Special Issue "The Influence of Pre-Harvest Factors on the Product Quality of Field Crops"

A special issue of Agriculture (ISSN 2077-0472). This special issue belongs to the section "Crop Production".

Deadline for manuscript submissions: 30 April 2020.

Special Issue Editors

Dr. Sara Lombardo
E-Mail Website
Guest Editor
Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, via Valdisavoia 5, 95123 Catania, Italy
Interests: field crops; agronomy; food quality; organic farming; plant secondary metabolites
Special Issues and Collections in MDPI journals
Dr. Gaetano Pandino
E-Mail Website
Guest Editor
Department of Agriculture, Food and Environment (Di3A) - University of Catania (Italy) Via Valdisavoia n. 5, 95123 Catania, Italy
Interests: agronomic management of fields crops; crop quality; phytochemicals; organic agriculture; biodiversity

Special Issue Information

Dear Colleagues,

Satisfying the increasing number of consumer demands for the enhancement and stabilization of quality of produce is one of the most imperative challenges of modern agriculture. In this view, it is essential to remember that the product quality of field crops does not improve after harvest and, therefore, a deeper understanding of how to manipulate the pre-harvest factors with the aim to maintain and/or maximize the quality of produce going into storage is of crucial importance. The effects of pre-harvest factors on the ultimate quality of harvested products are often overlooked and underestimated, although a wide spectrum of pre-harvest factors, including environmental conditions and field management practices, directly or indirectly impacts the qualitative traits of field crops produce. Particularly seasonal climatic conditions, soil fertility, variety selection, fertilization, irrigation, pest control, and harvest time play a crucial role in determining post-harvest quality attributes (such as color, flavor, texture, and nutritional value of the harvested product), deterioration, and, subsequently, consumers’ decision to purchase the product in the marketplace.

This Special Issue focuses on the role of pre-harvest factors in determining the product quality of field crops, with a major emphasis on the best agronomic practices, and enabling tools for obtaining products with high and stable quality. This issue will lend to highly interdisciplinary studies embracing disciplines from agriculture and biology, to chemistry and human nutrition. All types of articles, such as original research, opinions, and reviews are welcome.

Dr. Sara Lombardo
Dr. Gaetano Pandino
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Agriculture is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Product quality
  • Field crops
  • Environment
  • Soil characteristics
  • Variety selection
  • Fertilization
  • Irrigation
  • Pest management

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle
Biochemical, Physiological and Yield Characteristics of Red Basil as Affected by Cultivar and Fertilization
Agriculture 2020, 10(2), 48; https://doi.org/10.3390/agriculture10020048 (registering DOI) - 20 Feb 2020
Abstract
Unconventional fertilizers can act as elicitors to encourage the synthesis of phyto-pharmaceuticals in aromatic plants. In the present research, the effects of factorial combination between two red basil cultivars, ‘Opal’ and ‘De Buzau’, and four fertilization types, biosolids, organic, microorganisms and chemical, plus [...] Read more.
Unconventional fertilizers can act as elicitors to encourage the synthesis of phyto-pharmaceuticals in aromatic plants. In the present research, the effects of factorial combination between two red basil cultivars, ‘Opal’ and ‘De Buzau’, and four fertilization types, biosolids, organic, microorganisms and chemical, plus an unfertilized control, were assessed on fresh and dry yield, biometrical parameters, soil plant analysis development (SPAD) and antioxidant compounds and activity. Chemical fertilization increased fresh yield compared with the control, with no difference in organic and microorganism fertilization regarding dry weight. ‘De Buzau’ enhanced the number of lateral stems and plant height, the latter being better affected by chemical and microorganisms compared to the control. Chemical fertilization showed the highest leaf dry matter, nitrate content and SPAD, whereas the control showed the lowest. Compared to the unfertilized control, biosolids increased total phenolics in ‘Opal’; microorganisms, organic and biosolids enhanced total flavonoids in ‘Opal’, with the same effect under microorganisms and organic treatments in ‘De Buzau’. Total anthocyanins showed the highest content in ‘Opal’ under organic fertilization. The highest antioxidant activity in the basil extracts was detected under microorganisms and organic applications in ‘Opal’. The present investigation results demonstrate that unconventional fertilizers increase the synthesis of antioxidants and represent a sustainable alternative to chemical fertilization for growing red basil. Full article
Show Figures

Figure 1

Open AccessArticle
Organic Cropping System Affects Grain Chemical Composition, Rheological and Agronomic Performance of Durum Wheat
Agriculture 2020, 10(2), 46; https://doi.org/10.3390/agriculture10020046 - 20 Feb 2020
Abstract
Durum wheat plays a central role for Italy, a country characterized by an historical tradition of pasta making. This crop is one of the major sources of starch in the Mediterranean diet, also providing substantial amounts of nutrients, either essential or healthy, such [...] Read more.
Durum wheat plays a central role for Italy, a country characterized by an historical tradition of pasta making. This crop is one of the major sources of starch in the Mediterranean diet, also providing substantial amounts of nutrients, either essential or healthy, such as minerals and phytochemicals. In this study, the effect of cropping system (organic (ORG) and conventional (CONV)) on the content of proteins, wet gluten, minerals, and total polyphenols (TPC), as well as on the antioxidant activity (AA) and yield characteristics were evaluated in nine genotypes of whole durum wheat. The analysis of variance confirmed the key role of cropping system, which explained more than 50% of the total variation for some minerals (Na, K, and Fe), and more than 80% for proteins, wet gluten, and TPC. The CONV reported the highest levels of proteins, wet gluten, and ash, whereas the TPC and AA were statistically higher in the ORG ones. The quality traits under study were also genotype dependent. For instance, ‘Ramirez’ had a higher ash content under ORG than CONV, while ‘Core’ had an opposite behavior. This study provides a better understanding about the effect of both cropping system (ORG vs. CONV) and genotype on the yield and qualitative traits of the whole grain durum wheat. Full article
Open AccessArticle
Impact of Weather Conditions and Farming Systems on Size Distribution of Starch Granules and Flour Yield of Winter Wheat
Agriculture 2020, 10(1), 22; https://doi.org/10.3390/agriculture10010022 - 18 Jan 2020
Abstract
The size distribution of wheat-grain starch granules has an impact on the yield of fine flour. The aim of the study was to compare the impact of conventional (mineral fertilizers, pesticides) and organic farming treatments (cover crops, composted cattle manure) on (i) the [...] Read more.
The size distribution of wheat-grain starch granules has an impact on the yield of fine flour. The aim of the study was to compare the impact of conventional (mineral fertilizers, pesticides) and organic farming treatments (cover crops, composted cattle manure) on (i) the size distribution of starch granules, (ii) the level of the first break whole and fine flour yield. The grain samples of winter wheat cv Fredis were taken from a long-term field crop rotation experiment established in 2008 at the Estonian University of Life Sciences in Tartu County (58°22′ N, 26°40′ E) on Stagnic Luvisol soil. The weather conditions during the grain filling period of winter wheat had a strong impact (p < 0.001) on the grain starch granule size distribution. The proportion of starch granules with a smaller diameter (C-type granules) was higher in years with a longer grain filling period. The size distribution of starch granules was not influenced by farming system. The increased proportion of C-type granules increased the fine flour yield significantly. Fertilisation with organic manure and twice with mineral nitrogen increased significantly the mean diameter value of different starch granules. Full article
Open AccessArticle
Efficacy of N-methyl-N-nitrosourea (MNU) Mutation on Enhancing the Yield and Quality of Rice
Agriculture 2019, 9(10), 212; https://doi.org/10.3390/agriculture9100212 - 27 Sep 2019
Cited by 1
Abstract
Mutation technology has been applied more in recent decades to achieve novel products that are not commonly found in nature. An experiment was conducted to examine the effects of an N-methyl-N-nitrosourea (MNU) mutation on the growth, yield, and physicochemical properties [...] Read more.
Mutation technology has been applied more in recent decades to achieve novel products that are not commonly found in nature. An experiment was conducted to examine the effects of an N-methyl-N-nitrosourea (MNU) mutation on the growth, yield, and physicochemical properties of rice. Seeds of two rice cultivars (K1: DT84, and K3: Q5), along with their mutant lines (K2: mutated DT84, and K4: mutated Q5), were sown, and the established seedlings were transplanted to an open field. Ten hills per plot were randomly selected to evaluate growth parameters, yield, and components. Physicochemical attributes, including protein, amylose, and lipid contents, as well as taste score were measured by a quality tester device. The results showed that plant length, tiller number, and panicle length were higher in mutant lines than those of their cultivars. Furthermore, mutant lines took longer to reach heading and maturity stage. The highest panicle number, spikelet number, repined ratio, 1000 grain weight, 1000 brown rice weight, and grain yield were obtained in mutant lines, as compared to cultivars. The greatest grain yield was obtained in the K4 mutant line (11.6 t/ha), while the lowest was recorded in the K1 cultivar (7.7 t/ha). Lower amylose, protein, and lipid contents were observed in mutant lines compared to those in cultivars. The taste score, which increased from 67.7 to 73.7, was found to be correlated with lower amylose, protein, and lipid contents. The mutation approach increased the grain length but decreased the grain width of tested varieties. This study highlights and suggests the importance of MNU mutation in terms of rice yield improvement with preferable quality. Full article
Show Figures

Figure 1

Open AccessArticle
Morphological Observation and Correlation of Growth and Yield Characteristics with Grain Quality and Antioxidant Activities in Exotic Rice Varieties of Afghanistan
Agriculture 2019, 9(8), 167; https://doi.org/10.3390/agriculture9080167 - 01 Aug 2019
Cited by 3
Abstract
Rice is an important staple food for Afghans. Its production has been increased, and attention is needed to improve grain quality. Experiments were conducted to evaluate the growth, yield, physicochemical properties, antioxidant activity, and morphological structures of four exotic rice varieties widely grown [...] Read more.
Rice is an important staple food for Afghans. Its production has been increased, and attention is needed to improve grain quality. Experiments were conducted to evaluate the growth, yield, physicochemical properties, antioxidant activity, and morphological structures of four exotic rice varieties widely grown in Afghanistan (Attai-1, Jalalabad-14, Shishambagh-14, and Zodrass). Antioxidant activities, including 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), of rice grain were determined. A scanning electron microscopic observation was conducted on the cross-cut section of dehulled rice grains. The results showed a wide variation among four rice varieties for growth, grain yield, physicochemical properties, antioxidant activities, and morphology. Tiller and panicle number per hill, 1000-grain weight, grain yield, and antioxidant activities were found to be highest in Jalalabad-14. Attai-1 showed lower amylose, protein, and lipid contents with a high number of perfect grains, consequently enhanced taste point (score of quality). Grain yield, protein, and amylose contents showed a negative correlation with antioxidant activities. Accumulated structures in Attai-1, Shishambagh-14, and Zodrass were normal; however, Jalalabad-14 increased protein bodies and its traces in the amyloplasts. Information on yield potential, grain quality, and nutritional value of these exotic rice varieties may useful for sustainable food provision and nutritional improvement of rice in Afghanistan. Full article
Show Figures

Figure 1

Review

Jump to: Research

Open AccessReview
Allometries in Plants as Drivers of Forage Nutritive Value: A Review
Agriculture 2020, 10(1), 5; https://doi.org/10.3390/agriculture10010005 - 24 Dec 2019
Abstract
The nutritive value of forage for herbivores has been for a long time determined by the concentration in protein and, hence in nitrogen (N), the concentration in different minerals (P, K, Ca, Mg, and oligo-elements), and the in vivo dry matter (DM) digestibility. [...] Read more.
The nutritive value of forage for herbivores has been for a long time determined by the concentration in protein and, hence in nitrogen (N), the concentration in different minerals (P, K, Ca, Mg, and oligo-elements), and the in vivo dry matter (DM) digestibility. Forage DM digestibility, the proportion of ingested DM being metabolized by ruminant animals has been related to different components of plant tissue composition such as Neutral Detergent Fiber (NDF) and Acid Detergent Fiber (ADF); the NDF concentration represents an estimate of cell wall content while the ADF concentration is an estimate of the more lignified cell wall content. Forage nutritive value is generally analyzed by relating the attributes of nutritive value to plant phenology, in order to predict the decline of these attributes with plant age. A more functional approach, initially developed for the analysis of N concentration dynamic analysis (Lemaire et al. 2008 and Lemaire et al. 2019), and extended for digestibility for this review, is based on the assumption that above-ground plant mass (W) is composed of two compartments: (i) the metabolic compartment (Wm), associated with plant growth process scaling with leaf area, having a high N concentration (%N), and a high Digestibility (%D); (ii) the structural compartment (Ws) associated with architectural plant development, scaling with plant height and thickness and having low %N and %D. With the postulate that Wm is allometrically related to W (Wm = c × Wα with α < 1), the ontogenetic decline of both %N and %D as the plant gets bigger and forage mass increases can be explained, and the purely empirical statistical approach of forage quality based on plant phenology can be replaced by a more mechanistic and comprehensive analysis linking forage production and forage quality dynamics within the same functional approach for a better understanding of genotype-environment-management interactions. Full article
Show Figures

Figure 1

Open AccessReview
Evaluation of the Risks of Contaminating Low Erucic Acid Rapeseed with High Erucic Rapeseed and Identification of Mitigation Strategies
Agriculture 2019, 9(9), 190; https://doi.org/10.3390/agriculture9090190 - 04 Sep 2019
Abstract
High erucic acid rapeseed (HEAR) oil is under increasing demand for various industrial applications. However, many growers are concerned that if they grow the crop, they will not be able to revert to other rapeseed varieties in the future due to the risk [...] Read more.
High erucic acid rapeseed (HEAR) oil is under increasing demand for various industrial applications. However, many growers are concerned that if they grow the crop, they will not be able to revert to other rapeseed varieties in the future due to the risk of erucic acid (EA) contamination of the harvested seed and inability to maintain acceptable erucic acid thresholds. This review considered published literature and, using the same criteria as that used to contain transgenic crops, aimed to identify the key risks of erucic acid contamination, broadly prioritise them and identify pragmatic mitigation options. Oilseed rape has a number of traits that increase the risk of low erucic acid rapeseed (LEAR) crops being contaminated with EA from HEAR varieties. The quantity of seed produced and the potential for seed dormancy coupled with partial autogamy (self-fertilisation) facilitate the establishment and persistence of volunteer and feral populations. The large quantities of pollen produced when the crop is in flower mean there is also a high potential for cross-pollination. Self-sown volunteer plants represent the highest potential contamination risk, followed by the presence of arable weeds (e.g., wild mustard) whose seeds are also high in EA. Other risks arise from the cross-pollination of compatible wild relatives and the mixing of seed prior to sowing. It is important that both HEAR and LEAR varieties are appropriately managed since risks and their potential for mitigation arise throughout the entire LEAR crop production process. The length of rotation, type of tillage, cultivar choice, buffer zones, effective weed management and basic machinery hygiene are all factors that can reduce the risk of erucic acid contamination of LEAR crops and maintain the required thresholds. Full article
Show Figures

Figure 1

Back to TopTop