Next Issue
Volume 4, December
Previous Issue
Volume 4, June
 
 

Automation, Volume 4, Issue 3 (September 2023) – 6 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
18 pages, 6004 KiB  
Article
Multi-Criteria Design of Electric Transit Bus Based on Wireless Charging Infrastructure: A Case Study of Real Road Map in Wakefield
by Arman Fathollahi, Meysam Gheisarnejad, Jalil Boudjadar, Sayed Yaser Derakhshandeh and Mohammad Hassan Khooban
Automation 2023, 4(3), 291-308; https://doi.org/10.3390/automation4030017 - 15 Sep 2023
Viewed by 1260
Abstract
In this paper, a new design strategy is developed for the Wireless Charging Electric Transit Bus (WCETB). The technology is innovative in that the battery in the bus is charged while it is moving over the charging infrastructure. In particular, an improved version [...] Read more.
In this paper, a new design strategy is developed for the Wireless Charging Electric Transit Bus (WCETB). The technology is innovative in that the battery in the bus is charged while it is moving over the charging infrastructure. In particular, an improved version of the Whale Optimization Algorithm (IWOA) is adopted for the WCETB system in the road map of Wakefield City, located in the United Kingdom. The main challenge in the WCETB is to select the power transmitter and battery size efficiently from an economical point of view. For this purpose, both factors are considered in the objective function to achieve the benefits of WCETBs from an energy perspective. Two analytical economic design optimization models are developed in this work. The first model is the real- environment model, which considers a WCETB system operating under typical traffic conditions characterized by vehicle interactions and inherent uncertainties. In this scenario, vehicle speeds vary with time, and specific traffic routes may encounter congestion. The second model concentrates on a WCETB system operating in a traffic-free environment with minimal vehicle interactions and uncertainties. The IWOA is implemented for the WCETB to operate in the real environment. Under traffic-free environment conditions, we utilize mathematical procedures and General Algebraic Modeling System (GAMS) software to solve the optimization problem. This approach not only allows us to comprehensively analyze the WCETB system’s behavior but also examine the interactions among different components of the objective function and constraints. Finally, a comprehensive numerical analysis under various conditions, including changes in the number of buses and increases in the length of routes, is conducted. Full article
Show Figures

Figure 1

28 pages, 10914 KiB  
Article
Task Location to Improve Human–Robot Cooperation: A Condition Number-Based Approach
by Abdel-Nasser Sharkawy
Automation 2023, 4(3), 263-290; https://doi.org/10.3390/automation4030016 - 6 Sep 2023
Viewed by 1628
Abstract
This paper proposes and implements an approach to evaluate human–robot cooperation aimed at achieving high performance. Both the human arm and the manipulator are modeled as a closed kinematic chain. The proposed task performance criterion is based on the condition number of this [...] Read more.
This paper proposes and implements an approach to evaluate human–robot cooperation aimed at achieving high performance. Both the human arm and the manipulator are modeled as a closed kinematic chain. The proposed task performance criterion is based on the condition number of this closed kinematic chain. The robot end-effector is guided by the human operator via an admittance controller to complete a straight-line segment motion, which is the desired task. The best location of the selected task is determined by maximizing the minimum of the condition number along the path. The performance of the proposed approach is evaluated using a criterion related to ergonomics. The experiments are executed with several subjects using a KUKA LWR robot to repeat the specified motion to evaluate the introduced approach. A comparison is presented between the current proposed approach and our previously implemented approach where the task performance criterion was based on the manipulability index of the closed kinematic chain. The results reveal that the condition number-based approach improves the human–robot cooperation in terms of the achieved accuracy, stability, and human comfort, but at the expense of task speed and completion time. On the other hand, the manipulability-index-based approach improves the human–robot cooperation in terms of task speed and human comfort, but at the cost of the achieved accuracy. Full article
(This article belongs to the Collection Smart Robotics for Automation)
Show Figures

Figure 1

17 pages, 5643 KiB  
Article
The Design of a Reaction Flywheel Speed Control System Based on ADRC
by Jiachen Song, Jianguo Guo, Changtao Qin and Wanliang Zhao
Automation 2023, 4(3), 246-262; https://doi.org/10.3390/automation4030015 - 30 Aug 2023
Viewed by 1249
Abstract
The reaction flywheel is a crucial operational component within a satellite’s attitude control system. Enhancing the performance of the reaction flywheel speed control system holds significant importance for satellite attitude control. In this paper, an active disturbance rejection control (ADRC) approach is introduced [...] Read more.
The reaction flywheel is a crucial operational component within a satellite’s attitude control system. Enhancing the performance of the reaction flywheel speed control system holds significant importance for satellite attitude control. In this paper, an active disturbance rejection control (ADRC) approach is introduced to mitigate the impact of uncertain disturbances on reaction flywheel speed control precision. The reaction flywheel speed control system is designed as an ADRC controller due to the current challenge of measuring unknown disturbances accurately in the reaction flywheel system. To derive the rotor’s speed observation value and the estimated total disturbances value, the sampled data of the reaction flywheel rotor position and torque control signal are fed into the extended state observer. The estimated total disturbances value is compensated on feedforward control, which could mitigate significantly the effects of various nonlinear disturbances. The paper initially establishes the rationale behind the reaction flywheel ADRC controller through theoretical analysis, followed by analysis of the differences of performance of reaction flywheel control by the ADRC controller and the PID controller in MATLAB/SIMULINK. Simulation results demonstrate the evident advantages of the ADRC controller over the PID controller in terms of speed command tracking capability and disturbances suppression ability. Subsequently, the ADRC controller program and the PID controller program are implemented on the reaction flywheel control circuit, and experiments are conducted to contrast speed command tracking and disturbance suppression. Importantly, the experimental outcomes align with the simulation results. Full article
Show Figures

Figure 1

14 pages, 862 KiB  
Article
Can Artificial Neural Networks Be Used to Predict Bitcoin Data?
by Terje Solsvik Kristensen and Asgeir H. Sognefest
Automation 2023, 4(3), 232-245; https://doi.org/10.3390/automation4030014 - 25 Aug 2023
Viewed by 1287
Abstract
Financial markets are complex, evolving dynamic systems. Due to their irregularity, financial time series forecasting is regarded as a rather challenging task. In recent years, artificial neural network applications in finance for such tasks as pattern recognition, classification, and time series forecasting have [...] Read more.
Financial markets are complex, evolving dynamic systems. Due to their irregularity, financial time series forecasting is regarded as a rather challenging task. In recent years, artificial neural network applications in finance for such tasks as pattern recognition, classification, and time series forecasting have dramatically increased. The objective of this paper is to present this versatile framework and attempt to use it to predict the stock return series of four public-listed companies on the New York Stock Exchange. Our findings coincide with those of Burton Malkiel in his book, A Random Walk Down Wall Street; no conclusive evidence is found that our proposed models can predict the stock return series better than that of a random walk. Full article
(This article belongs to the Special Issue Networked Predictive Control for Complex Systems)
Show Figures

Figure 1

22 pages, 27075 KiB  
Article
Deep Dyna-Q for Rapid Learning and Improved Formation Achievement in Cooperative Transportation
by Almira Budiyanto and Nobutomo Matsunaga
Automation 2023, 4(3), 210-231; https://doi.org/10.3390/automation4030013 - 10 Jul 2023
Cited by 2 | Viewed by 1804
Abstract
Nowadays, academic research, disaster mitigation, industry, and transportation apply the cooperative multi-agent concept. A cooperative multi-agent system is a multi-agent system that works together to solve problems or maximise utility. The essential marks of formation control are how the multiple agents can reach [...] Read more.
Nowadays, academic research, disaster mitigation, industry, and transportation apply the cooperative multi-agent concept. A cooperative multi-agent system is a multi-agent system that works together to solve problems or maximise utility. The essential marks of formation control are how the multiple agents can reach the desired point while maintaining their position in the formation based on the dynamic conditions and environment. A cooperative multi-agent system closely relates to the formation change issue. It is necessary to change the arrangement of multiple agents according to the environmental conditions, such as when avoiding obstacles, applying different sizes and shapes of tracks, and moving different sizes and shapes of transport objects. Reinforcement learning is a good method to apply in a formation change environment. On the other hand, the complex formation control process requires a long learning time. This paper proposed using the Deep Dyna-Q algorithm to speed up the learning process while improving the formation achievement rate by tuning the parameters of the Deep Dyna-Q algorithm. Even though the Deep Dyna-Q algorithm has been used in many applications, it has not been applied in an actual experiment. The contribution of this paper is the application of the Deep Dyna-Q algorithm in formation control in both simulations and actual experiments. This study successfully implements the proposed method and investigates formation control in simulations and actual experiments. In the actual experiments, the Nexus robot with a robot operating system (ROS) was used. To confirm the communication between the PC and robots, camera processing, and motor controller, the velocities from the simulation were directly given to the robots. The simulations could give the same goal points as the actual experiments, so the simulation results approach the actual experimental results. The discount rate and learning rate values affected the formation change achievement rate, collision number among agents, and collisions between agents and transport objects. For learning rate comparison, DDQ (0.01) consistently outperformed DQN. DQN obtained the maximum −170 reward in about 130,000 episodes, while DDQ (0.01) could achieve this value in 58,000 episodes and achieved a maximum −160 reward. The application of an MEC (model error compensator) in the actual experiment successfully reduced the error movement of the robots so that the robots could produce the formation change appropriately. Full article
Show Figures

Figure 1

19 pages, 1729 KiB  
Article
Automation Radiomics in Predicting Radiation Pneumonitis (RP)
by Sotiris Raptis, Vasiliki Softa, Georgios Angelidis, Christos Ilioudis and Kiki Theodorou
Automation 2023, 4(3), 191-209; https://doi.org/10.3390/automation4030012 - 6 Jul 2023
Cited by 1 | Viewed by 1918
Abstract
Radiomics has shown great promise in predicting various diseases. Researchers have previously attempted to include radiomics in their automated detection, diagnosis, and segmentation algorithms, taking these steps based on the promising outcomes of radiomics-based studies. As a result of the increased attention given [...] Read more.
Radiomics has shown great promise in predicting various diseases. Researchers have previously attempted to include radiomics in their automated detection, diagnosis, and segmentation algorithms, taking these steps based on the promising outcomes of radiomics-based studies. As a result of the increased attention given to this topic, numerous institutions have developed their own radiomics software. These packages, on the other hand, have been utilized interchangeably without regard for their fundamental differences. The primary purpose of this study was to explore benefits of predictive model performance for radiation pneumonitis (RP), which is the most frequent side effect of chest radiotherapy, and through this work, we developed a radiomics model based on deep learning that intends to increase RP prediction performance by combining more data points and digging deeper into these data. In order to evaluate the most popular machine learning models, radiographic characteristics were used, and we recorded the most important of them. The high dimensionality of radiomic datasets is a major issue. The method proposed for use in data problems is the synthetic minority oversampling technique, which we used in order to create a balanced dataset by leveraging suitable hardware and open-source software. The present study assessed the efficacy of various machine learning models, including logistic regression (LR), support vector machine (SVM), random forest (RF), and deep neural network (DNN), in predicting radiation pneumonitis by utilizing specific radiomics features. The findings of the study indicate that the four models displayed satisfactory efficacy in forecasting radiation pneumonitis. The DNN model demonstrated the highest area under the receiver operating curve (AUC-ROC) value, which was 0.87, suggesting its superior predictive capacity among the models considered. The AUC-ROC values for the random forest, SVM, and logistic regression models were 0.85, 0.83, and 0.81, respectively. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop