You are currently viewing a new version of our website. To view the old version click .

Applications of Remote Sensing and Machine Learning for Digital Soil Mapping

This special issue belongs to the section “Artificial Intelligence and Digital Agriculture“.

Special Issue Information

Dear Colleagues,

The convergence of agriculture, environmental science, and cutting-edge technology is ushering in a new era in soil management and conservation. Soil mapping serves as a fundamental activity underpinning numerous environmental and agricultural endeavors. Traditional approaches, while foundational, are often characterized by their time-intensive nature, labor demands, and a potential lack of dynamism in capturing soil properties. The integration of machine learning (ML) with remote sensing technology offers a groundbreaking alternative, enhancing the precision, efficiency, and scope of soil analyses. The aim of this Special Issue is to demonstrate the enhanced capabilities that machine learning and remote sensing technologies bring to digital soil mapping. It seeks to bridge ML and traditional soil science, fostering a multidisciplinary exchange that elevates our ability to forecast, scrutinize, and manage soil resources with unprecedented accuracy.

We are soliciting original research articles and reviews covering, but not limited to, the following topics:

  • Integration of machine learning algorithms and remote sensing for soil property prediction (as well as for soil classification);
  • Machine learning approaches for soil classification and taxonomy;
  • Soil spectral library, including visible–near-infrared and mid-infrared spectroscopy;
  • Proximal, airborne, and satellite remote sensing;
  • Advanced analytics in soil science utilizing big data and artificial intelligence;
  • Case studies demonstrating the impact of these technologies in agricultural and environmental contexts.

Dr. Jing Geng
Dr. Yongsheng Hong
Dr. Yiyun Chen
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Agriculture is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • machine/deep learning
  • remote sensing
  • digital soil mapping
  • soil property prediction
  • big data analytics
  • soil resource management

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Published Papers

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Agriculture - ISSN 2077-0472