Effects of Pre-Harvest Glyphosate Application on Spring Wheat Quality Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Quality Analyses of Harvested Samples
2.3. Statistical Analysis
3. Results and Discussion
3.1. Effects of Glyphosate on Kernel, Milling and Flour Quality
3.2. Effect of Glyphosate on Dough Quality
3.3. Effect of Glyphosate on Baking Quality
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Duke, S.O.; Powles, S.B. Glyphosate: A once-in-a-century herbicide. Pest Manag. Sci. 2008, 64, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Williams, G.M.; Kroes, R.; Munro, I.C. Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans. Regul. Toxicol. Pharm. 2000, 31, 117–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siehl, D.L. Herbicide Activity: Toxicology, Biochemistry and Molecular Biology; Roe, R.M., Burton, J.D., Kuhr, R.J., Eds.; IOS Press: Amsterdam, The Netherlands, 1997; pp. 37–67. [Google Scholar]
- Servaites, J.C.; Tucci, M.A.; Geiger, D.R. Glyphosate effects on carbon assimilation, ribulose bisphosphate carboxylase activity, and metabolite levels in sugar-beet leaves. Plant Physiol. 1987, 85, 370–374. [Google Scholar] [CrossRef] [Green Version]
- Dexter, J.E.; Edwards, N.M. The Implications of Frequently Encountered Grading Factors on the Processing Quality of Durum Wheat; Association of Operative Millers: Lenexa, KS, USA, 1998; pp. 7165–7171. [Google Scholar]
- Manthey, F.A.; Chakraborty, M.; Peel, M.D.; Pederson, J.D. Effect of preharvest applied herbicides on breadmaking quality of hard red spring wheat. J. Sci. Food Agric. 2004, 84, 441–446. [Google Scholar] [CrossRef]
- Darwent, A.L.; Kirkland, K.J.; Townleysmith, L.; Harker, K.N.; Cessna, A.J.; Lukow, O.M.; Lefkovitch, L.P. Effect of preharvest applications of glyphosate on the drying, yield and quality of wheat. Can. J. Plant Sci. 1994, 74, 221–230. [Google Scholar] [CrossRef]
- Bresnahan, G.A.; Manthey, F.A.; Howatt, K.A.; Chakraborty, M. Glyphosate applied preharvest induces shikimic acid accumulation in hard red spring wheat (Triticum aestivum). J. Agric. Food Chem. 2003, 51, 4004–4007. [Google Scholar] [CrossRef] [PubMed]
- Pollock, C.J.; Cairns, A.J. Fructan metabolism in grasses and cereals. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1991, 42, 77–101. [Google Scholar] [CrossRef]
- Yenish, J.P.; Young, F.L. Effect of preharvest glyphosate application on seed and seedling quality of spring wheat (Triticum aestivum). Weed Technol. 2000, 14, 212–217. [Google Scholar] [CrossRef]
- Jaskulski, D.; Jaskulska, I. The effect of pre-harvest glyphosate application on grain quality and volunteer winter wheat. Rom. Agric. Res. 2014, 31, 283–289. [Google Scholar]
- Krenchinski, F.H.; Cesco, V.J.S.; Rodrigues, D.M.; Pereira, V.G.C.; Albrecht, A.P.; Albrecht, L.P. Yield and physiological quality of wheat seeds after desiccation with different herbicides. J. Seed Sci. 2017, 39, 254–261. [Google Scholar] [CrossRef] [Green Version]
- McNeal, F.H.; Hodgson, J.M.; McGuire, C.F.; Berg, M.A. Chemical desiccation experiments with hard red spring wheat, Triticum aestivum L. Agron. J. 1973, 65, 451–453. [Google Scholar] [CrossRef]
- Darwent, A.L.; Kirkland, K.J.; Baig, M.N.; Lefkovitch, L.P. Preharvest applications of glyphosate for Canada thistle (Cirsium arvense) control. Weed Technol. 1994, 8, 477–482. [Google Scholar] [CrossRef]
- Sharma, J.; Satya, S.; Kumar, V.; Tewary, D.K. Dissipation of pesticides during bread-making. Chem. Health Saf. 2005, 12, 17–22. [Google Scholar] [CrossRef]
- Low, F.L.; Shaw, I.C.; Gerrard, J.A. The effect of Saccharomyces cerevisiae on the stability of the herbicide glyphosate during bread leavening. Lett. Appl. Microbiol. 2005, 40, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Hack, M.; Nitz, S.; Parlar, H. Behavior of [14C]atrazine, [14C]terbutylazine, and their major metabolites in the brewing process. J. Agric. Food Chem. 1997, 45, 1375–1380. [Google Scholar] [CrossRef]
- Braconi, D.; Sotgiu, M.; Millucci, L.; Paffetti, A.; Tasso, F.; Alisi, C.; Martini, S.; Rappijoli, R.; Lusini, P.; Sprocati, A.R.; et al. Comparative analysis of the effects of locally used herbicides and their active ingredients on a wild-type wine Saccharomyces cerevisiae strain. J. Agric. Food Chem. 2006, 54, 3163–3172. [Google Scholar] [CrossRef]
- Roisch, U.; Lingens, F. The mechanism of action of the herbicide N-(phosphonomethyl) glycine: Its effect on the growth and the enzymes of aromatic amino acid biosynthesis in Escherichia coli Hoppe Seylers, Z. Physiol. Chem. 1980, 361, 1049–1058. [Google Scholar] [CrossRef]
- AACCI. Approved Methods of the American Association of Cereal Chemists. Available online: http://methods.aaccnet.org/ (accessed on 31 May 2017).
- Stone, P.J.; Savin, R. Grain quality and its physiological determinants. In Wheat: Ecology and Physiology of Yield Determination; Sattore, E.H., Slafer, G.A., Eds.; The Haworth Press: Binghamton, NY, USA, 1999; pp. 100–109. [Google Scholar]
- Zobiole, L.H.S.; Kremer, R.J.; Oliveira, R.S.; Constantin, J. Glyphosate affects chlorophyll, nodulation and nutrient accumulation of “second generation” glyphosate-resistant soybean (Glycine max L.). Pest Biochem. Physiol. 2011, 99, 53–60. [Google Scholar] [CrossRef]
- Zollinger, R.K.; Manthey, F.A.; Fitterer, S.A. Effect of preharvest herbicides on durum wheat quality. In Proceedings of the 52nd Western Society of Weed Science, Colorado Spring, CO, USA, 8–11 March 1999; p. 103. [Google Scholar]
- Wilson, R.G.; Smith, J.A. Influence of harvest-aid herbicides on dry bean (Phaseolus vulgaris) desiccation, seed yield, and quality. Weed Technol. 2002, 16, 109–115. [Google Scholar] [CrossRef]
- Baur, J.R.; Bovey, R.W.; Veech, J.A. Growth responses in sorghum and wheat induced by glyphosate. Weed Sci. 1977, 25, 238–240. [Google Scholar] [CrossRef]
- Bennett, A.C.; Shaw, D.R. Effect of preharvest desiccants on group IV glycine max seed viability. Weed Sci. 2000, 48, 426–430. [Google Scholar] [CrossRef]
- Baig, M.N.; Darwent, A.L.; Harker, K.N.; O’Donovan, J.T. Preharvest applications of glyphosate affect emergence and seedling growth of field pea (Pisum sativum). Weed Technol. 2003, 17, 655–665. [Google Scholar] [CrossRef]
- Bond, J.A.; Bollich, P.K. Effects of pre-harvest desiccants on rice yield and quality. Crop Prot. 2007, 26, 490–494. [Google Scholar] [CrossRef]
- He, Y.-Q.; Cheng, J.-P.; Liu, L.-F.; Li, X.-D.; Yang, B.; Zhang, H.-S.; Wang, Z.-F. Effects of pre-harvest chemical application on rice desiccation and seed quality. J. Zhejiang Univ. Sci. B 2015, 16, 813–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boudreaux, J.M.; Griffin, J.L. Application timing of harvest aid herbicides affects soybean harvest and yield. Weed Technol. 2011, 25, 38–43. [Google Scholar] [CrossRef]
- Esfahani, M.; Fardi, M.; Asghari, J.; Rabiei, M.; Samizadeh, H. Effects of pre-harvest application of parquat on grain moisture reduction, grain yield and quality of rapeseed (Brassica napus L.) cultivars. Casp. J. Env. Sci. 2012, 10, 75–82. [Google Scholar]
- Bellé, C.; Kulczynski, S.M.; Basso, C.J.; Edu Kaspary, T.; Lamego, F.P.; Pinto, M.A.B. Yield and quality of wheat seeds as a function of desiccation stages and herbicides. J. Seed Sci. 2014, 36, 63–70. [Google Scholar] [CrossRef]
- Symons, S.J.; van Schepdael, L.; Dexter, J.E. Measurement of hard vitreous kernels in durum wheat by machine vision. Cereal Chem. 2003, 80, 511–517. [Google Scholar] [CrossRef]
- Greffeuille, V.; Abecassis, J.; Barouh, N.; Villeneuve, P.; Mabille, F.; Bar L’Helgouac’h, C.; Lullien-Pellerin, V. Analysis of the milling reduction of bread wheat farina: Physical and biochemical characterisation. J. Cereal Sci. 2007, 45, 97–105. [Google Scholar] [CrossRef]
- Marzec, A.; Cacak-Pietrzak, G.; Gondek, E.W.A. Mechanical and acoustic properties of spring wheat versus its technological quality factors. J. Texture Stud. 2011, 42, 319–329. [Google Scholar] [CrossRef]
- Uthayakumaran, S.; Gras, P.W.; Stoddard, F.L.; Bekes, F. Effect of varying protein content and glutenin-to-gliadin ratio on the functional properties of wheat dough. Cereal Chem. 1999, 76, 389–394. [Google Scholar] [CrossRef]
- Preston, K.R.; Kilborn, R.H.; Morgan, B.C.; Babb, J.C. Effects of frost and immaturity on the quality of a Canadian hard red spring wheat. Cereal Chem. 1991, 68, 133–138. [Google Scholar]
- Uhlen, A.K.; Hafskjold, R.; Kalhovd, A.H.; Sahlström, S.; Longva, Å.; Magnus, E.M. Effects of cultivar and temperature during grain filling on wheat protein content, composition, and dough mixing properties. Cereal Chem. 1998, 75, 460–465. [Google Scholar] [CrossRef]
- Triboï, E.; Martre, P.; Triboï-Blondel, A.M. Environmentally-induced changes in protein composition in developing grains of wheat are related to changes in total protein content. J. Exp. Bot. 2003, 54, 1731–1742. [Google Scholar] [CrossRef] [PubMed]
- Perten, H. Application of falling number method for evaluating α-amylase activity. Cereal Chem. 1964, 41, 127–139. [Google Scholar]
- Mares, D.; Mrva, K. Late-maturity α-amylase: Low falling number in wheat in the absence of preharvest sprouting. J. Cereal Sci. 2008, 47, 6–17. [Google Scholar] [CrossRef]
- Johansson, E. Effect of two wheat genotypes and Swedish environment on falling number, amylase activities, and protein concentration and composition. Euphytica 2002, 126, 143–149. [Google Scholar] [CrossRef]
- Hogg, A.C.; Beecher, B.; Martin, J.M.; Meyer, F.; Talbert, L.; Lanning, S.; Giroux, M.J. Hard wheat milling and bread baking traits affected by the seed-specific overexpression of puroindolines. Crop Sci. 2005, 45, 871–878. [Google Scholar] [CrossRef]
- Peterson, C.J.; Graybosch, R.A.; Baenziger, P.S.; Grombacher, A.W. Genotype and environment effects on quality characteristics of hard red winter wheat. Crop Sci. 1992, 32, 98–103. [Google Scholar] [CrossRef]
- Bonomi, F.; Iametti, S.; Mamone, G.; Ferranti, P. The performing protein: Beyond wheat proteomics? Cereal Chem. 2013, 90, 358–366. [Google Scholar] [CrossRef]
- Kulkarni, R.G.; Ponte, J.G., Jr.; Kulp, K. Significance of gluten content as an index of flour quality. Cereal Chem. 1987, 64, 1–3. [Google Scholar]
- Gil, D.H.; Bonfil, D.J.; Svoray, T. Multi scale analysis of the factors influencing wheat quality as determined by gluten index. Field Crop. Res. 2011, 123, 1–9. [Google Scholar] [CrossRef]
- Hinton, J.J.C. The distribution of ash in the wheat kernel. Cereal Chem. 1959, 36, 19–31. [Google Scholar]
- Bhatta, M.; Regassa, T.; Rose, D.J.; Baenziger, P.S.; Eskridge, K.M.; Santra, D.K.; Poudel, R. Genotype, environment, seeding rate, and top-dressed nitrogen effects on end-use quality of modern Nebraska winter wheat. J. Sci. Food Agric. 2017, 97, 5311–5318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mladenov, N.; Przulj, N.; Hristov, N.; Djuric, V.; Milovanovic, M. Cultivar-by-environment interactions for wheat quality traits in semiarid conditions. Cereal Chem. 2001, 78, 363–367. [Google Scholar] [CrossRef]
- Fowler, D.B.; Roche, I.A.D.L. Wheat quality evaluation. 3. Influence of genotype and environment. Can. J. Plant Sci. 1975, 55, 263–269. [Google Scholar] [CrossRef]
- Horvat, D.; Drezner, G.; Sudar, R.; Simic, G.; Dvojkovic, K.; Spanic, V.; Magdic, D. Distribution of wheat protein components under different genetic backgrounds and environments. Turk. J. Field Crop. 2015, 20, 150–154. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y. Factors Influencing Farinograph Absorption of Canada Western Red Winter Wheat Genotypes; University of Manitoba: Winnipeg, MB, Canada, 2014. [Google Scholar]
- Uthayakumaran, S.; Tomoskozi, S.; Tatham, A.S.; Savage, A.W.J.; Gianibelli, M.C.; Stoddard, F.L.; Bekes, F. Effects of gliadin fractions on functional properties of wheat dough depending on molecular size and hydrophobicity. Cereal Chem. 2001, 78, 138–141. [Google Scholar] [CrossRef]
- Khatkar, B.S.; Fido, R.J.; Tatham, A.S.; Schofield, J.D. Functional properties of wheat gliadins. I. Effects on mixing characteristics and bread making quality. J. Cereal Sci. 2002, 35, 299–306. [Google Scholar] [CrossRef]
- Huebner, F.R.; Bietz, J.A. Assessment of the potential breadmaking quality of hard wheats by reversed-phase high-performance liquid-chromatography of gliadins. J. Cereal Sci. 1986, 4, 379–388. [Google Scholar] [CrossRef]
- Park, S.H.; Bean, S.R.; Chung, O.K.; Seib, P.A. Levels of protein and protein composition in hard winter wheat flours and the relationship to breadmaking. Cereal Chem. 2006, 83, 418–423. [Google Scholar] [CrossRef] [Green Version]
- Khatkar, B.S.; Bell, A.E.; Schofield, J.D. The dynamic rheological properties of glutens and gluten subfractions from wheats of good and poor bread-making quality. J. Cereal Sci. 1995, 22, 29–44. [Google Scholar] [CrossRef]
- Baker, R.J.; Kosmolak, F.G. Effects of genotype-environment interaction on bread wheat quality in Western Canada. Can. J. Plant Sci. 1977, 57, 185–191. [Google Scholar] [CrossRef]
- Malalgoda, M.; Ohm, J.B.; Meinhardt, S.; Simsek, S. Association between gluten protein composition and breadmaking quality characteristics in historical and modern spring wheat. Cereal Chem. 2018, 95, 226–238. [Google Scholar] [CrossRef]
- Curic, D.; Karlovic, D.; Tusak, D.; Petrovic, B.; Dugum, J. Gluten as a standard of wheat flour quality. Food Technol. Biotechnol. 2001, 39, 353–361. [Google Scholar]
- Gélinas, P.; Gagnon, F.; McKinnon, C. Wheat preharvest herbicide application, whole-grain flour properties, yeast activity and the degradation of glyphosate in bread. Int. J. Food Sci. Technol. 2018, 53, 1597–1602. [Google Scholar] [CrossRef]
- Hristov, N.; Mladenov, N.; Djuric, V.; Kondic-Spika, A.; Marjanovic-Jeromela, A.; Simic, D. Genotype by environment interactions in wheat quality breeding programs in southeast Europe. Euphytica 2010, 174, 315–324. [Google Scholar] [CrossRef]
- Peterson, C.J.; Graybosch, R.A.; Shelton, D.R.; Baenziger, P.S. Baking quality of hard winter wheat: Response of cultivars to environment in the great plains. Euphytica 1998, 100, 157–162. [Google Scholar] [CrossRef]
Effect | 1000 KW (g) | Vitreousness (%) | Wheat Protein (12% m.b) | Falling Number (seconds) | Extraction (%) | Flour Protein (14% m.b) | Wet Gluten (%) | Gluten Index (%) | Flour Ash (14% m.b) |
---|---|---|---|---|---|---|---|---|---|
Treatment b | |||||||||
Con | 32.1 a | 79 a | 13.9 a | 403 b | 68.5 a | 13.3 a | 34.9 a | 82 b | 0.54 a |
RP | 31.8 a | 72 a | 13.9 a | 417 a | 67.8 b | 13.3 a | 35.1 a | 79 b | 0.54 a |
SD | 30.1 b | 74 a | 13.6 b | 422 a | 67.9 b | 13.1 a | 33.4 b | 86 a | 0.54 a |
Cul × Trt c | |||||||||
Glenn × Con | 30.4 c | 89 a | 14.7 ab | 387 d | 67.4 c | 14.0 a | 36.9 a | 85 ab | 0.54 b |
Glenn × RP | 30.2 c | 76 abc | 14.7 a | 406 c | 66.6 d | 13.9 a | 37.1 a | 82 bc | 0.53 b |
Glenn × SD | 28.9 d | 82 ab | 14.3 b | 413 bc | 67.1 cd | 13.7 a | 35.1 b | 90 a | 0.53 b |
Pros × Con | 33.8 a | 68 bc | 13.2 c | 419 abc | 69.7 a | 12.6 b | 32.9 c | 78 c | 0.55 a |
Pros × RP | 33.4 a | 67 c | 13.2 c | 428 ab | 69.0 b | 12.7 b | 33.1 c | 76 c | 0.55 a |
Pros × SD | 31.3 b | 65 c | 12.9 c | 430 a | 68.8 b | 12.5 b | 31.7 d | 82 bc | 0.56 a |
Loc × Trt d | |||||||||
Car × Con | 30.8 a | 67 a | 12.5 a | 408 a | 69.9 a | 12.0 a | 30.4 a | 86 a | 0.55 a |
Car × RP | 30.8 a | 66 a | 12.5 a | 427 a | 67.7 b | 11.9 ab | 30.1 a | 84 a | 0.53 a |
Car × SD | 30.7 a | 79 a | 12.2 a | 427 a | 68.1 b | 11.6 b | 29.4 a | 90 a | 0.53 a |
Min × Con | 36.3 a | 89 a | 14.3 a | 407 a | 68.9 b | 13.5 a | 35.6 b | 80 a | 0.52 a |
Min × RP | 36.0 a | 87 a | 14.4 a | 409 a | 68.5 b | 13.7 a | 37.1 a | 72 b | 0.52 a |
Min × SD | 36.0 a | 88 a | 14.3 a | 409 a | 69.9 a | 13.7 a | 36.5 a | 75 ab | 0.53 a |
Pro × Con | 29.3 a | 80 a | 15.0 a | 394 b | 66.8 a | 14.3 a | 38.7 a | 79 b | 0.57 a |
Pro × RP | 28.5 a | 61 b | 14.9 a | 415 a | 67.1 a | 14.3 a | 38.1 a | 81 b | 0.57 a |
Pro × SD | 23.7 b | 54 b | 14.3 b | 429 a | 65.8 b | 13.9 b | 34.4 b | 93 a | 0.57 a |
Quality Trait | Absorption (14% m.b.) | Peak Time (min) | Stability (min) | MTI (BU) | Farinograph Quality Number |
---|---|---|---|---|---|
Treatment b | |||||
Con | 62.2 a | 6.3 a | 7.1 b | 37 a | 103 b |
RP | 62.2 a | 6.0 a | 7.0 b | 41 a | 100 b |
SD | 61.6 b | 5.9 a | 8.3 a | 31 b | 108 a |
Cul × Trt c | |||||
Glenn × Con | 62.8 a | 7.0 a | 8.0 b | 33 b | 116 b |
Glenn × RP | 62.8 a | 6.8 a | 7.9 b | 40 a | 112 b |
Glenn × SD | 62.3 b | 7.1 a | 9.5 a | 29 b | 122 a |
Pros × Con | 61.6 c | 5.5 b | 6.1 d | 42 a | 89 c |
Pros × RP | 61.6 c | 5.3 bc | 6.1 d | 42 a | 87 c |
Pros × SD | 60.9 d | 4.8 c | 7.0 c | 33 b | 93 c |
Loc × Trt d | |||||
Car × Con | 60.3 a | 5.8 a | 7.6 ab | 37 ab | 100 a |
Car × RP | 60.4 a | 5.4 ab | 7.2 b | 39 a | 91 b |
Car × SD | 60.5 a | 5.0 b | 8.1 a | 30 b | 97 ab |
Min × Con | 64.5 ab | 6.4 a | 6.3 a | 37 b | 103 a |
Min × RP | 64.7 a | 6.1 a | 5.8 a | 51 a | 96 a |
Min × SD | 64.4 b | 6.2 a | 6.4 a | 37 b | 103 a |
Pro × Con | 61.8 a | 6.6 a | 7.2 b | 38 a | 105 b |
Pro × RP | 61.5 a | 6.6 a | 8.0 b | 34 ab | 111 b |
Pro × SD | 59.9 b | 6.7 a | 10.4 a | 25 b | 123 a |
Effect | Absorption (%) | Mix Time (min) | Dough Optimization (1–10) | Volume (cm3) | Symmetry (1–10) | Crust Color (1–10) | Grain and Texture (1–10) | Crumb Color (1–10) | Crumb Texture (1–10) | Fermentation Height (cm) | Over Rise (cm) | Specific Volume (cm3/g) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Treatment b | ||||||||||||
Con | 69.9 b | 3.3 b | 8.4 a | 997 b | 8.4 a | 9.3 a | 7.2 a | 7.6 b | 75.7 a | 8.1 a | 3.4 a | 7.7 a |
RP | 70.5 a | 3.4 b | 8.7 a | 1029 a | 8.4 a | 9.5 a | 7.3 a | 7.8 a | 68.7 a | 8.2 a | 3.5 a | 7.9 a |
SD | 69.5 b | 3.7 a | 8.8 a | 1028 a | 8.9 a | 9.5 a | 7.4 a | 7.6 ab | 73.5 a | 8.1 a | 3.7 a | 7.9 a |
Cul × Trt c | ||||||||||||
Glenn × Con | 70.0 abc | 3.5 bc | 9.1 a | 1067 a | 9.2 a | 9.9 a | 7.3 ab | 7.6 b | 60.3 b | 8.2 a | 3.9 a | 8.2 a |
Glenn × RP | 70.6 a | 3.4 bc | 9.0 ab | 1067 a | 9.0 a | 9.9 a | 7.3 ab | 7.7 ab | 56.9 b | 8.3 a | 3.8 a | 8.2 a |
Glenn × SD | 69.9 abc | 3.9 a | 9.4 a | 1079 a | 9.2 a | 9.9 a | 7.6 a | 7.6 b | 59.1 b | 8.1 a | 4.2 a | 8.3 a |
Pros × Con | 69.7 bc | 3.2 c | 7.8 c | 926 c | 7.7 c | 8.8 b | 7.1 b | 7.6 b | 91.1 a | 8.1 a | 2.9 c | 7.2 c |
Pros × RP | 70.5 ab | 3.4 bc | 8.3 bc | 992 b | 7.9 bc | 9.1 b | 7.3 ab | 7.9 a | 80.4 a | 8.1 a | 3.3 b | 7.6 b |
Pros × SD | 69.2 c | 3.5 b | 8.2 c | 977 b | 8.6 ab | 9.1 b | 7.3 ab | 7.7 ab | 88.0 a | 8.2 a | 3.2 bc | 7.5 bc |
Loc × Trt d | ||||||||||||
Car × Con | 69.5 a | 3.8 a | 8.3 a | 945 a | 8.0 a | 9.3 a | 7.1 a | 7.6 a | 86.2 a | 7.9 a | 3.1 a | 7.3 a |
Car × RP | 70.5 a | 3.7 a | 8.7 a | 968 a | 7.3 a | 9.5 a | 7.7 a | 7.8 a | 84.5 a | 8.0 a | 3.2 a | 7.4 a |
Car × SD | 69.8 ab | 3.9 a | 8.7 a | 963 a | 8.2 a | 9.7 a | 7.3 a | 7.6 a | 81.4 a | 8.0 a | 3.4 a | 7.4 a |
Min × Con | 71.0 b | 3.0 a | 8.5 a | 990 a | 8.5 a | 9.0 a | 7.5 a | 7.5 b | 64.5 a | 8.2 a | 3.4 a | 7.5 b |
Min × RP | 72.1 a | 2.9 a | 8.7 a | 1031 a | 8.8 a | 9.7 a | 7.2 a | 7.9 a | 63.3 a | 8.0 a | 3.8 a | 7.9 a |
Min × SD | 71.2 ab | 3.2 a | 8.7 a | 1032 a | 9.2 a | 9.7 a | 7.1 a | 7.6 ab | 60.6 a | 8.2 a | 3.6 a | 7.9 a |
Pro × Con | 69.1 a | 3.3 b | 8.5 a | 1055 a | 8.8 a | 9.7 a | 7.1 b | 7.6 a | 76.4 a | 8.3 a | 3.7 a | 8.3 a |
Pro × RP | 68.9 a | 3.5 b | 8.7 a | 1090 a | 9.2 a | 9.3 a | 7.0 b | 7.8 a | 58.2 b | 8.5 a | 3.7 a | 8.4 a |
Pro × SD | 67.7 b | 4.0 a | 9.2 a | 1088 a | 9.3 a | 9.2 a | 7.9 a | 7.7 a | 78.6 a | 8.2 a | 4.0 a | 8.4 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malalgoda, M.; Ohm, J.-B.; Ransom, J.K.; Howatt, K.; Simsek, S. Effects of Pre-Harvest Glyphosate Application on Spring Wheat Quality Characteristics. Agriculture 2020, 10, 111. https://doi.org/10.3390/agriculture10040111
Malalgoda M, Ohm J-B, Ransom JK, Howatt K, Simsek S. Effects of Pre-Harvest Glyphosate Application on Spring Wheat Quality Characteristics. Agriculture. 2020; 10(4):111. https://doi.org/10.3390/agriculture10040111
Chicago/Turabian StyleMalalgoda, Maneka, Jae-Bom Ohm, Joel K. Ransom, Kirk Howatt, and Senay Simsek. 2020. "Effects of Pre-Harvest Glyphosate Application on Spring Wheat Quality Characteristics" Agriculture 10, no. 4: 111. https://doi.org/10.3390/agriculture10040111