-
Development and Implementation of MBR Monitoring: Use of 2D Fluorescence Spectroscopy
-
Recent Advances in Continuous MOF Membranes for Gas Separation and Pervaporation
-
Bipolar Membranes Containing Iron-Based Catalysts for Efficient Water-Splitting Electrodialysis
-
Electric Potential Profiles in a Model Single-Path Electrodialysis Unit
Journal Description
Membranes
Membranes
is an international, peer-reviewed, open access journal, published monthly online by MDPI, covers the broad aspects of the science and technology of both biological and non-biological membranes. European Membrane Society (EMS), Membrane Society of Australasia (MSA) and Polish Membrane Society (PTMem) are affiliated with Membranes, and their members receive a discount on the article processing charge.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), Ei Compendex, PubMed, PMC, CAPlus / SciFinder, Inspec, and other databases.
- Journal Rank: JCR - Q1 (Polymer Science) / CiteScore - Q2 (Chemical Engineering (miscellaneous))
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 12.1 days after submission; acceptance to publication is undertaken in 3.4 days (median values for papers published in this journal in the second half of 2022).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
4.562 (2021);
5-Year Impact Factor:
5.015 (2021)
Latest Articles
Hybrid Inorganic Organic PSF/Hap Dual-Layer Hollow Fibre Membrane for the Treatment of Lead Contaminated Water
Membranes 2023, 13(2), 170; https://doi.org/10.3390/membranes13020170 - 30 Jan 2023
Abstract
Lead (Pb) exposure can be harmful to public health, especially through drinking water. One of the promising treatment methods for lead contaminated water is the adsorption-filtration method. To ensure the cost-effectiveness of the process, naturally derived adsorbent shall be utilised. In this study,
[...] Read more.
Lead (Pb) exposure can be harmful to public health, especially through drinking water. One of the promising treatment methods for lead contaminated water is the adsorption-filtration method. To ensure the cost-effectiveness of the process, naturally derived adsorbent shall be utilised. In this study, hydroxyapatite particles, Ca10(PO4)6(OH)2 (HAP) derived from waste cockle shell, were incorporated into the outer layer of polysulfone/HAP (PSf/HAP) dual-layer hollow fibre (DLHF) membrane to enhance the removal of lead from the water source due to its hydrophilic nature and excellent adsorption capacity. The PSf/HAP DLHF membranes at different HAP loadings in the outer layer (0, 10, 20, 30 and 40 wt%) were fabricated via the co-extrusion phase inversion technique. The performance of the DLHF membranes was evaluated in terms of pure water flux, permeability and adsorption capacity towards lead. The results indicated that the HAP was successfully incorporated into the outer layer of the membrane, as visibly confirmed by microscopic analysis. The trend was towards an increase in pure water flux, permeability and lead adsorption capacity as the HAP loading increased to the optimum loading of 30 wt%. The optimized DLHF membrane displayed a reduced water contact angle by 95%, indicating its improved surface hydrophilicity, which positively affects the pure water flux and permeability of the membrane. Furthermore, the DLHF membrane possessed the highest lead adsorption capacity, 141.2 mg/g. The development of a hybrid inorganic–organic DLHF membrane via the incorporation of the naturally derived HAP in the outer layer is a cost-effective approach to treat lead contaminated water.
Full article
(This article belongs to the Special Issue Membrane Science towards Sustainable Development Goals (SDGs))
►
Show Figures
Open AccessReview
Proton-Conducting Polymeric Membranes Based on 1,2,4-Triazole
Membranes 2023, 13(2), 169; https://doi.org/10.3390/membranes13020169 - 29 Jan 2023
Abstract
In this review, a comparative analysis of the literature and our own results obtained in the study of the physicochemical, dielectric, and proton-conducting properties of composite polymer materials based on 1H-1,2,4-triazole has been carried out. It has been established that 1
[...] Read more.
In this review, a comparative analysis of the literature and our own results obtained in the study of the physicochemical, dielectric, and proton-conducting properties of composite polymer materials based on 1H-1,2,4-triazole has been carried out. It has been established that 1H-1,2,4-triazole and homopolymers and copolymers of 1-vinyl-1,2,4-triazole are promising for the development of proton-conducting fuel cell membranes. They significantly improve the basic characteristics of electrolyte membranes, increase their film-forming ability, increase thermal stability up to 300–330 °C, increase the electrochemical stability region up to 3–4 V, promote high mechanical strength and morphological stability of membranes, and provide high ionic conductivity (up to 10−3–10−1 S/cm) under anhydrous conditions at temperatures above 100 °C. There is also an improvement in the solubility and a decrease in the glass transition temperature of polymers based on 1-vinyl-1,2,4-triazole, which facilitates the processing and formation of membrane films. The results obtained demonstrate the uniqueness of 1H-1,2,4-triazole and (co)polymers based on 1-vinyl-1,2,4-triazole and the promise of their use for the creation of heat-resistant plastic and electrochemically stable, mechanically strong proton-conducting membranes with high ionic conductivity under anhydrous conditions and at high temperatures.
Full article
(This article belongs to the Special Issue Proton-Conducting Membranes)
►▼
Show Figures

Figure 1
Open AccessArticle
Separation Properties of Plasmid DNA Using a Two-Stage Particle Adsorption-Microfiltration Process
Membranes 2023, 13(2), 168; https://doi.org/10.3390/membranes13020168 - 29 Jan 2023
Abstract
Plasmid DNA is used as a vector for gene therapy and DNA vaccination; therefore, the establishment of a mass production method is required. Membrane filtration is widely employed as a separation method suitable for the mass production of plasmid DNA. Furthermore, the separation
[...] Read more.
Plasmid DNA is used as a vector for gene therapy and DNA vaccination; therefore, the establishment of a mass production method is required. Membrane filtration is widely employed as a separation method suitable for the mass production of plasmid DNA. Furthermore, the separation of plasmid DNA using microfiltration and ultrafiltration membranes is being investigated. Because plasmid DNA has a circular structure, it undergoes significant deformation during filtration and easily permeates the membrane, hindering the selection of separation membranes based on molecular weight. In this study, we applied affinity microfiltration to plasmid DNA purification. α-Fe2O3 with an isoelectric point of approximately 8 and a particle size of 0.5 μm was selected as the ligand for two-stage affinity microfiltration of plasmid DNA. In the first stage of microfiltration, the experiment was conducted at a pH of 5, and a cake of α-Fe2O3 with bound plasmid DNA was obtained. Next, liquid permeation (pH 9 and 10) through the cake was performed to elute the bound plasmid DNA. Plasmid DNA was eluted during the early phase of liquid permeation at pH 10. Furthermore, agarose gel analysis confirmed the usefulness of the two-stage affinity microfiltration method with adsorption and desorption for plasmid DNA purification.
Full article
(This article belongs to the Special Issue Separation Techniques and Circular Economy)
►▼
Show Figures

Figure 1
Open AccessReview
Mechanosensitive Ion Channels and Their Role in Cancer Cells
Membranes 2023, 13(2), 167; https://doi.org/10.3390/membranes13020167 - 29 Jan 2023
Abstract
Mechanical forces are an inherent element in the world around us. The effects of their action can be observed both on the macro and molecular levels. They can also play a prominent role in the tissues and cells of animals due to the
[...] Read more.
Mechanical forces are an inherent element in the world around us. The effects of their action can be observed both on the macro and molecular levels. They can also play a prominent role in the tissues and cells of animals due to the presence of mechanosensitive ion channels (MIChs) such as the Piezo and TRP families. They are essential in many physiological processes in the human body. However, their role in pathology has also been observed. Recent discoveries have highlighted the relationship between these channels and the development of malignant tumors. Multiple studies have shown that MIChs mediate the proliferation, migration, and invasion of various cancer cells via various mechanisms. This could show MIChs as new potential biomarkers in cancer detection and prognosis and interesting therapeutic targets in modern oncology. Our paper is a review of the latest literature on the role of the Piezo1 and TRP families in the molecular mechanisms of carcinogenesis in different types of cancer.
Full article
(This article belongs to the Special Issue Membrane Permeability and Channels)
►▼
Show Figures

Figure 1
Open AccessArticle
Electrochemical Conversion of CO2 to CO Utilizing Quaternized Polybenzimidazole Anion Exchange Membrane
Membranes 2023, 13(2), 166; https://doi.org/10.3390/membranes13020166 - 29 Jan 2023
Abstract
CO is a significant product of electrochemical CO2 reduction (ECR) which can be mixed with H2 to synthesize numerous hydrocarbons. Membranes, as separators, can significantly influence the performance of ECR. Herein, a series of quaternized polybenzimidazole (QAPBI) anion exchange membranes with
[...] Read more.
CO is a significant product of electrochemical CO2 reduction (ECR) which can be mixed with H2 to synthesize numerous hydrocarbons. Membranes, as separators, can significantly influence the performance of ECR. Herein, a series of quaternized polybenzimidazole (QAPBI) anion exchange membranes with different quaternization degrees are prepared for application in ECR. Among all QAPBI membranes, the QAPBI-2 membrane exhibits optimized physico-chemical properties. In addition, the QAPBI-2 membrane shows higher a Faraday efficiency and CO partial current density compared with commercial Nafion 117 and FAA-3-PK-130 membranes, at −1.5 V (vs. RHE) in an H-type cell. Additionally, the QAPBI-2 membrane also has a higher Faraday efficiency and CO partial current density compared with Nafion 117 and FAA-3-PK-130 membranes, at −3.0 V in a membrane electrode assembly reactor. It is worth noting that the QAPBI-2 membrane also has excellent ECR stability, over 320 h in an H-type cell. This work illustrates a promising pathway to obtaining cost-effective membranes through a molecular structure regulation strategy for ECR application.
Full article
(This article belongs to the Special Issue Mixed-Matrix Membranes and Polymeric Membranes 2.0)
►▼
Show Figures

Figure 1
Open AccessArticle
Impact of Pollutant Ozone on the Biophysical Properties of Tear Film Lipid Layer Model Membranes
Membranes 2023, 13(2), 165; https://doi.org/10.3390/membranes13020165 - 28 Jan 2023
Abstract
Ozone exposure from environmental smog has been implicated as a risk factor for developing dry eye disease (DED). The tear film lipid layer (TFLL), which is the outermost layer of the tear film and responsible for surface tension reduction while blinking, is in
[...] Read more.
Ozone exposure from environmental smog has been implicated as a risk factor for developing dry eye disease (DED). The tear film lipid layer (TFLL), which is the outermost layer of the tear film and responsible for surface tension reduction while blinking, is in direct contact with the environment and serves as the first line of defense against external aggressors such as environmental pollution. The impact of exposure to ozone on the biophysical properties of three TFLL model membranes was investigated. These model membranes include a binary mixture of cholesteryl oleate (CO) and L-α-phosphatidylcholine (egg PC), a ternary mixture of CO, glyceryl trioleate (GT) and PC, as well as a quaternary mixture of CO, GT, a mixture of free fatty acids palmitic acid and stearic acid (FFAs) and PC. Biophysical impacts were evaluated as changes to the surface activity, respreadability, morphology and viscoelastic properties of the films. Expansion to higher molecular areas was observed in all the TFLL model membrane films which is attributable to the accommodation of the cleaved chains in the film. Significant morphological changes were observed, namely fluidization and the disruption of the phase transition behaviour of GT, and multilayer formation of CO. This fluidization reduces the hysteresis loops for the model membranes. On the other hand, the viscoelastic properties of the films exhibited differential impacts from ozone exposure as a function of composition. These findings are correlated to chemical changes to the lipids determined using ESI-MS.
Full article
(This article belongs to the Special Issue Membrane Biological Function in Health and Disease)
►▼
Show Figures

Figure 1
Open AccessReview
Membranes for Osmotic Power Generation by Reverse Electrodialysis
Membranes 2023, 13(2), 164; https://doi.org/10.3390/membranes13020164 - 28 Jan 2023
Abstract
In recent years, the utilization of the selective ion transport through porous membranes for osmotic power generation (blue energy) has received a lot of attention. The principal of power generation using the porous membranes is same as that of conventional reverse electrodialysis (RED),
[...] Read more.
In recent years, the utilization of the selective ion transport through porous membranes for osmotic power generation (blue energy) has received a lot of attention. The principal of power generation using the porous membranes is same as that of conventional reverse electrodialysis (RED), but nonporous ion exchange membranes are conventionally used for RED. The ion transport mechanisms through the porous and nonporous membranes are considerably different. Unlike the conventional nonporous membranes, the ion transport through the porous membranes is largely dictated by the principles of nanofluidics. This owes to the fact that the osmotic power generation via selective ion transport through porous membranes is often referred to as nanofluidic reverse electrodialysis (NRED) or nanopore-based power generation (NPG). While RED using nonporous membranes has already been implemented on a pilot-plant scale, the progress of NRED/NPG has so far been limited in the development of small-scale, novel, porous membrane materials. The aim of this review is to provide an overview of the membrane design concepts of nanofluidic porous membranes for NPG/NRED. A brief description of material design concepts of conventional nonporous membranes for RED is provided as well.
Full article
(This article belongs to the Special Issue Structure and Performance of Porous Polymer Membranes)
►▼
Show Figures

Figure 1
Open AccessArticle
Film Distillation with a Porous Condenser for Seawater Desalination: Evaluation of Materials’ Stability in the Tropical Climate of Vietnam
by
, , , , and
Membranes 2023, 13(2), 163; https://doi.org/10.3390/membranes13020163 - 27 Jan 2023
Abstract
Desalination and treatment of wastewater has become critical for Asia regions with water scarcity. In this work, the concept of thin-film distillation equipped with a porous condenser (FDPC) was considered for its implementation in a tropical climate of Vietnam. It was found that
[...] Read more.
Desalination and treatment of wastewater has become critical for Asia regions with water scarcity. In this work, the concept of thin-film distillation equipped with a porous condenser (FDPC) was considered for its implementation in a tropical climate of Vietnam. It was found that samples with a concentration of biocide of 0.5 wt.% possessed lower biofouling, in contrast to the neat membranes. The FD-PC module was developed and water desalination experiments were conducted in Russia and Vietnam. The experiments showed high reproducibility of the results; in particular, the evaporation rate was (4.9/3.0) kg/m2h in Russia and (4.1/2.0) kg/m2h in Vietnam. In addition, as part of this work, the optimal configuration of the installation was calculated using solar collectors as the main energy source. The calculation showed high energy efficiency: specific energy consumption 0.1–0.5 kWh/m3.
Full article
(This article belongs to the Special Issue Honorary Issue for Prof João G. Crespo)
Open AccessArticle
Separation of Hydrochloric Acid and Oxalic Acid from Rare Earth Oxalic Acid Precipitation Mother Liquor by Electrodialysis
by
, , , , , , and
Membranes 2023, 13(2), 162; https://doi.org/10.3390/membranes13020162 - 27 Jan 2023
Abstract
In this study, the hydrochloric acid from rare earth oxalic acid precipitation mother liquor was separated by electrodialysis (ED) with different anion exchange membranes, including selective anion exchange membrane (SAEM), polymer alloy anion exchange membrane (PAAEM), and homogenous anion exchange membrane (HAEM). In
[...] Read more.
In this study, the hydrochloric acid from rare earth oxalic acid precipitation mother liquor was separated by electrodialysis (ED) with different anion exchange membranes, including selective anion exchange membrane (SAEM), polymer alloy anion exchange membrane (PAAEM), and homogenous anion exchange membrane (HAEM). In addition to actual wastewater, nine types of simulated solutions with different concentrations of hydrochloric acid and oxalic acid were used in the experiments. The results indicated that the hydrochloric acid could be separated effectively by electrodialysis with SAEM from simulated and real rare earth oxalic acid precipitation mother liquor under the operating voltage 15 V and ampere 2.2 A, in which the hydrochloric acid obtained in the concentrate chamber of ED is of higher purity (>91.5%) generally. It was found that the separation effect of the two acids was related to the concentrations and molar ratios of hydrochloric acid and oxalic acid contained in their mixtures. The SEM images and ESD–mapping analyses indicated that membrane fouling appeared on the surface of ACS and CSE at the diluted side of the ED membrane stack when electrodialysis was used to treat the real rare earth oxalic acid precipitation mother liquor. Fe, Yb, Al, and Dy were found in the CSE membrane section, and organic compounds containing carbon and sulfur were attached to the surface of the ACS. The results also indicated that the real rare earth precipitation mother liquor needed to be pretreated before the separation of hydrochloric acid and oxalic acid by electrodialysis.
Full article
(This article belongs to the Special Issue Advance in Electromembrane Technology)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Physicochemical and Antimicrobial Characterization of Chitosan and Native Glutinous Rice Starch-Based Composite Edible Films: Influence of Different Essential Oils Incorporation
Membranes 2023, 13(2), 161; https://doi.org/10.3390/membranes13020161 - 27 Jan 2023
Abstract
Biopolymer-based edible packaging is an effective way of preserving food while protecting the environment. This study developed an edible composite film using chitosan and native glutinous rice starch (NGRS) and incorporated essential oils (EOs) such as garlic, galangal, turmeric, and kaffir lime at
[...] Read more.
Biopolymer-based edible packaging is an effective way of preserving food while protecting the environment. This study developed an edible composite film using chitosan and native glutinous rice starch (NGRS) and incorporated essential oils (EOs) such as garlic, galangal, turmeric, and kaffir lime at fixed concentrations (0.312 mg/mL) to test its physicochemical and antimicrobial properties. The EO-added films were found to significantly improve the overall color characteristics (lightness, redness, and yellowness) as compared to the control film. The control films had higher opacity, while the EO-added films had slightly reduced levels of opacity and produced clearer films. The tensile strength and elongation at break values of the films varied among the samples. The control samples had the highest tensile strength, followed by the turmeric EO-added samples. However, the highest elongation at break value was found in the galangal and garlic EO-added films. The Young’s modulus results showed that garlic EO and kaffir lime EO had the lowest stiffness values. The total moisture content and water vapor permeability were very low in the garlic EO-added films. Despite the differences in EOs, the Fourier-transform infrared spectroscopy (FTIR) patterns of the tested films were similar among each other. Microstructural observation of the surface and cross-section of the tested edible film exhibited smooth and fissureless patterns, especially in the EO-added films, particularly in the galangal and kaffir lime EO-added films. The antimicrobial activity of the EO-added films was highly efficient against various gram-positive and gram-negative pathogens. Among the EO-added films, the garlic and galangal EO-added films exhibited superior inhibitory activity against Escherichia coli, Salmonella Typhimurium, Listeria monocytogenes, Staphylococcus aureus, and Pseudomonas fluorescence, and turmeric and kaffir lime EO-added films showed potential antimicrobial activity against Lactobacillus plantarum and L. monocytogenes. Overall, this study concludes that the addition of EOs significantly improved the physicochemical and antimicrobial properties of the CH-NGRS-based edible films, making them highly suitable for food applications.
Full article
(This article belongs to the Special Issue Application of Membranes and Membrane Processes in the Food Industry)
Open AccessArticle
Novel Design of co-Poly(hydrazide imide) and Its Complex with Cu(I) for Membrane Separation of Methanol/Dimethyl Carbonate Mixture
by
, , , , , , , and
Membranes 2023, 13(2), 160; https://doi.org/10.3390/membranes13020160 - 27 Jan 2023
Abstract
Poly(2,2′-biquinoline-6,6′-dicarbohydrazide)-co-(bistrimelliteimide)methylene-bisanthranylide (PHI) and its metal–polymer complex PHI-Сu(I) containing several types of functional groups (hydrazide, carboxyl, amide, and imide fragments) were synthesized to prepare two types of dense nonporous membranes. The study on morphology using scanning electron microscopy (SEM), measurements of mechanical, thermal, and
[...] Read more.
Poly(2,2′-biquinoline-6,6′-dicarbohydrazide)-co-(bistrimelliteimide)methylene-bisanthranylide (PHI) and its metal–polymer complex PHI-Сu(I) containing several types of functional groups (hydrazide, carboxyl, amide, and imide fragments) were synthesized to prepare two types of dense nonporous membranes. The study on morphology using scanning electron microscopy (SEM), measurements of mechanical, thermal, and transport properties of the membrane samples was carried out. The main mechanical properties of both membranes do not differ significantly, but the values of ultimate deformation differ palpably as a result of a non-uniform character of the deformation process for the PHI membrane. The thermal analysis based on the curves of thermogravimetric (TGA) and differential thermal (DTA) analyses of the PHI and PHI-Cu(I) membranes revealed peculiarities of the membrane structure. Transport properties were studied in pervaporation (PV) of methanol (MeOH) and dimethyl carbonate (DMC) mixtures including an azeotropic point. Intrinsic properties of the penetrant–membrane system were also determined. It was found that the total flux is higher through the PHI membrane, but the PHI-Сu(I) membrane exhibits a higher separation factor. Calculation of the pervaporation separation index (PSI) allowed to conclude that the PHI-Сu(I) membrane exhibits better transport properties as compared with the PHI membrane.
Full article
(This article belongs to the Special Issue Fabrication, Characterization and Application of Organic/Inorganic Film Membranes and Advanced Materials (Volume II))
Open AccessArticle
Influence of Molasses Residue on Treatment of Cow Manure in an Anaerobic Filter with Perforated Weed Membrane and a Conventional Reactor: Variations of Organic Loading and a Machine Learning Application
by
, , , , , , and
Membranes 2023, 13(2), 159; https://doi.org/10.3390/membranes13020159 - 27 Jan 2023
Abstract
This study highlighted the influence of molasses residue (MR) on the anaerobic treatment of cow manure (CM) at various organic loading and mixing ratios of these two substrates. Further investigation was conducted on a model-fitting comparison between a kinetic study and an artificial
[...] Read more.
This study highlighted the influence of molasses residue (MR) on the anaerobic treatment of cow manure (CM) at various organic loading and mixing ratios of these two substrates. Further investigation was conducted on a model-fitting comparison between a kinetic study and an artificial neural network (ANN) using biomethane potential (BMP) test data. A continuous stirred tank reactor (CSTR) and an anaerobic filter with a perforated membrane (AF) were fed with similar substrate at the organic loading rates of (OLR) 1 to OLR 7 g/L/day. Following the inhibition signs at OLR 7 (50:50 mixing ratio), 30:70 and 70:30 ratios were applied. Both the CSTR and the AF with the co-digestion substrate (CM + MR) successfully enhanced the performance, where the CSTR resulted in higher biogas production (29 L/d), SMP (1.24 LCH4/gVSadded), and VS removal (>80%) at the optimum OLR 5 g/L/day. Likewise, the AF showed an increment of 69% for biogas production at OLR 4 g/L/day. The modified Gompertz (MG), logistic (LG), and first order (FO) were the applied kinetic models. Meanwhile, two sets of ANN models were developed, using feedforward back propagation. The FO model provided the best fit with Root Mean Square Error (RMSE) (57.204) and correlation coefficient (R2) 0.94035. Moreover, implementing the ANN algorithms resulted in 0.164 and 0.97164 for RMSE and R2, respectively. This reveals that the ANN model exhibited higher predictive accuracy, and was proven as a more robust system to control the performance and to function as a precursor in commercial applications as compared to the kinetic models. The highest projection electrical energy produced from the on-farm scale (OFS) for the AF and the CSTR was 101 kWh and 425 kWh, respectively. This investigation indicates the high potential of MR as the most suitable co-substrate in CM treatment for the enhancement of energy production and the betterment of waste management in a large-scale application.
Full article
(This article belongs to the Special Issue Application of Membranes and Membrane Processes in the Food Industry)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Treatment Trends and Combined Methods in Removing Pharmaceuticals and Personal Care Products from Wastewater—A Review
by
, , , , and
Membranes 2023, 13(2), 158; https://doi.org/10.3390/membranes13020158 - 27 Jan 2023
Abstract
When discharged into wastewater, pharmaceuticals and personal care products (PPCPs) become microorganic contaminants and are among the largest groups of emerging pollutants. Human, animal, and aquatic organisms’ exposures to PPCPs have linked them to an array of carcinogenic, mutagenic, and reproductive toxicity risks.
[...] Read more.
When discharged into wastewater, pharmaceuticals and personal care products (PPCPs) become microorganic contaminants and are among the largest groups of emerging pollutants. Human, animal, and aquatic organisms’ exposures to PPCPs have linked them to an array of carcinogenic, mutagenic, and reproductive toxicity risks. For this reason, various methods are being implemented to remove them from water bodies. This report critically reviews these methods and suggests improvements to removal strategies. Biological, physical, and chemical methods such as biological degradation, adsorption, membrane filtration, and advanced electrical and chemical oxidation are the common methods used. However, these processes were not integrated into most studies to take advantage of the different mechanisms specific to each process and are synergistic in the removal of the PPCPs that differ in their physical and chemical characteristics (charge, molecular weight, hydrophobicity, hydrogen bonding, structure). In the review articles published to date, very little information is available on the use of such integrated methods for removing PPCPs. This report attempts to fill this gap with our knowledge.
Full article
(This article belongs to the Special Issue Membrane Technologies for Sustainability)
Open AccessArticle
Properties and Crystal Structure of the Cereibacter sphaeroides Photosynthetic Reaction Center with Double Amino Acid Substitution I(L177)H + F(M197)H
Membranes 2023, 13(2), 157; https://doi.org/10.3390/membranes13020157 - 26 Jan 2023
Abstract
The photosynthetic reaction center of the purple bacterium Cereibacter sphaeroides with two site-directed mutations Ile-L177–His and M197 Phe–His is of double interest. The substitution I(L177)H results in strong binding of a bacteriochlorophyll molecule with L-subunit. The second mutation F(M197)H introduces a new H-bond
[...] Read more.
The photosynthetic reaction center of the purple bacterium Cereibacter sphaeroides with two site-directed mutations Ile-L177–His and M197 Phe–His is of double interest. The substitution I(L177)H results in strong binding of a bacteriochlorophyll molecule with L-subunit. The second mutation F(M197)H introduces a new H-bond between the C2-acetyl carbonyl group of the bacteriochlorophyll PB and His-M197, which is known to enhance the stability of the complex. Due to this H-bond, π -electron system of P finds itself connected to an extensive H-bonding network on the periplasmic surface of the complex. The crystal structure of the double mutant reaction center obtained with 2.6 Å resolution allows clarifying consequences of the Ile L177 – His substitution. The value of the P/P+ midpoint potential in the double mutant RC was found to be ~20 mV less than the sum of potentials measured in the two RCs with single mutations I(L177)H and F(M197)H. The protein environment of the BChls PA and BB were found to be similar to that in the RC with single substitution I(L177)H, whereas an altered pattern of the H-bonding networks was found in the vicinity of bacteriochlorophyll PB. The data obtained are consistent with our previous assumption on a correlation between the bulk of the H-bonding network connected with the π-electron system of the primary electron donor P and the value of its oxidation potential.
Full article
(This article belongs to the Special Issue Advanced Research on Structure–Function Relationships of Membrane Proteins (Volume II))
►▼
Show Figures

Graphical abstract
Open AccessArticle
Development of Sustainable Hydrophilic Azadirachta indica loaded PVA Nanomembranes for Cosmetic Facemask Applications
by
, , , , , , , , , , and
Membranes 2023, 13(2), 156; https://doi.org/10.3390/membranes13020156 - 26 Jan 2023
Abstract
Nanofiber-based facial masks have attracted the attention of modern cosmetic applications due to their controlled drug release, biocompatibility, and better efficiency. In this work, Azadirachta indica extract (AI) incorporated electrospun polyvinyl alcohol (PVA) nanofiber membrane was prepared to obtain a sustainable and hydrophilic
[...] Read more.
Nanofiber-based facial masks have attracted the attention of modern cosmetic applications due to their controlled drug release, biocompatibility, and better efficiency. In this work, Azadirachta indica extract (AI) incorporated electrospun polyvinyl alcohol (PVA) nanofiber membrane was prepared to obtain a sustainable and hydrophilic facial mask. The electrospun AI incorporated PVA nanofiber membranes were characterized by scanning electron microscope, Ultraviolet-visible spectroscopy (UV-Vis) drug release, water absorption analysis, 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging, and antibacterial activity (qualitative and quantitative) at different PVA and AI concentrations. The optimized nanofiber of 376 ± 75 nm diameter was obtained at 8 wt/wt% PVA concentration and 100% AI extract. The AI nanoparticles of size range 50~250 nm in the extract were examined through a zeta sizer. The water absorption rate of ~660% and 17.24° water contact angle shows good hydrophilic nature and water absorbency of the nanofiber membrane. The UV-Vis also analyzed fast drug release of >70% in 5 min. The prepared membrane also exhibits 99.9% antibacterial activity against Staphylococcus aureus and has 79% antioxidant activity. Moreover, the membrane also had good mechanical properties (tensile strength 1.67 N, elongation 48%) and breathability (air permeability 15.24 mm/sec). AI-incorporated nanofiber membrane can effectively be used for facial mask application.
Full article
(This article belongs to the Special Issue Electrospun Nanofiber Membranes: From Synthesis to Applications (Volume II))
Open AccessArticle
A Complex Investigation of LATP Ceramic Stability and LATP+PVDF Composite Membrane Performance: The Effect of Solvent in Tape-Casting Fabrication
by
, , , , and
Membranes 2023, 13(2), 155; https://doi.org/10.3390/membranes13020155 - 26 Jan 2023
Abstract
Redox flow batteries (RFBs) are a prospective energy storage platform to mitigate the discrepancy between barely adjustable energy production and fluctuating demand. The energy density and affordability of RFBs can be improved significantly through the transition from aqueous systems to non-aqueous (NAq) due
[...] Read more.
Redox flow batteries (RFBs) are a prospective energy storage platform to mitigate the discrepancy between barely adjustable energy production and fluctuating demand. The energy density and affordability of RFBs can be improved significantly through the transition from aqueous systems to non-aqueous (NAq) due to their wider electrochemical stability window and better solubility of active species. However, the NAqRFBs suffer from a lack of effective membranes with high ionic conductivity (IC), selectivity (low permeability), and stability. Here, we for the first time thoroughly analyse the impact of tape-casting solvents (dimethylformamide—DMF; dimethylsulfoxide—DMSO; N-methyl-2-pyrrolidone—NMP) on the properties of the composite Li-conductive membrane (Li1.3Al0.3Ti1.7(PO4)3 filler within poly(vinylidene fluoride) binder—LATP+PVDF). We show that the prolonged exposure of LATP to the studied solvents causes slight morphological, elemental, and intrastructural changes, dropping ceramic’s IC from 3.1 to 1.6–1.9 ∙ 10−4 S cm−1. Depending on the solvent, the final composite membranes exhibit IC of 1.1–1.7 ∙ 10−4 S cm−1 (comparable with solvent-treated ceramics) along with correlating permeability coefficients of 2.7–3.1 ∙ 10−7 cm2 min−1. We expect this study to complement the understanding of how the processes underlying the membrane fabrication impact its functional features and to stimulate further in-depth research of NAqRFB membranes.
Full article
(This article belongs to the Special Issue Composite Conducting Membranes: Preparation, Properties, and
Applications-Volume 2)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Stabilization of Cereibacter sphaeroides Photosynthetic Reaction Center by the Introduction of Disulfide Bonds
by
, , , , and
Membranes 2023, 13(2), 154; https://doi.org/10.3390/membranes13020154 - 25 Jan 2023
Abstract
The photosynthetic reaction center of the purple nonsulfur bacterium Cereibacter sphaeroides is a useful model for the study of mechanisms of photoinduced electron transfer and a promising component for photo-bio-electrocatalytic systems. The basic research and technological applications of this membrane pigment-protein complex require
[...] Read more.
The photosynthetic reaction center of the purple nonsulfur bacterium Cereibacter sphaeroides is a useful model for the study of mechanisms of photoinduced electron transfer and a promising component for photo-bio-electrocatalytic systems. The basic research and technological applications of this membrane pigment-protein complex require effective approaches to increase its structural stability. In this work, a rational design approach to genetically modify the reaction centers by introducing disulfide bonds is used. This resulted in significantly increasing the thermal stability of some of the mutant pigment-protein complexes. The formation of the S-S bonds was confirmed by X-ray crystallography as well as SDS-PAGE, and the optical properties of the reaction centers were studied. The genetically modified reaction centers presented here preserved their ability for photochemical charge separation and could be of interest for basic science and biotechnology.
Full article
(This article belongs to the Special Issue Membrane Proteins: Function, Structure, and Dynamic)
►▼
Show Figures

Figure 1
Open AccessArticle
Treatment of Mine Water with Reverse Osmosis and Concentrate Processing to Recover Copper and Deposit Calcium Carbonate
Membranes 2023, 13(2), 153; https://doi.org/10.3390/membranes13020153 - 25 Jan 2023
Abstract
Mine water usually contains heavy metals and other inorganic and organic pollutants that contaminate water bodies. Reverse osmosis (RO) techniques are capable of producing purified water that meets discharge regulations. However, the problem of RO concentrate disposal and utilization is still not solved.
[...] Read more.
Mine water usually contains heavy metals and other inorganic and organic pollutants that contaminate water bodies. Reverse osmosis (RO) techniques are capable of producing purified water that meets discharge regulations. However, the problem of RO concentrate disposal and utilization is still not solved. The well-known zero liquid discharge (ZLD) process provides total concentrate utilization at the power industries but seems unreasonably expensive for the treatment of large amounts of mine water due to required chemical softening and the evaporation of concentrate. In the present article, a new approach to increase the recovery of reverse osmosis and to avoid high operational costs is demonstrated and discussed. The new technique involves radical RO concentrate flow reduction and withdrawal, together with dewatered sludge. The idea to “hide” concentrate in dewatered sludge is proposed and demonstrated during experiments. The article demonstrates results of the conducted experimental program aimed at reduction of volumes of all liquid wastes produced during mine water treatment using a new approach to concentrate it with a cascade of nanofiltration membranes and to reach a TDS value of 110-120 grams per liter. The obtained concentrate is mixed with the wet sludge, which is further dewatered and withdrawn together with the dewatered sludge. Experiments are conducted that demonstrate a reduction in calcium in the concentrate due to deposition of calcium carbonate on the “seed crystals” in the circulation mode. Another distinguishing feature of the new technique is the separation of concentrate into two streams containing high concentrations of monovalent ions (sodium and ammonium chlorides) and divalent ions (calcium, magnesium and copper sulphates). Flow diagrams of the processes are presented to demonstrate the water treatment technique used to produce deionized water and two types of sludges: sludge after clarification and sludge after calcium carbonate deposition.
Full article
(This article belongs to the Special Issue Membrane Technologies for Resource Recovery (Volume II))
Open AccessArticle
Improvement of Advanced Sample Preparation Systems for the Determination of Trace Ni in Seawater by Electro-Membranes
by
, , , , and
Membranes 2023, 13(2), 152; https://doi.org/10.3390/membranes13020152 - 24 Jan 2023
Abstract
Due to its important environmental role, the analysis of trace metals in natural waters is attracting increasing attention; consequently, faster and more accurate analytical methods are now needed to reach even lower limits of detection. In this work, we propose the use of
[...] Read more.
Due to its important environmental role, the analysis of trace metals in natural waters is attracting increasing attention; consequently, faster and more accurate analytical methods are now needed to reach even lower limits of detection. In this work, we propose the use of electro-membrane extraction (EME) to improve analytical methods based on hollow fiber liquid phase micro-extraction (HFLPME). Specifically, an EME-based method for the determination of trace Ni in seawater has been developed, using an HFLPME system with di-2-ethylhexyl phosphoric acid (DEHPA) in kerosene as a chemical carrier, followed by instrumental determination by graphite furnace atomic absorption spectroscopy (GFAAS). Under optimum conditions, Ni was pre-concentrated 180 ± 17 times after 15 min, using sample pH = 5.5, the concentration of DEHPA 0.9 M in the liquid membranes, and 1.9 M HNO3 in the acceptor solution, as well as an electric potential of 25 V with the sample being stirred at 500 rpm. When compared with other HFLPME systems for pre-concentration of trace Ni in seawater in the absence of electric potential, the enrichment factor was improved 2.2 times, while the time of extraction was reduced an 89%. The limit of detection of the new method was 23.3 ng L−1, and both its applicability and accuracy were successfully evaluated by analyzing Ni concentration in a seawater-certified reference material (BCR-403), showing the reliability of EME for sample preparation in the determination of trace metals in marine water samples.
Full article
(This article belongs to the Special Issue Electromembrane Extraction Procedures: Approaches for Sample Preparation)
Open AccessArticle
Odor Discrimination by Lipid Membranes
Membranes 2023, 13(2), 151; https://doi.org/10.3390/membranes13020151 - 24 Jan 2023
Abstract
Odor detection and discrimination in mammals is known to be initiated by membrane-bound G-protein-coupled receptors (GPCRs). The role that the lipid membrane may play in odor discrimination, however, is less well understood. Here, we used model membrane systems to test the hypothesis that
[...] Read more.
Odor detection and discrimination in mammals is known to be initiated by membrane-bound G-protein-coupled receptors (GPCRs). The role that the lipid membrane may play in odor discrimination, however, is less well understood. Here, we used model membrane systems to test the hypothesis that phospholipid bilayer membranes may be capable of odor discrimination. The effect of S-carvone, R-carvone, and racemic lilial on the model membrane systems was investigated. The odorants were found to affect the fluidity of supported lipid bilayers as measured by fluorescence recovery after photobleaching (FRAP). The effect of odorants on surface-supported lipid multilayer microarrays of different dimensions was also investigated. The lipid multilayer micro- and nanostructure was highly sensitive to exposure to these odorants. Fluorescently-labeled lipid multilayer droplets of 5-micron diameter were more responsive to these odorants than ethanol controls. Arrays of lipid multilayer diffraction gratings distinguished S-carvone from R-carvone in an artificial nose assay. Our results suggest that lipid bilayer membranes may play a role in odorant discrimination and molecular recognition in general.
Full article
(This article belongs to the Special Issue Advances in Model Membrane Systems)
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal Menu-
- Membranes Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor's Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Catalysts, Energies, Membranes, Nanoenergy Advances, Polymers
Membranes for Electrochemical Energy Conversion
Topic Editors: Byungchan Bae, Jang-Yong LeeDeadline: 31 July 2023
Topic in
Energies, IJMS, Membranes, Separations, Water
Membrane Separation Technology Research
Topic Editors: Chenxiao Jiang, Zhe Yang, Ying MeiDeadline: 15 September 2023
Topic in
Energies, Membranes, Molecules, Separations, Water
Sustainable Water Purification Technologies for Multiple Applications
Topic Editors: Marco Pellegrini, Cesare Saccani, Alessandro GuzziniDeadline: 15 October 2023
Topic in
Coatings, Inorganics, Materials, Membranes, Nanomaterials
Inorganic Thin Films and Membrane Materials
Topic Editors: Silvia Maria Deambrosis, Laura Almar, Cecilia Mortalò, Sonia EscolasticoDeadline: 30 November 2023

Conferences
Special Issues
Special Issue in
Membranes
Advanced Membrane Electrode Assembly (MEA) for Applications in Fuel Cell and Electrolyzer Based Systems
Guest Editors: Giuseppe De Lorenzo, Irene Gatto, Ada Saccà, Alessandra Carbone, Alfredo AloiseDeadline: 10 February 2023
Special Issue in
Membranes
Biodegradable Films Characterization and Food Packaging
Guest Editor: Ismael MarcetDeadline: 25 February 2023
Special Issue in
Membranes
Nanofibrous Membrane for Biomedical Application
Guest Editor: Andrea EhrmannDeadline: 28 February 2023
Special Issue in
Membranes
Bioprocessing with Membranes: Filtration and Chromatography
Guest Editor: Marília MateusDeadline: 15 March 2023
Topical Collections
Topical Collection in
Membranes
Applied, Engineering and Environmental Microbiology and Biofilms
Collection Editors: Gamini Seneviratne, Yanrui Ye, Zhenbo Xu, Guanglei Qiu, Jing Lin, Jian Sun
Topical Collection in
Membranes
Featured Reviews in Membrane Science
Collection Editors: Spas D. Kolev, Tae-Hyun Bae, Laurent Bazinet, Claus Hélix-Nielsen
Topical Collection in
Membranes
Feature Papers in Membrane Bio-Reactor Valorisation
Collection Editors: Gaetano Di Bella, Santo Fabio Corsino
Topical Collection in
Membranes
Feature Papers in Biological Membrane Composition and Structures
Collection Editor: Shiro Suetsugu