Biogas and Biomethane Production from Pretreated Waste Biomasses

A special issue of Agronomy (ISSN 2073-4395). This special issue belongs to the section "Agricultural Biosystem and Biological Engineering".

Deadline for manuscript submissions: closed (25 December 2024) | Viewed by 2475

Special Issue Editors


E-Mail Website
Guest Editor
Department of Civil and Environmental Engineering, University of Perugia, Via G. Duranti, 93, 06125, Perugia, Italy
Interests: carbon sequestration; water soluble organic matter; soil fertility; organic waste treatments
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Civil and Environmental Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy
Interests: gas hydrates; carbon capture and storage; natural gas sources; biogas production; waste biomass valorization
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

With the production of biogas and biomethane being considered among the main leading parameters for the energy transition toward the sole use of renewable sources, significant scientific efforts were made, in terms of process intensification, to characterize the process as a function of the available residual and determine the optimal operative conditions.

However, the same biomasses can be firstly exploited for the extraction of valuable co-products prior to the final biogas production, in order to provide them a dual end use. Moreover, the related pre-treatments can also enhance the final production of biogas, thus achieving the synergistic effect expected into a biorefinery.

Differently from the sole biogas production, this latter proposal offers further and promising perspectives which need to be experimentally investigated. Following this proposal, the present Special Issue aims to collect original research papers and valuable reviews dealing with biogas and biomethane production with pre-treated waste biomasses.

Prof. Dr. Giovanni Gigliotti
Dr. Alberto Maria Gambelli
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Agronomy is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • agricultural wastes
  • organic waste
  • bioenergy
  • biogas
  • biomethane
  • biomass
  • residue

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 2381 KiB  
Article
Improving Anaerobic Digestion Efficiency of Animal Manure Through Ball Milling Pretreatment
by Meicai Xu, Sibel Uludag-Demirer, Yan Liu and Wei Liao
Agronomy 2025, 15(2), 305; https://doi.org/10.3390/agronomy15020305 - 25 Jan 2025
Viewed by 871
Abstract
Anaerobic digestion (AD) can offer a promising pathway for converting animal waste into biogas. This process improves waste management practices while generating renewable energy. However, the lignocellulosic structure of animal manure, particularly in dairy and cattle manure, hinders digestion efficiency and limits biogas [...] Read more.
Anaerobic digestion (AD) can offer a promising pathway for converting animal waste into biogas. This process improves waste management practices while generating renewable energy. However, the lignocellulosic structure of animal manure, particularly in dairy and cattle manure, hinders digestion efficiency and limits biogas yield. This study investigates the application of ball milling as a pretreatment strategy to enhance the anaerobic digestion of dairy manure. By reducing particle size and disrupting lignocellulosic structures, ball milling increases the bioavailability of organic matter, thus promoting microbial conversion and boosting biogas production. Experimental results reveal that 1 h ball milling pretreatment increases biogas and biomethane production by more than 20% compared to untreated manure. Furthermore, microbial community analysis indicates that anaerobic microbes remain largely unaffected by ball milling pretreatment, unlike the changes observed with activated carbon addition. These findings suggest that ball milling is a practical, adaptable, and scalable pretreatment method to enhance the anaerobic digestion efficiency of dairy manure. It offers a sustainable solution for improved manure management and biogas production. Full article
(This article belongs to the Special Issue Biogas and Biomethane Production from Pretreated Waste Biomasses)
Show Figures

Figure 1

18 pages, 2796 KiB  
Article
Biomethane Production from Untreated and Treated Brewery’s Spent Grain: Feasibility of Anaerobic Digestion After Pretreatments According to Biogas Yield and Energy Efficiency
by Jessica Di Mario, Alberto Maria Gambelli and Giovanni Gigliotti
Agronomy 2024, 14(12), 2980; https://doi.org/10.3390/agronomy14122980 - 14 Dec 2024
Viewed by 988
Abstract
The increasing global energy demand, coupled with the urgent need to reduce CO2 emissions, has intensified the search for renewable energy sources. Biogas, produced from agro-industrial biomass, presents a viable solution. In beer production, brewery’s spent grain (BSG), the largest by-product by [...] Read more.
The increasing global energy demand, coupled with the urgent need to reduce CO2 emissions, has intensified the search for renewable energy sources. Biogas, produced from agro-industrial biomass, presents a viable solution. In beer production, brewery’s spent grain (BSG), the largest by-product by volume, offers potential for bioenergy recovery. This study applied a biorefinery approach to BSG, extracting protein hydrolysates (PH) through mild alkaline hydrolysis and nanostructured lignin (LN) via the Ionic Liquid Method. The objective was to assess biogas production from the residual biorefinery biomass and evaluate the co-digestion of BSG with Olive Mill Wastewater (OMWW) and Olive Pomace (OP), by-products of the olive oil industry. Biogas was produced in lab-scale batch reactors and the quantity of biogas produced was measured via the volumetric method. Conversely, the amount of biomethane obtained was evaluated by introducing, in the production chain, an alkaline trap. Biogas yields were the highest for untreated BSG (1075.6 mL), co-digested BSG with OMWW (1130.1 mL), and BSG residue after PH extraction (814.9 mL). The concentration of biomethane obtained in the various samples ranged from 54.5 vol % (OMWW + BSG) to 76.59 vol % (BSG). An energy balance analysis considering both the theoretical energy consumed by a semi-continuous anaerobic digestion bioreactor and the energy produced as bio-CH4 revealed that BSG after PH extraction was the most energy-efficient treatment, producing a net energy gain of 5.36 kJ. For the scope, the energy consumption was calculated by considering a PEIO index equal to 33% of the energy produced during the day, showing the highest biogas production. In contrast, the co-digested BSG with OMWW yielded the lowest net energy gain of 1.96 kJ. This comprehensive analysis highlights the energy efficiency of different treatments, identifying which process should be improved. Full article
(This article belongs to the Special Issue Biogas and Biomethane Production from Pretreated Waste Biomasses)
Show Figures

Figure 1

Back to TopTop