Ergothioneine Thione Spontaneously Binds to and Detaches from the Membrane Interphase
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ERGO | Ergothioneine (thione form) |
| ERGT | Ergothioneine (thiol form) |
| CHOL | Cholesterol |
| MD | Molecular dynamics |
| PI-3P | 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphoinositol-3-phosphate |
| POPC | 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine |
| POPE | 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine |
| POPS | 1-Palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine |
| PSM | N-Palmitoyl-D-erythro-sphingosylphosphorylcholine |
| z-COM | z-axis Centre-of-Mass (z direction normal to the bilayer plane) |
References
- Xiong, K.; Xue, S.; Guo, H.; Dai, Y.; Ji, C.; Dong, L.; Zhang, S. Ergothioneine: New Functional Factor in Fermented Foods. Crit. Rev. Food Sci. Nutr. 2024, 64, 7505–7516. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Tang, X.; Zhang, Y.; Hu, X.; Ren, L.J. The Current Status of Biotechnological Production and the Application of a Novel Antioxidant Ergothioneine. Crit. Rev. Biotechnol. 2021, 41, 580–593. [Google Scholar] [CrossRef] [PubMed]
- Lei, Z.; Feng, Y.; Zhang, W.; Jiang, Y.; Chen, M.; Jiang, W.; Xin, F. Research Progress and Development Prospects of Microbial Synthesis of Ergothioneine. World J. Microbiol. Biotechnol. 2025, 41, 184. [Google Scholar] [CrossRef]
- Sato, S.; Saika, A.; Koshiyama, T.; Higashiyama, Y.; Fukuoka, T.; Morita, T. Biosynthesis of Ergothioneine: Current State, Achievements, and Perspectives. Appl. Microbiol. Biotechnol. 2025, 109, 93. [Google Scholar] [CrossRef] [PubMed]
- Wen, T.; Chen, W.; Wang, F.; Zhang, R.; Chen, C.; Zhang, M.; Ma, T. The Roles and Functions of Ergothioneine in Metabolic Diseases. J. Nutr. Biochem. 2025, 141, 109895. [Google Scholar] [CrossRef]
- Weigand-Heller, A.J.; Kris-Etherton, P.M.; Beelman, R.B. The Bioavailability of Ergothioneine from Mushrooms (Agaricus bisporus) and the Acute Effects on Antioxidant Capacity and Biomarkers of Inflammation. Prev. Med. 2012, 54, S75–S78. [Google Scholar] [CrossRef]
- Syahputra, R.A.; Ahmed, A.; Asriadi; Barus, A.G.B.; Putri, S.K.; Tan, M.W.; Chandra, Q.M.; Brathennovic; Angiosaki, Y.; Lu, F.C.; et al. Ergothioneine as a Functional Nutraceutical: Mechanisms, Bioavailability, and Therapeutic Implications. J. Nutr. Biochem. 2025, 145, 110006. [Google Scholar] [CrossRef] [PubMed]
- Arslan, N.P.; Albayrak, S.; Budak-Savas, A.; Hacimuftuoglu, A.; Orak, T.; Ozdemir, A.; Karadagoglu, O.; Yildirim, S.; Cinar-Yilmaz, H.; Taskin, M. Algal and Fungal Antioxidants Alleviate Oxidative Stress-Induced Reproductive Defects. Food Sci. Nutr. 2025, 13, e70301. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Z.; Wang, Z.; Lei, Z.; Jia, Y.; Chen, W.; Shi, R.; Wang, C. A Review of Novel Antioxidant Ergothioneine: Biosynthesis Pathways, Production, Function and Food Applications. Foods 2025, 14, 1588. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, L.; Ye, X.; Deng, Z.; Zhao, C. Ergothioneine and its Congeners: Anti-Ageing Mechanisms and Pharmacophore Biosynthesis. Protein Cell 2024, 15, 191–206. [Google Scholar] [CrossRef]
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive Oxygen Species, Toxicity, Oxidative Stress, and Antioxidants: Chronic Diseases and Aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar] [CrossRef]
- Liuzzi, G.M.; Petraglia, T.; Latronico, T.; Crescenzi, A.; Rossano, R. Antioxidant Compounds from Edible Mushrooms as Potential Candidates for Treating Age-Related Neurodegenerative Diseases. Nutrients 2023, 15, 1913. [Google Scholar] [CrossRef]
- Liu, H.-M.; Tang, W.; Wang, X.-Y.; Jiang, J.-J.; Zhang, W.; Wang, W. Safe and Effective Antioxidant: The Biological Mechanism and Potential Pathways of Ergothioneine in the Skin. Molecules 2023, 28, 1648. [Google Scholar] [CrossRef]
- Tian, X.; Thorne, J.L.; Moore, J.B. Ergothioneine: An Underrecognised Dietary Micronutrient Required for Healthy Ageing? Br. J. Nutr. 2023, 129, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Dare, A.; Elrashedy, A.A.; Channa, M.L.; Nadar, A. Cardioprotective Effects and In-silico Antioxidant Mechanism of L-Ergothioneine in Experimental Type-2 Diabetic Rats. Cardiovasc. Hematol. Agents Med. Chem. 2022, 20, 133–147. [Google Scholar] [CrossRef]
- Tsang, Y.P.; Rodriguez, A.G.; Warren, M.S.; Unadkat, J.D. Identification of Selective Substrates and Inhibitors of the Major Human Renal Uptake Transporters. Drug Metab. Dispos. 2025, 53, 100046. [Google Scholar] [CrossRef]
- Suba, J.K.; Keo, L.S.; Sirich, T.L. Depletion by Hemodialysis of the Antioxidant Ergothioneine. Kidney360 2025, 6, 265–271. [Google Scholar] [CrossRef]
- Ho, K.M.; Morgan, D.J.R. The Proximal Tubule as the Pathogenic and Therapeutic Target in Acute Kidney Injury. Nephron 2022, 146, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Torigoe, D.; Kinoshita, Y.; Cyuman, M.; Toda, C.; Sato, M.; Ikeda, K.; Kadomatsu, T.; Horiguchi, H.; Morinaga, J.; et al. Long-Term Intake of Tamogi-Take Mushroom (Pleurotus cornucopiae) Mitigates Age-Related Cardiovascular Dysfunction and Extends Healthy Life Expectancy. NPJ Aging 2025, 11, 1. [Google Scholar] [CrossRef] [PubMed]
- Fong, Z.W.; Tang, R.M.Y.; Cheah, I.K.; Leow, D.M.K.; Chen, L.; Halliwell, B. Ergothioneine and Mitochondria: An Important Protective Mechanism? Biochem. Biophys. Res. Commun. 2024, 726, 150269. [Google Scholar] [CrossRef]
- Thomas, T.A.; Francis, R.O.; Zimring, J.C.; Kao, J.P.; Nemkov, T.; Spitalnik, S.L. The Role of Ergothioneine in Red Blood Cell Biology: A Review and Perspective. Antioxidants 2024, 13, 717. [Google Scholar] [CrossRef]
- Evans, V.J.; Wu, X.; Tran, K.K.; Tabofunda, S.K.; Ding, L.; Yin, L.; Edwards, P.; Zhang, Q.Y.; Ding, X.; Van Winkle, L.S. Impact of Aging and Ergothioneine Pre-Treatment on Naphthalene Toxicity in Lung. Toxicol. Lett. 2024, 397, 89–102. [Google Scholar] [CrossRef]
- Halliwell, B.; Cheah, I. Are Age-Related Neurodegenerative Diseases Caused by a Lack of the Diet-Derived Compound Ergothioneine? Free Radic. Biol. Med. 2024, 217, 60–67. [Google Scholar] [CrossRef]
- Yau, Y.F.; Cheah, I.K.; Mahendran, R.; Tang, R.M.; Chua, R.Y.; Goh, R.E.; Feng, L.; Li, J.; Kua, E.H.; Chen, C.; et al. Investigating the Efficacy of Ergothioneine to Delay Cognitive Decline in Mild Cognitively Impaired Subjects: A Pilot Study. J. Alzheimers Dis. 2024, 102, 841–854. [Google Scholar] [CrossRef]
- Mayayo-Vallverdu, C.; Lopez de Heredia, M.; Prat, E.; Gonzalez, L.; Espino Guarch, M.; Vilches, C.; Munoz, L.; Asensi, M.A.; Serra, C.; Llebaria, A.; et al. The Antioxidant L-Ergothioneine Prevents Cystine Lithiasis in the Slc7a9(−/−) Mouse Model of Cystinuria. Redox Biol. 2023, 64, 102801. [Google Scholar] [CrossRef] [PubMed]
- Ba, D.M.; Gao, X.; Al-Shaar, L.; Muscat, J.; Chinchilli, V.M.; Ssentongo, P.; Zhang, X.; Liu, G.; Beelman, R.B.; Richie Jr, J.P. Prospective Study of Dietary Mushroom Intake and Risk of Mortality: Results from Continuous National Health and Nutrition Examination Survey (NHANES) 2003–2014 and a Meta-Analysis. Nutr. J. 2021, 20, 80. [Google Scholar] [CrossRef]
- Paul, B.D. Ergothioneine: A Stress Vitamin with Antiaging, Vascular, and Neuroprotective Roles? Antioxid. Redox Signal. 2022, 36, 1306–1317. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B.; Tang, R.M.Y.; Cheah, I.K. Diet-Derived Antioxidants: The Special Case of Ergothioneine. Annu. Rev. Food Sci. Technol. 2023, 14, 323–345. [Google Scholar] [CrossRef] [PubMed]
- Turck, D.; Bresson, J.L.; Burlingame, B.; Dean, T.; Fairweather-Tait, S.; Heinonen, M.; Hirsch-Ernst, K.I.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; et al. Statement on the Safety of Synthetic L-Ergothioneine as a Novel Food—Supplementary Dietary Exposure and Safety Assessment for Infants and Young Children, Pregnant and Breastfeeding Women. EFSA J. 2017, 15, e05060. [Google Scholar]
- Wilson, D.M.; Cookson, M.R.; Van Den Bosch, L.; Zetterberg, H.; Holtzman, D.M.; Dewachter, I. Hallmarks of Neurodegenerative Diseases. Cell 2023, 186, 693–714. [Google Scholar] [CrossRef]
- Cores, Á.; Carmona-Zafra, N.; Clerigué, J.; Villacampa, M.; Menéndez, J.C. Quinones as Neuroprotective Agents. Antioxidants 2023, 12, 1464. [Google Scholar] [CrossRef] [PubMed]
- Yadan, J.C. Matching Chemical Properties to Molecular Biological Activities Opens a New Perspective on L-Ergothioneine. FEBS Lett. 2022, 596, 1299–1312. [Google Scholar] [CrossRef]
- Cheah, I.K.; Halliwell, B. Ergothioneine, Recent Developments. Redox Biol. 2021, 42, 101868. [Google Scholar] [CrossRef] [PubMed]
- Cheah, I.K.; Halliwell, B. Ergothioneine; Antioxidant Potential, Physiological Function and Role in Disease. Biochim. Biophys. Acta 2012, 1822, 784–793. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B. Reflections of an Aging Free Radical. Free Radic. Biol. Med. 2020, 161, 234–245. [Google Scholar] [CrossRef]
- Halliwell, B.; Cheah, I.K.; Tang, R.M.Y. Ergothioneine—A Diet-Derived Antioxidant with Therapeutic Potential. FEBS Lett. 2018, 592, 3357–3366. [Google Scholar] [CrossRef]
- Pochini, L.; Barone, F.; Console, L.; Brunocilla, C.; Galluccio, M.; Scalise, M.; Indiveri, C. OCTN1 (SLC22A4) Displays Two Different Transport Pathways for Organic Cations or Zwitterions. Biochim. Biophys. Acta Biomembr. 2024, 1866, 184263. [Google Scholar] [CrossRef]
- Pochini, L.; Galluccio, M.; Scalise, M.; Console, L.; Pappacoda, G.; Indiveri, C. OCTN1: A Widely Studied but Still Enigmatic Organic Cation Transporter Linked to Human Pathology and Drug Interactions. Int. J. Mol. Sci. 2022, 23, 914. [Google Scholar] [CrossRef]
- Gründemann, D.; Hartmann, L.; Flögel, S. The Ergothioneine Transporter (ETT): Substrates and Locations, an Inventory. FEBS Lett. 2022, 596, 1252–1269. [Google Scholar] [CrossRef]
- Gründemann, D. The Ergothioneine Transporter Controls and Indicates Ergothioneine Activity—A Review. Prev. Med. 2012, 54, S71–S74. [Google Scholar] [CrossRef]
- Halliwell, B.; Cheah, I.K.; Drum, C.L. Ergothioneine, an Adaptive Antioxidant for the Protection of Injured Tissues? A Hypothesis. Biochem. Biophys. Res. Commun. 2016, 470, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Kato, Y.; Kubo, Y.; Iwata, D.; Kato, S.; Sudo, T.; Sugiura, T.; Kagaya, T.; Wakayama, T.; Hirayama, A.; Sugimoto, M.; et al. Gene Knockout and Metabolome Analysis of Carnitine/Organic Cation Transporter OCTN1. Pharm. Res. 2010, 27, 832–840. [Google Scholar] [CrossRef]
- Cheah, I.K.; Tang, R.; Ye, P.; Yew, T.S.; Lim, K.H.; Halliwell, B. Liver Ergothioneine Accumulation in a Guinea Pig Model of Non-Alcoholic Fatty Liver Disease. A Possible Mechanism of Defence? Free Radic. Res. 2016, 50, 14–25. [Google Scholar] [CrossRef]
- Halliwell, B. Reactive Oxygen Species (ROS), Oxygen Radicals and Antioxidants: Where Are We Now, Where Is the Field Going and Where Should We Go? Biochem. Biophys. Res. Commun. 2022, 633, 17–19. [Google Scholar] [CrossRef]
- Petrovic, D.; Slade, L.; Paikopoulos, Y.; D’Andrea, D.; Savic, N.; Stancic, A.; Miljkovic, J.L.; Vignane, T.; Drekolia, M.K.; Mladenovic, D.; et al. Ergothioneine Improves Healthspan of Aged Animals by Enhancing cGPDH Activity through CSE-Dependent Persulfidation. Cell Metab. 2025, 37, 542–556. [Google Scholar] [CrossRef]
- Fu, T.T.; Shen, L. Ergothioneine as a Natural Antioxidant Against Oxidative Stress-Related Diseases. Front. Pharmacol. 2022, 13, 850813. [Google Scholar] [CrossRef]
- Cheah, I.K.; Tang, R.M.; Yew, T.S.; Lim, K.H.; Halliwell, B. Administration of Pure Ergothioneine to Healthy Human Subjects: Uptake, Metabolism, and Effects on Biomarkers of Oxidative Damage and Inflammation. Antioxid. Redox Signal. 2017, 26, 193–206. [Google Scholar] [CrossRef] [PubMed]
- Ando, C.; Morimitsu, Y. A Proposed Antioxidation Mechanism of Ergothioneine Based on the Chemically Derived Oxidation Product Hercynine and Further Decomposition Products. Biosci. Biotechnol. Biochem. 2021, 85, 1175–1182. [Google Scholar] [CrossRef] [PubMed]
- Paul, B.D.; Snyder, S.H. The Unusual Amino Acid L-Ergothioneine Is a Physiologic Cytoprotectant. Cell Death Differ. 2010, 17, 1134–1140. [Google Scholar] [CrossRef] [PubMed]
- Belviranli, M.; Okudan, N. Well-Known Antioxidants and Newcomers in Sport Nutrition: Coenzyme Q10, Quercetin, Resveratrol, Pterostilbene, Pycnogenol and Astaxanthin. In Antioxidants in Sport Nutrition; Lamprecht, M., Ed.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2015. [Google Scholar]
- Ingólfsson, H.I.; Melo, M.N.; van Eerden, F.J.; Arnarez, C.; López, C.A.; Wassenaar, T.A.; Periole, X.; de Vries, A.H.; Tieleman, D.P.; Marrink, S.J. Lipid Organization of the Plasma Membrane. J. Am. Chem. Soc. 2014, 136, 14554–14559. [Google Scholar] [CrossRef]
- Perricone, U.; Gulotta, M.R.; Lombino, J.; Parrino, B.; Cascioferro, S.; Diana, P.; Cirrincione, G.; Padova, A. An Overview of Recent Molecular Dynamics Applications as Medicinal Chemistry Tools for the Undruggable Site Challenge. Medchemcomm 2018, 9, 920–936. [Google Scholar] [CrossRef]
- Villalain, J. Location and Dynamics of Nymphaeol A in a Complex Membrane. Membranes 2025, 15, 163. [Google Scholar] [CrossRef]
- Villalain, J. Location and Dynamics of Astaxanthin in the Membrane. Chem. Phys. Lipids 2025, 270, 105512. [Google Scholar] [CrossRef]
- Villalain, J. Bisphenol F and Bisphenol S in a Complex Biomembrane: Comparison with Bisphenol A. J. Xenobiot. 2024, 14, 1201–1220. [Google Scholar] [CrossRef]
- Phillips, J.C.; Hardy, D.J.; Maia, J.D.C.; Stone, J.E.; Ribeiro, J.V.; Bernardi, R.C.; Buch, R.; Fiorin, G.; Hénin, J.; Jiang, W.; et al. Scalable Molecular Dynamics on CPU and GPU Architectures with NAMD. J. Chem. Phys. 2020, 153, 044130. [Google Scholar] [CrossRef]
- Best, R.B.; Zhu, X.; Shim, J.; Lopes, P.E.; Mittal, J.; Feig, M.; MacKerell, A.D., Jr. Optimization of the Additive CHARMM All-Atom Protein Force Field Targeting Improved Sampling of the Backbone Phi, Psi and Side-Chain Chi(1) and Chi(2) Dihedral Angles. J. Chem. Theory Comput. 2012, 8, 3257–3273. [Google Scholar] [CrossRef] [PubMed]
- Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; et al. CHARMM General Force Field: A Force Field for Drug-like Molecules Compatible with the CHARMM All-Atom Additive Biological Force Fields. J. Comput. Chem. 2010, 31, 671–690. [Google Scholar] [CrossRef]
- Klauda, J.B.; Venable, R.M.; Freites, J.A.; O’Connor, J.W.; Tobias, D.J.; Mondragon-Ramirez, C.; Vorobyov, I.; MacKerell, A.D., Jr.; Pastor, R.W. Update of the CHARMM All-Atom Additive Force Field for Lipids: Validation on Six Lipid Types. J. Phys. Chem. B 2010, 114, 7830–7843. [Google Scholar] [CrossRef] [PubMed]
- Wu, E.L.; Cheng, X.; Jo, S.; Rui, H.; Song, K.C.; Dávila-Contreras, E.M.; Qi, Y.; Lee, J.; Monje-Galvan, V.; Venable, R.M.; et al. CHARMM-GUI Membrane Builder toward Realistic Biological Membrane Simulations. J. Comput. Chem. 2014, 35, 1997–2004. [Google Scholar] [CrossRef] [PubMed]
- Murzyn, K.; Róg, T.; Jezierski, G.; Takaoka, Y.; Pasenkiewicz-Gierula, M. Effects of Phospholipid Unsaturation on the Membrane/Water Interface: A Molecular Simulation Study. Biophys. J. 2001, 81, 170–183. [Google Scholar] [CrossRef]
- Košinová, P.; Berka, K.; Wykes, M.; Otyepka, M.; Trouillas, P. Positioning of Antioxidant Quercetin and Its Metabolites in Lipid Bilayer Membranes: Implication for Their Lipid-Peroxidation Inhibition. J. Phys. Chem. B 2012, 116, 1309–1318. [Google Scholar] [CrossRef]
- Galiano, V.; Villalaín, J. The Location of the Protonated and Unprotonated Forms of Arbidol in the Membrane: A Molecular Dynamics Study. J. Membr. Biol. 2016, 249, 381–391. [Google Scholar] [CrossRef]
- Galiano, V.; Villalaín, J. Oleuropein Aglycone in Lipid Bilayer Membranes. A Molecular Dynamics Study. Biochim. Biophys. Acta 2015, 1848, 2849–2858. [Google Scholar] [CrossRef]
- van Meer, G.; Voelker, D.R.; Feigenson, G.W. Membrane Lipids: Where They Are and How They Behave. Nat. Rev. Mol. Cell Biol. 2008, 9, 112–124. [Google Scholar] [CrossRef] [PubMed]
- Esposito, D.L.; Nguyen, J.B.; DeWitt, D.C.; Rhoades, E.; Modis, Y. Physico-Chemical Requirements and Kinetics of Membrane Fusion of Flavivirus-like Particles. J. Gen. Virol. 2015, 96, 1702–1711. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Guixà-González, R.; Rodriguez-Espigares, I.; Ramirez-Anguita, J.M.; Carrio-Gaspar, P.; Martinez-Seara, H.; Giorgino, T.; Selent, J. MEMBPLUGIN: Studying Membrane Complexity in VMD. Bioinformatics 2014, 30, 1478–1480. [Google Scholar] [CrossRef]
- Galiano, V.; Villalain, J. Aggregation of 25-Hydroxycholesterol in a Complex Biomembrane. Differences with Cholesterol. Biochim. Biophys. Acta Biomembr. 2020, 1862, 183413. [Google Scholar] [CrossRef] [PubMed]
- Villalain, J. Envelope E Protein of Dengue Virus and Phospholipid Binding to the Late Endosomal Membrane. Biochim. Biophys. Acta Biomembr. 2022, 1864, 183889. [Google Scholar] [CrossRef]
- Villalain, J. Epigallocatechin-3-Gallate Location and Interaction with Late Endosomal and Plasma Membrane Model Membranes by Molecular Dynamics. J. Biomol. Struct. Dyn. 2019, 37, 3122–3134. [Google Scholar] [CrossRef]
- Villalain, J. Bergamottin: Location, Aggregation and Interaction with the Plasma Membrane. J. Biomol. Struct. Dyn. 2023, 41, 12026–12037. [Google Scholar] [CrossRef]
- Villalain, J. Procyanidin C1 Location, Interaction, and Aggregation in Two Complex Biomembranes. Membranes 2022, 12, 692. [Google Scholar] [CrossRef]
- Giorgino, T. Computing 1-D Atomic Densities in Macromolecular Simulations: The Density Profile Tool for VMD. Comput. Phys. Commun. 2014, 185, 317–322. [Google Scholar] [CrossRef]
- Baylon, J.L.; Tajkhorshid, E. Capturing Spontaneous Membrane Insertion of the Influenza Virus Hemagglutinin Fusion Peptide. J. Phys. Chem. B 2015, 119, 7882–7893. [Google Scholar] [CrossRef]
- Villalain, J. Localization, Aggregation, and Interaction of Glycyrrhizic Acid with the Plasma Membrane. J. Biomol. Struct. Dyn. 2024, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Villalain, J. Localization and Aggregation of Honokiol in the Lipid Membrane. Antioxidants 2024, 13, 1025. [Google Scholar] [CrossRef] [PubMed]
- Kandt, C.; Ash, W.L.; Tieleman, D.P. Setting Up and Running Molecular Dynamics Simulations of Membrane Proteins. Methods 2007, 41, 475–488. [Google Scholar] [CrossRef]
- Anézo, C.; de Vries, A.H.; Höltje, H.-D.; Tieleman, D.P.; Marrink, S.-J. Methodological Issues in Lipid Bilayers Simulations. J. Phys. Chem. B 2003, 107, 9424–9433. [Google Scholar] [CrossRef]
- Bera, I.; Klauda, J.B. Molecular Simulations of Mixed Lipid Bilayers with Sphingomyelin, Glycerophospholipids, and Cholesterol. J. Phys. Chem. B 2017, 121, 5197–5208. [Google Scholar] [CrossRef]
- Mukhopadhyay, P.; Monticelli, L.; Tieleman, D.P. Molecular Dynamics Simulation of a Palmitoyl-Oleoyl Phosphatidylserine Bilayer with Na+ Counterions and NaCl. Biophys. J. 2004, 86, 1601–1609. [Google Scholar] [CrossRef]






| SYSTEM | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
|---|---|---|---|---|---|---|---|---|
| ERGO/ERGT | 1/0 | - | - | - | - | - | - | |
| ERGO/ERGT | - | 4/0 | - | - | - | - | - | |
| ERGO/ERGT | - | - | 8/0 | - | - | - | - | |
| ERGO/ERGT | - | - | - | 0/1 | - | - | - | |
| ERGO/ERGT | - | - | - | - | 0/4 | - | - | |
| ERGO/ERGT | - | - | - | - | - | 0/8 | - | |
| ERGO/ERGT | - | - | - | - | - | - | 4/4 | |
| MD time (ns) | 450 | 450 | 450 | 450 | 450 | 450 | 450 | |
| POPC | 28.8% | 56 | 56 | 56 | 56 | 56 | 56 | 56 |
| POPE | 17.6% | 34 | 34 | 34 | 34 | 34 | 34 | 34 |
| PI-3P | 5.6% | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
| POPS | 6.4% | 14 | 14 | 14 | 14 | 14 | 14 | 14 |
| PSM | 12% | 24 | 24 | 24 | 24 | 24 | 24 | 24 |
| CHOL | 29.6% | 60 | 60 | 60 | 60 | 60 | 60 | 60 |
| ATOMS | 54,787 | 54,880 | 54,721 | 54,787 | 54,880 | 54,682 | 54,718 | |
| H2O | 10,649 | 10,650 | 10,557 | 10,649 | 10,650 | 10,544 | 10,556 | |
| H2O/LIPID | 53.2 | 53.2 | 52.8 | 53.2 | 53.2 | 52.7 | 52.8 | |
| Na+ | 80 | 80 | 80 | 80 | 80 | 80 | 80 | |
| Cl− | 30 | 30 | 30 | 30 | 30 | 30 | 30 | |
| INITIAL DIMENSIONS x/y/z (Å) | 78/78/118 | 78/78/118 | 78/78/118 | 78/78/118 | 78/78/118 | 78/78/118 | 78/78/118 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villalaín, J. Ergothioneine Thione Spontaneously Binds to and Detaches from the Membrane Interphase. Membranes 2025, 15, 328. https://doi.org/10.3390/membranes15110328
Villalaín J. Ergothioneine Thione Spontaneously Binds to and Detaches from the Membrane Interphase. Membranes. 2025; 15(11):328. https://doi.org/10.3390/membranes15110328
Chicago/Turabian StyleVillalaín, José. 2025. "Ergothioneine Thione Spontaneously Binds to and Detaches from the Membrane Interphase" Membranes 15, no. 11: 328. https://doi.org/10.3390/membranes15110328
APA StyleVillalaín, J. (2025). Ergothioneine Thione Spontaneously Binds to and Detaches from the Membrane Interphase. Membranes, 15(11), 328. https://doi.org/10.3390/membranes15110328

