Evaluation of Tuber Yield and Marketable Quality of Newly Developed Thirty-Two Potato Varieties Grown in Three Different Ecological Zones in South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Agronomical Data
2.2. Common Scab Infected Tuber
- L:
- the number of tuber scored as that rating
- Y:
- rating (from 1 to 5)
2.3. Appearance Rate of Physiological Disorder
2.4. Specific Gravity Measurement
2.5. Measurement of Chip Color
2.6. Analysis of Reducing Sugar
3. Statistical Analysis
4. Results and Discussion
4.1. Tuber Yield and Quality
4.2. Tuber Cracking Rate (%)
4.3. Potato Common Scab Infected Rate (%) and Potato Common Scab Severity (%)
4.4. Internal Brown Spot Rate (%)
4.5. Hollow Heart Rate (%)
4.6. Specific Gravity
4.7. Chip Lightness
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Hijmans, R.J.; Spooner, D.M. Geographic distribution of wild potato species. Am. J. Bot. 2001, 88, 2101–2112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Statistics Korea. Available online: http://kostat.go.kr/portal/eng/surveyOutline/1/5/index.static (accessed on 1 May 2020).
- Zhang, H.; Fen, X.; Yu, W.; Hu, H.; Dai, X. Progress of potato staple food research and industry development in China. J. Integr. Agric. 2017, 16, 2924–2932. [Google Scholar] [CrossRef]
- Ek, K.L.; Wang, S.; Copeland, L.; Brand-Miller, J.C. Discovery of a low-glycaemic index potato and relationship with starch digestion in vitro. Br. J. Nutr. 2014, 111, 699–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camire, M.E.; Kubow, S.; Donnelly, D.J. Potatoes and human health. Crit. Rev. Food Sci. Nutr. 2009, 49, 823–840. [Google Scholar] [CrossRef]
- Visvanathan, R.; Jayathilake, C.; Chaminda Jayawardana, B.; Liyanage, R. Health-beneficial properties of potato and compounds of interest. J. Sci. Food Agric. 2016, 96, 4850–4860. [Google Scholar] [CrossRef]
- Lovat, C.; Nassar, A.M.K.; Kubow, S.; Li, X.-Q.; Donnelly, D.J. Metabolic biosynthesis of potato (Solanum tuberosum L.) antioxidants and implications for human health. Crit. Rev. Food Sci. Nutr. 2016, 56, 2278–2303. [Google Scholar] [CrossRef]
- Friedman, M. Nutritional value of proteins from different food sources. A review. J. Agric. Food Chem. 1996, 44, 6–29. [Google Scholar] [CrossRef]
- Ezekiel, R.; Singh, N.; Sharma, S.; Kaur, A. Beneficial phytochemicals in potato—A review. Food Res. Int. 2013, 50, 487–496. [Google Scholar] [CrossRef]
- Bach, S.; Yada, R.Y.; Bizimungu, B.; Sullivan, J.A. Genotype by environment interaction effects on fibre components in potato (Solanum tuberosum L.). Euphytica 2012, 187, 77–86. [Google Scholar] [CrossRef] [Green Version]
- Potato Production Worldwide, 2018|Statista. Available online: https://www.statista.com/statistics/382174/global-potato-production/ (accessed on 1 May 2020).
- Birch, P.R.J.; Bryan, G.; Fenton, B.; Gilroy, E.M.; Hein, I.; Jones, J.T.; Prashar, A.; Taylor, M.A.; Torrance, L.; Toth, I.K. Crops that feed the world 8: Potato: Are the trends of increased global production sustainable? Food Secur. 2012, 4, 477–508. [Google Scholar] [CrossRef]
- Carputo, D.; Aversano, R.; Frusciante, L. Breeding potato for quality traits. Acta Hortic. 2005, 684, 55–64. [Google Scholar] [CrossRef]
- Sverrisdóttir, E.; Byrne, S.; Sundmark, E.H.R.; Johnsen, H.Ø.; Kirk, H.G.; Asp, T.; Janss, L.; Nielsen, K.L. Genomic prediction of starch content and chipping quality in tetraploid potato using genotyping-by-sequencing. Theor. Appl. Genet. 2017, 130, 2091–2108. [Google Scholar] [CrossRef] [PubMed]
- Dale, M.E.B.; Mackay, G.R. Inheritance of table and processing quality, in Bradshaw. In Potato Genetics; Bradshaw, J.E., Mackay, G.R., Eds.; CABI: Wallingford, UK, 1994; pp. 285–315. [Google Scholar]
- Colman, S.L.; Massa, G.A.; Carboni, M.F.; Feingold, S.E. Cold sweetening diversity in Andean potato germplasm from Argentina. J. Sci. Food Agric. 2017, 97, 4744–4749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamernik, A.J.; Hanneman, R.E.; Jansky, S.H. Introgression of wild species germplasm with extreme resistance to cold sweetening into the cultivated potato. Crop Sci. 2009, 49, 529–542. [Google Scholar] [CrossRef]
- Rana, R.K.; Pandey, S.K. Processing quality potatoes in India: An estimate of industry’s demand. Proc. Food Ind. 2007, 10, 26–35. [Google Scholar]
- Harris, P.M. Mineral nutrition. In The Potato Crop; Springer: Berlin/Heidelberg, Germany, 1992; pp. 162–213. [Google Scholar]
- Horsfall, J.G. An improved grading system for measuring plant diseases. Phytopathology 1945, 35, 655. [Google Scholar]
- Mihovilovich, E.; Carli, C.; Mendiburu, F.; de Hualla, V.; Bonierbale, M. Tuber Bulking Maturity Assessment of Elite and Advanced Potato Clones Protocol; International Potato Center (CIP): Lima, Peru, 2014; 43p, ISBN 978-92-9060-441-9. [Google Scholar]
- Patel, H.R.; Shekh, A.M.; Pate, G.C.; Mistry, D.S. Yield and quality of potato in relation to different dates of planting. J. Indian Potato Assoc. 2000, 27, 87–90. [Google Scholar]
- Sojka, R.E.; Westermann, D.T.; Kincaid, D.C.; McCann, I.R.; Halderson, J.L.; Thornton, M. Zone-subsoiling effects on potato yield and grade. Am. Potato J. 1993, 70, 475–484. [Google Scholar] [CrossRef]
- Singh, N.; Ahmed, Z. Effect of mulching on potato production in high altitude cold arid zone of Ladakh. Potato J. 2008, 35. [Google Scholar]
- Kim, Y.-U.; Seo, B.-S.; Choi, D.-H.; Ban, H.-Y.; Lee, B.-W. Impact of high temperatures on the marketable tuber yield and related traits of potato. Eur. J. Agron. 2017, 89, 46–52. [Google Scholar] [CrossRef]
- De Temmerman, L.; Wolf, J.; Colls, J.; Bindi, M.; Fangmeier, A.; Finnan, J.; Ojanperä, K.; Pleijel, H. Effect of climatic conditions on tuber yield (Solanum tuberosum L.) in the European ‘CHIP’experiments. Eur. J. Agron. 2002, 17, 243–255. [Google Scholar] [CrossRef]
- Kooman, P.L.; Fahem, M.; Tegera, P.; Haverkort, A.J. Effects of climate on different potato genotypes 1. Radiation interception, total and tuber dry matter production. Eur. J. Agron. 1996, 5, 193–205. [Google Scholar] [CrossRef]
- Naumann, M.; Koch, M.; Thiel, H.; Gransee, A.; Pawelzik, E. The importance of nutrient management for potato production part II: Plant nutrition and tuber quality. Potato Res. 2020, 63, 121–137. [Google Scholar] [CrossRef] [Green Version]
- Zotarelli, L.; Hutchinson, C.; Byrd, S.; Gergela, D.; Rowl, D.L. Potato Physiological Disorders-Growth Cracks; Horticultural Sciences Department, UF/IFAS Extension: Gainesville, FL, USA, 2003. [Google Scholar]
- Zhang, S.-Y.; Li, X.-Y. Soil moisture and temperature dynamics in typical alpine ecosystems: A continuous multi-depth measurements-based analysis from the Qinghai-Tibet Plateau, China. Hydrol. Res. 2018, 49, 194–209. [Google Scholar] [CrossRef]
- Braun, S.; Gevens, A.; Charkowski, A.; Allen, C.; Jansky, S. Potato common scab: A review of the causal pathogens, management practices, varietal resistance screening methods, and host resistance. Am. J. Potato Res. 2017, 94, 283–296. [Google Scholar] [CrossRef]
- Clarke, C.R.; Kramer, C.G.; Kotha, R.R.; Wanner, L.A.; Luthria, D.L.; Kramer, M. Cultivar Resistance to Common Scab Disease of Potato Is Dependent on the Pathogen Species. Phytopathology 2019, 109, 1544–1554. [Google Scholar] [CrossRef]
- Terman, G.L.; Steinmetz, F.H.; Hawkins, A. Effects of Certain Soil Conditions and Treatments upon Potato Yields and the Development and Control of Potato Scab; Maine Agricultural Experiment Station: Orono, ME, USA, 1948; Volume 463, p. 31. [Google Scholar]
- Odland, T.E.; Allbritten, H.G. Soil reaction and calcium supply as factors influencing the yield of potatoes and the occurrence of scab. Agron. J. 1950, 42, 269–275. [Google Scholar] [CrossRef]
- Goto, K. Relationships between soil pH, available calcium and prevalence of potato scab. Soil Sci. Plant Nutr. 1985, 31, 411–418. [Google Scholar] [CrossRef] [Green Version]
- Tzeng, K.C.; Kelman, A.; Simmons, K.E.; Kelling, K.A. Relationship of calcium nutrition to internal brown spot of potato tubers and sub-apical necrosis of sprouts. Am. Potato J. 1986, 63, 87–97. [Google Scholar] [CrossRef]
- Olsen, N.L.; Hiller, L.K.; Mikitzel, L.J. The dependence of internal brown spot development upon calcium fertility in potato tubers. Potato Res. 1996, 39, 165–178. [Google Scholar] [CrossRef]
- Palta, J.P. Improving potato tuber quality and production by targeted calcium nutrition: The discovery of tuber roots leading to a new concept in potato nutrition. Potato Res. 2010, 53, 267–275. [Google Scholar] [CrossRef]
- Elbatawi, I.E. An acoustic impact method to detect hollow heart of potato tubers. Biosyst. Eng. 2008, 100, 206–213. [Google Scholar] [CrossRef]
- Wayumba, B.O.; Choi, H.S.; Seok, L.Y. Selection and evaluation of 21 potato (Solanum tuberosum) breeding clones for cold chip processing. Foods 2019, 8, 98. [Google Scholar] [CrossRef] [Green Version]
- Grewal, S.S.; Uppal, D.S. Effect of dry matter and specific gravity on yield, colour and oil content of potato chips. Indian Food Pack. 1989, 43, 17–20. [Google Scholar]
- Killick, R.J.; Simmonds, N.W. Specific gravity of potato tubers as a character showing small genotype-environment interactions. Heredity (Edinburgh) 1974, 32, 109–112. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Bhaskar, P.B.; Busse, J.S.; Zhang, R.; Bethke, P.C.; Jiang, J. Developing cold-chipping potato varieties by silencing the vacuolar invertase gene. Crop Sci. 2011, 51, 981–990. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Salamini, F.; Gebhardt, C. A potato molecular-function map for carbohydrate metabolism and transport. Theor. Appl. Genet. 2001, 102, 284–295. [Google Scholar] [CrossRef]
- Wiberley-Bradford, A.E.; Bethke, P.C. Suppression of the vacuolar invertase gene delays senescent sweetening in chipping potatoes. J. Sci. Food Agric. 2018, 98, 354–360. [Google Scholar] [CrossRef]
- Shallenberger, R.S.; Smith, O.; Treadway, R.H. Food color changes, role of the sugars in the browning reaction in potato chips. J. Agric. Food Chem. 1959, 7, 274–277. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, B.P.; Kumar, P. An overview of the factors affecting sugar content of potatoes. Ann. Appl. Biol. 2004, 145, 247–256. [Google Scholar] [CrossRef]
- Meena, R.S.; Manivel, P.; Bharadwaj, V.; Gopal, J. Screening potato wild species for low accumulation of reducing sugars during cold storage. Electron. J. Plant Breed. 2009, 1, 89–92. [Google Scholar]
- Hayes, R.J.; Thill, C.A. Selection for potato genotypes from diverse progenies that combine 4 C chipping with acceptable yields, specific gravity, and tuber appearance. Crop Sci. 2002, 42, 1343–1349. [Google Scholar] [CrossRef]
Lines | Abbreviation | Ploidy | Mother | Father |
---|---|---|---|---|
Gogu Valley | S1 | 4X | Shepody | A8812-3 |
Juice Valley | S2 | 4X | A90356-1R | Co86218-2R |
Valley 3 | S3 | 4X | Unknown | Unknown |
Early Valley | S4 | 4X | Sunscrisp | A87109-10 |
Summer Valley | S5 | 4X | Atlantic | DG55 |
Valley 6 | S6 | 4X | Unknown | Unknown |
Valley 7 | S7 | 4X | Unknown | Unknown |
Winter Valley | S8 | 4X | Sunscrisp | A87109-10 |
Taedong Valley | S9 | 4X | W870 | A88431-1 |
Gangwon Valley | S10 | 4X | NDO1496-1 | A90359-7 |
Valley 11 | S11 | 4X | Unknown | Unknown |
Valley 12 | S12 | 4X | Unknown | Unknown |
Valley 13 | S13 | 4X | Atlantic | Superior |
Valley 15 | S14 | 4X | Unknown | Unknown |
Valley 17 | S15 | 4X | Chipeta | A90359-7 |
Valley 19 | S16 | 4X | Cs7232-4 | Unknown |
Bora Valley | S17 | 4X | A87sp × 14-4 | Gurmeys purple |
Rose Valley | S18 | 4X | 8902 × Norchip | P1323471A |
Stick Valley | S19 | 4X | 7389 × Superior | B1066-1 |
Valley 31 | S20 | 4X | Unknown | Unknown |
Valley 32 | S21 | 4X | W870 | A88431-1 |
Giant Valley | S22 | 4X | 6545B0850-4 | B0975-1 |
Purple Valley | S23 | 4X | 6545B0850-4 | B0975-1 |
Valley 43 | S24 | 4X | Unknown | Unknown |
Valley 45 | S25 | 4X | Unknown | Unknown |
Valley 47 | S26 | 4X | A83359-5R | A89655-5DY |
Valley 52 | S27 | 4X | Unknown | Unknown |
Rchip Valley | S28 | 4X | A90356-1R | Co86218-2R |
Valley 89 | S29 | 4X | Unknown | Unknown |
Gui Valley | S30 | 4X | ND2471-8 | Cona |
Valley 91 | S31 | 4X | Unknown | Unknown |
Valley 92 | S32 | 4X | Unknown | Unknown |
Atlantic | S33 | 4X | Wauseon | B5141-6 |
Shepody | S34 | 4X | Bake-King | F58050 |
Superior | S35 | 4X | B96-56 | M59-44 |
Lines | Region 1 | Region 2 | Region 3 | Average | ||||
---|---|---|---|---|---|---|---|---|
IBS | HHR | IBS | HHR | IBS | HHR | IBS | HHR | |
S1 | 0 a * | 6.67 b | 0 a | 0 a | 0 a | 6.67 bc | 0 | 4.44 |
S2 | 0 a | 6.67 b | 13.33 a | 0 a | 0 a | 0 a | 4.44 | 2.22 |
S3 | 6.67 a | 0 b | 6.67 a | 6.67 a | 6.67 a | 0 a | 6.67 | 2.22 |
S4 | 6.67 a | 3.33 b | 13.33 a | 0 a | 0 a | 0 a | 6.67 | 1.11 |
S5 | 0 a | 0 b | 13.33 a | 0 a | 0 a | 0 a | 4.44 | 0 |
S6 | 0 a | 6.67 b | 0 a | 0 a | 0 a | 6.67 bc | 0 | 4.44 |
S7 | 6.67 a | 0 b | 0 a | 0 a | 6.67 a | 0 a | 4.44 | 0 |
S8 | 0 a | 3.33 b | 6.67 a | 0 a | 0 a | 0 a | 2.22 | 1.11 |
S9 | 0 a | 0 b | 0 a | 0 a | 0 a | 6.67 bc | 0 | 2.22 |
S10 | 6.67 a | 0 b | 0 a | 0 a | 6.67 a | 6.67 bc | 4.44 | 2.22 |
S11 | 6.67 a | 0 b | 0 a | 0 a | 0 a | 0 a | 2.22 | 0 |
S12 | 0 a | 0 b | 6.67 a | 0 a | 0 a | 0 a | 2.22 | 0 |
S13 | 0 a | 0 b | 6.67 a | 0 a | 0 a | 0 a | 2.22 | 0 |
S14 | 6.67 a | 0 b | 6.67 a | 0 a | 6.67 a | 0 a | 6.67 | 0 |
S15 | 6.67 a | 0 b | 6.67 a | 0 a | 6.67 a | 0 a | 6.67 | 0 |
S16 | 0 a | 0 b | 6.67 a | 6.67 a | 0 a | 0 a | 2.22 | 2.22 |
S17 | 0 a | 0 b | 0 a | 0 a | 6.67 a | 0 a | 2.22 | 0 |
S18 | 0 a | 6.67 b | 13.33 a | 0 a | 0 a | 0 a | 4.44 | 2.22 |
S19 | 0 a | 0 b | 0 a | 0 a | 0 a | 0 a | 0 | 0 |
S20 | 6.67 a | 0 b | 6.67 a | 0 a | 0 a | 0 a | 4.44 | 0 |
S21 | 0 a | 0 b | 6.67 a | 0 a | 0 a | 0 a | 2.22 | 0 |
S22 | 0 a | 0 b | 0 a | 0 a | 0 a | 0 a | 0 | 0 |
S23 | 6.67 a | 0 b | 0 a | 0 a | 6.67 a | 0 a | 4.44 | 0 |
S24 | 0 a | 0 b | 6.67 a | 6.67 a | 0 a | 0 a | 2.22 | 2.22 |
S25 | 6.67 a | 0 b | 6.67 a | 10 a | 0 a | 0 a | 4.44 | 3.33 |
S26 | 0 a | 0 b | 6.67 a | 0 a | 0 a | 0 a | 2.22 | 0 |
S27 | 13.33 a | 0 b | 6.67 a | 0 a | 0 a | 0 a | 6.67 | 0 |
S28 | 6.67 a | 0 b | 0 a | 0 a | 0 a | 0 a | 2.22 | 0 |
S29 | 0 a | 0 b | 6.67 a | 6.67 a | 0 a | 0 a | 2.22 | 2.22 |
S30 | 0 a | 0 b | 0 a | 0 a | 0 a | 0 a | 0 | 0 |
S31 | 0 a | 0 b | 0 a | 0 a | 0 a | 0 a | 0 | 0 |
S32 | 0 a | 13.33 b | 6.67 a | 0 a | 0 a | 0 a | 2.22 | 4.44 |
S33 | 6.67 a | 26.67 a | 6.67 a | 6.67 a | 6.67 a | 26.67 a | 6.67 | 20 |
S34 | 0 a | 0 b | 0 a | 6.67 a | 6.67 a | 13.33 b | 2.22 | 6.67 |
S35 | 0 a | 0 b | 0 a | 0 a | 6.67 a | 0 a | 2.22 | 0 |
Lines | Region 1 | Region 2 | Region 3 | Average | ||||
---|---|---|---|---|---|---|---|---|
SG | CL | SG | CL | SG | CL | SG | CL | |
S1 | 1.03 * | 64.06 hijk | 1.07 abc | 67 ab | 1.07 bcdef | 65.08 def | 1.06 | 65.38 |
S2 | 1.06 cdefgh | 67.83 cdef | 1.08 ab | 63.39 cdef | 1.08 ab | 65.61 de | 1.07 | 65.61 |
S3 | 1.04 ghijkl | 65.8 1fgh | 1.035 jk | 63.29 cdef | 1.07 bcde | 64.17 efg | 1.05 | 64.42 |
S4 | 1.03 jkl | 55.7 1op | 1.04 hijk | 56.01 kl | 1.07 bcde | 54.76 k | 1.05 | 55.49 |
S5 | 1.05 defghij | 66.57 efg | 1.05 defghij | 58.94 ij | 1.05 fg | 60.11 i | 1.05 | 61.87 |
S6 | 1.05 defghij | 62.55 jklmn | 1.06 abcdef | 63.35 cdef | 1.07 bcdef | 64.14 efg | 1.06 | 63.35 |
S7 | 1.06 cdefgh | 60.35 n | 1.06 bcdefg | 64.34 cd | 1.07 bcdef | 62.73 fgh | 1.06 | 62.47 |
S8 | 1.05 efghijk | 64.79 ghij | 1.05 fghijk | 53.01 m | 1.05 fg | 56.8 jk | 1.05 | 58.2 |
S9 | 1.05 fghijkl | 68.25 bcde | 1.07 abcd | 68.31 a | 1.06 bcdef | 68.52 bc | 1.06 | 68.36 |
S10 | 1.04 ijkl | 67.87 cdef | 1.071 abcdef | 64.98 bcd | 1.06 bcdef | 68.26 bc | 1.06 | 67.04 |
S11 | 1.04 jkl | 71.95 a | 1.04 ghijk | 65.08 bcd | 1.06 cdef | 65.16 def | 1.05 | 67.4 |
S12 | 1.04 ijkl | 64.68 ghij | 1.05 fghijk | 64.19 cde | 1.07 bcde | 62.17 ghi | 1.05 | 63.68 |
S13 | 1.05 defghij | 65.44 ghi | 1.05 efghij | 64.91 bcd | 1.07 bcdef | 62.99 fgh | 1.06 | 64.45 |
S14 | 1.03 kl | 69.41 bc | 1.04 ijk | 65.49 bc | 1.04 g | 66.7 cd | 1.03 | 67.2 |
S15 | 1.05 defghij | 63.74 hijk | 1.05 fghijk | 63.81 cdef | 1.07 bcdef | 64.51 defg | 1.06 | 64.02 |
S16 | 1.04 hijkl | 64.86 ghij | 1.04 ghijk | 65.71 bc | 1.07 bcde | 66.68 cd | 1.05 | 65.75 |
S17 | 1.07 bcdefg | 42.02 q | 1.06 abcdef | 41.92 o | 1.08 bcde | 41.97 m | 1.07 | 41.97 |
S18 | 1.06 bcdefg | 57.75 o | 1.07 abcd | 65.57 bc | 1.07 bcdef | 69.35 b | 1.07 | 64.22 |
S19 | 1.07 bcdefg | 60.5 n | 1.07 abcde | 65.59 bc | 1.07 bcde | 62.82 fgh | 1.07 | 62.97 |
S20 | 1.06 cdefghi | 70.31 ab | 1.08 ab | 68.98 a | 1.06 ef | 66.34 cde | 1.06 | 68.54 |
S21 | 1.03 l | 63.15 ijklm | 1.02 k | 64.71 bcd | 1.06 bcdef | 66.14 cde | 1.04 | 64.67 |
S22 | 1.06 bcdefg | 57.08 o | 1.07 abcdef | 58.09 jk | 1.07 bcdef | 60 i | 1.07 | 58.39 |
S23 | 1.07 abcd | 53.99 p | 1.08 a | 55.09 lm | 1.07 bcdef | 57.19 j | 1.07 | 55.42 |
S24 | 1.08 abc | 68.99 bcd | 1.08 a | 68.78 a | 1.10 a | 71.77 a | 1.09 | 69.85 |
S25 | 1.07 bcdef | 61.43 lmn | 1.08 ab | 59.33 hij | 1.08 abc | 63.03 fgh | 1.08 | 61.26 |
S26 | 1.07 bcdefg | 43.33 q | 1.06 bcdefgh | 50.23 n | 1.06 def | 50.16 l | 1.06 | 47.91 |
S27 | 1.05 fghijk | 60.8 mn | 1.05 defghij | 60.77 ghi | 1.08 bcde | 60.74 hi | 1.06 | 60.77 |
S28 | 1.07 abcde | 60.49 n | 1.07 abcde | 60.74 ghi | 1.07 bcde | 60.99 hi | 1.07 | 60.74 |
S29 | 1.08 ab | 41.28 q | 1.07 abcde | 63.14 cdef | 1.06 bcdef | 62.81 fgh | 1.07 | 55.74 |
S30 | 1.09 a | 60.88 mn | 1.08 a | 62.11 efg | 1.08 bcde | 63.03 fgh | 1.08 | 62.01 |
S31 | 1.07 abcde | 60.4 n | 1.07 abc | 61.42 fgh | 1.06 bcdef | 62.98 fgh | 1.07 | 61.6 |
S32 | 1.08 ab | 61.84 klmn | 1.07 abc | 62.63 defg | 1.07 bcde | 60.23 i | 1.08 | 61.57 |
S33 | 1.05 defghij | 69.03 bcd | 1.05 cdefghi | 68.34 a | 1.07 bcde | 68.07 bc | 1.06 | 68.48 |
S34 | 1.07 bcdefg | 66.98 defg | 1.07 abcd | 67.99 a | 1.07 bcde | 68.07 bc | 1.07 | 67.68 |
S35 | 1.05 ghijkl | 63.2 ijklm | 1.04 ijk | 64.1 cde | 1.08 abcd | 64.72 def | 1.05 | 64.01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, J.; Choi, S.P.; Azad, O.K.; Kim, J.W.; Lim, Y.-S. Evaluation of Tuber Yield and Marketable Quality of Newly Developed Thirty-Two Potato Varieties Grown in Three Different Ecological Zones in South Korea. Agriculture 2020, 10, 327. https://doi.org/10.3390/agriculture10080327
Islam J, Choi SP, Azad OK, Kim JW, Lim Y-S. Evaluation of Tuber Yield and Marketable Quality of Newly Developed Thirty-Two Potato Varieties Grown in Three Different Ecological Zones in South Korea. Agriculture. 2020; 10(8):327. https://doi.org/10.3390/agriculture10080327
Chicago/Turabian StyleIslam, Jahirul, Sun Phil Choi, Obyedul Kalam Azad, Ji Woong Kim, and Young-Seok Lim. 2020. "Evaluation of Tuber Yield and Marketable Quality of Newly Developed Thirty-Two Potato Varieties Grown in Three Different Ecological Zones in South Korea" Agriculture 10, no. 8: 327. https://doi.org/10.3390/agriculture10080327
APA StyleIslam, J., Choi, S. P., Azad, O. K., Kim, J. W., & Lim, Y. -S. (2020). Evaluation of Tuber Yield and Marketable Quality of Newly Developed Thirty-Two Potato Varieties Grown in Three Different Ecological Zones in South Korea. Agriculture, 10(8), 327. https://doi.org/10.3390/agriculture10080327