKQ, XBQC, XQ, and TGCXBQ were highly salt-tolerant germplasms, and BFMSGQ, HNXQ, ZQ, and MGXQW were highly salt-sensitive germplasms. The results of this study provide a reference for the variety of celery cultivation in saline areas and lay a foundation for the selection and breeding of salt-tolerant varieties of celery. Full article
Show Figures

Figure 1

16 pages, 6662 KiB  
Article
Estimation of Garden Chrysanthemum Crown Diameter Using Unmanned Aerial Vehicle (UAV)-Based RGB Imagery
by Jiuyuan Zhang, Jingshan Lu, Qiuyan Zhang, Qimo Qi, Gangjun Zheng, Fadi Chen, Sumei Chen, Fei Zhang, Weimin Fang and Zhiyong Guan
Agronomy 2024, 14(2), 337; https://doi.org/10.3390/agronomy14020337 - 6 Feb 2024
Cited by 4 | Viewed by 1456
Abstract
Crown diameter is one of the crucial indicators for evaluating the adaptability, growth quality, and ornamental value of garden chrysanthemums. To accurately obtain crown diameter, this study employed an unmanned aerial vehicle (UAV) equipped with a RGB camera to capture orthorectified canopy images [...] Read more.
Crown diameter is one of the crucial indicators for evaluating the adaptability, growth quality, and ornamental value of garden chrysanthemums. To accurately obtain crown diameter, this study employed an unmanned aerial vehicle (UAV) equipped with a RGB camera to capture orthorectified canopy images of 64 varieties of garden chrysanthemums at different growth stages. Three methods, namely RGB color space, hue-saturation-value (HSV) color space, and the mask region-based convolutional neural network (Mask R-CNN), were employed to estimate the crown diameter of garden chrysanthemums. The results revealed that the Mask R-CNN exhibited the best performance in crown diameter estimation (sample number = 2409, R2 = 0.9629, RMSE = 2.2949 cm). Following closely, the HSV color space-based model exhibited strong performance (sample number = 2409, R2 = 0.9465, RMSE = 3.4073 cm). Both of the first two methods were efficient in estimating crown diameter throughout the entire growth stage. In contrast, the RGB color space-based model exhibited slightly lower performance (sample number = 1065, R2 = 0.9011, RMSE = 3.3418 cm) and was only applicable during periods when the entire plant was predominantly green. These findings provide theoretical and technical support for utilizing UAV-based imagery to estimate the crown diameter of garden chrysanthemums. Full article
Show Figures

Figure 1

18 pages, 3754 KiB  
Article
Comparative Analysis of the Performance of a Chain Mower and Tools That Perform Under-Row Weed Control with Tillage in the Vineyard
by Lorenzo Gagliardi, Sofia Matilde Luglio, Andrea Peruzzi, Marco Fontanelli, Christian Frasconi and Michele Raffaelli
Agronomy 2024, 14(1), 206; https://doi.org/10.3390/agronomy14010206 - 17 Jan 2024
Cited by 2 | Viewed by 1561
Abstract
In the Mediterranean area, vineyard soils are often characterized by a high stone content. In these contexts, where tools commonly adopted for under-row weed control are frequently damaged, the utilization of a chain mower could be a preferable alternative. This research aims to [...] Read more.
In the Mediterranean area, vineyard soils are often characterized by a high stone content. In these contexts, where tools commonly adopted for under-row weed control are frequently damaged, the utilization of a chain mower could be a preferable alternative. This research aims to compare a modified mower with chains with other tools commonly employed that control weeds through tillage, such as motorized discs, blade weeder, and rotary star hoe. Weed control effectiveness, effects on weed flora composition, soil compaction, and operative efficiencies were evaluated. The chain mower allowed us to obtain encouraging results of weed biomass reduction (55.4 and 25.4%, between and around vine trunks, respectively), weed height reduction (35.9%), and weed cover reduction (79.2%), comparable to the other tools. All the tools showed a lower weed control efficacy around vine trunks rather than between them (weed biomass reductions of 24.8% and 52.6%, respectively). Results regarding the effect on weed flora composition seem to confirm this trend. Despite the higher chain mower field time (3.78 h ha−1) and fuel consumption (24.24 kg ha−1) compared to the blade weeder and the rotary star hoe, its versatility in stony soil and its lower impact on soil (soil penetration resistances of 1602.42 and 2262.83 kPa in 2022 and 2023, respectively) compared to the other tools make it a potentially advantageous implement for under-row weed management in vineyards. Further studies could be useful to improve chain mower performance, particularly around vine trunks, by evaluating in different planting layouts different dimensions of both the cutting element and feeler, which allows the vine-skipping mechanism. Full article
Show Figures

Figure 1

13 pages, 3800 KiB  
Article
Evaluation of Sustainable Strategies for Mechanical Under-Row Weed Control in the Vineyard
by Lorenzo Gagliardi, Marco Fontanelli, Sofia Matilde Luglio, Christian Frasconi, Andrea Peruzzi and Michele Raffaelli
Agronomy 2023, 13(12), 3005; https://doi.org/10.3390/agronomy13123005 - 7 Dec 2023
Cited by 2 | Viewed by 1889
Abstract
Mechanical under-row weed control in the vineyard emerges as a sustainable choice compared to chemical control, with tillage-based approaches proving especially efficient. A rollhacke, finger weeder, and blade weeder are valid alternatives to commonly used implements that cause excessive soil disruption and display [...] Read more.
Mechanical under-row weed control in the vineyard emerges as a sustainable choice compared to chemical control, with tillage-based approaches proving especially efficient. A rollhacke, finger weeder, and blade weeder are valid alternatives to commonly used implements that cause excessive soil disruption and display suboptimal efficiency. The trial aimed to compare different under-row weed control strategies in terms of weed control efficacy and operational performance. Among these, in ST1, a tool-holder equipped with both a rollhacke and finger weeder was used at the first and second intervention; in ST2, a rollhacke was used at the first intervention and blade weeder at the second one; in ST3, firstly the tool-holder equipped with a rollhacke and finger weeder was used, then the blade weeder; in ST4, a rollhacke was used first and then the tool-holder equipped with a rollhacke and finger weeder. Weed height, weed cover, and weed biomass were evaluated before the first and after the second intervention. Total field time, fuel consumption, and CO2 emissions of each strategy were assessed. ST1 proved to be the best compromise in terms of weed control effectiveness and operational performance compared to the other strategies. Indeed, ST1 tendentially achieved a lower weed height (20.42 cm) and weed biomass around vine trunks (105.33 g d.m. m−2) compared to the other strategies. In terms of total field time, fuel consumption and CO2 emissions, ST1 recorded intermediate values equal to 3.85 h ha−1, 15.29 kg ha−1, and 48.72 kg ha−1, respectively. Further studies are needed to evaluate these strategies in different vineyard conditions, considering their effect on weed flora composition. Furthermore, exploring automation technology for real-time implement adjustments based on weed infestation levels could further improve the intervention effectiveness and efficiency. Full article
Show Figures

Figure 1

Back to TopTop