Previous Issue
Volume 6, June
 
 

Organics, Volume 6, Issue 3 (September 2025) – 8 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
16 pages, 1650 KiB  
Article
Profiling of Disubstituted Chloroacetamides’ Potential Biological Activity by Liquid Chromatography
by Suzana Apostolov, Dragana Mekić, Marija Mitrović, Slobodan Petrović and Gyöngyi Vastag
Organics 2025, 6(3), 35; https://doi.org/10.3390/org6030035 - 4 Aug 2025
Abstract
Modern agriculture relies heavily on the use of pesticides, with one-third of them being herbicides. Chloroacetamides are the most widely used herbicides because of their high effectiveness, but their extensive use poses environmental challenges and threatens the health of living organisms due to [...] Read more.
Modern agriculture relies heavily on the use of pesticides, with one-third of them being herbicides. Chloroacetamides are the most widely used herbicides because of their high effectiveness, but their extensive use poses environmental challenges and threatens the health of living organisms due to toxicity risks. Since the pharmacokinetic behavior and toxicity of a compound are influenced by its lipophilicity, this essential physicochemical parameter for disubstituted chloroacetamides was determined in silico and experimentally through thin-layer chromatography on reversed phases (RPTLC C18/UV254s) in mixtures of water and distinct organic modifiers. The pharmacokinetic profile of chloroacetamides was analyzed by using the BOILED-Egg model. The correlation between the obtained chromatographic parameters and software-based lipophilicity, pharmacokinetic, and ecotoxicity predictors of the studied chloroacetamides was assessed by using linear regression, but more comprehensive insight was obtained through multivariate methods—Cluster Analysis and Principal Component Analysis. It was observed that the total number of carbon atoms in the structure of their molecules, along with the type of hydrocarbon substituents, are the most important factors affecting lipophilicity, pharmacokinetics, and potential toxicity to non-target organisms. Full article
Show Figures

Figure 1

10 pages, 1360 KiB  
Article
Limitations of Frontier Orbital and Charge Approaches in the Description of Electrophilic Aromatic Substitution
by Lucia Emanuele and Maurizio D’Auria
Organics 2025, 6(3), 34; https://doi.org/10.3390/org6030034 - 1 Aug 2025
Viewed by 117
Abstract
DFT calculations at the B3LYP/aug-cc-pVDZ level of theory on some aromatic substrates showed that in the HOMO (Highest Occupied Molecular Orbital) of nitrobenzene, the atomic coefficients are not in agreement with the meta-directing behavior of this compound. The atomic coefficients are the same [...] Read more.
DFT calculations at the B3LYP/aug-cc-pVDZ level of theory on some aromatic substrates showed that in the HOMO (Highest Occupied Molecular Orbital) of nitrobenzene, the atomic coefficients are not in agreement with the meta-directing behavior of this compound. The atomic coefficients are the same in the ortho and in the meta positions. The HOMO (or NHOMO (Next Occupied Molecular Orbital) in the case of benzaldehyde) is not in agreement with the experimental results when deactivating, meta-orienting compounds are considered. Mulliken charges sometimes are not able to explain the observed reactivity. Hirshfeld charges allow us to predict the orientation of the attack of an electrophile on the aromatic ring, with the exception of nitrobenzene. Both HOMO atomic coefficients and charges are in agreement with the experimental results when deactivating, ortho-para orienting, and activating compounds are tested. Full article
Show Figures

Figure 1

21 pages, 3864 KiB  
Review
PANI-Based Thermoelectric Materials
by Mengran Chen, Dongmei Xie, Hongqing Zhou and Pengan Zong
Organics 2025, 6(3), 33; https://doi.org/10.3390/org6030033 - 22 Jul 2025
Viewed by 280
Abstract
Polyaniline (PANI) based thermoelectric materials have attracted much attention in flexible energy harvesting devices due to their unique molecular structure, excellent chemical stability, and low cost. However, the intrinsic thermoelectric performance of intrinsic PANI makes it difficult to meet the needs of practical [...] Read more.
Polyaniline (PANI) based thermoelectric materials have attracted much attention in flexible energy harvesting devices due to their unique molecular structure, excellent chemical stability, and low cost. However, the intrinsic thermoelectric performance of intrinsic PANI makes it difficult to meet the needs of practical applications due to its low electronic transport properties. This review focuses on the preparation methods and key strategies for developing high-performance PANI-based thermoelectric materials. It aims to comprehensively update knowledge regarding synthesis methods, microstructures, thermoelectric properties, and underlying mechanisms. The overall goal is to provide timely insights to promote the development of high-performance PANI-based thermoelectric materials. Full article
Show Figures

Graphical abstract

35 pages, 7245 KiB  
Review
Engineering Nascent Disentangled Ultra-High-Molecular-Weight Polyethylene Based on Heterogeneous Catalytic Polymerization
by Lei Li
Organics 2025, 6(3), 32; https://doi.org/10.3390/org6030032 - 21 Jul 2025
Viewed by 299
Abstract
Ultra-high-molecular-weight polyethylene (UHMWPE) is a pivotal material in engineering and biomedical applications due to its exceptional mechanical strength, wear resistance, and impact performance. However, its extreme melt viscosity, caused by extensive chain entanglements, severely limits processability via conventional melt-processing techniques. Recent advances in [...] Read more.
Ultra-high-molecular-weight polyethylene (UHMWPE) is a pivotal material in engineering and biomedical applications due to its exceptional mechanical strength, wear resistance, and impact performance. However, its extreme melt viscosity, caused by extensive chain entanglements, severely limits processability via conventional melt-processing techniques. Recent advances in catalytic synthesis have enabled the production of disentangled UHMWPE (dis-UHMWPE), which exhibits enhanced processability while retaining superior mechanical properties. Notably, heterogeneous catalytic systems, utilizing supported fluorinated bis (phenoxy-imine) titanium (FI) catalysts, polyhedral oligomeric silsesquioxanes (POSS)-modified Z-N catalysts, and other novel catalysts, have emerged as promising solutions, combining structural control with industrial feasibility. Moreover, optimizing polymerization conditions further enhances chain disentanglement while maintaining ultra-high molecular weights. These systems utilize nanoscale supports and ligand engineering to spatially isolate active sites, tailor the chain propagation/crystallization kinetics, and suppress interchain entanglement during polymerization. Furthermore, characterization techniques such as melt rheology and differential scanning calorimetry (DSC) provide critical insights into chain entanglement, revealing distinct reorganization kinetics and bimodal melting behavior in dis-UHMWPE. This development of hybrid catalytic systems opens up new avenues for solid-state processing and industrial-scale production. This review highlights recent advances concerning interaction between catalyst design, polymerization control, and material performance, ultimately unlocking the full potential of UHMWPE for next-generation applications. Full article
Show Figures

Figure 1

15 pages, 1339 KiB  
Article
Synthesis of Cannabigerol and Cannabigerol Derivatives
by Juan F. Ortuño, Alessio Ghisolfi, Raquel Almansa, Olga Soares do Rego Barros, Ana Sirvent, José M. Sansano and Francisco Foubelo
Organics 2025, 6(3), 31; https://doi.org/10.3390/org6030031 - 16 Jul 2025
Viewed by 246
Abstract
The synthesis of cannabigerol—a cannabinoid with significant pharmaceutical potential—is described. The synthesis involves four stages. In the first step, (E)-non-3-en-2-one reacts with dimethyl malonate to yield a cyclic enone, which is subsequently oxidized with bromine to produce the olivetol ester. This ester then [...] Read more.
The synthesis of cannabigerol—a cannabinoid with significant pharmaceutical potential—is described. The synthesis involves four stages. In the first step, (E)-non-3-en-2-one reacts with dimethyl malonate to yield a cyclic enone, which is subsequently oxidized with bromine to produce the olivetol ester. This ester then undergoes an alumina-catalyzed coupling reaction with geraniol, followed by ester hydrolysis to obtain cannabigerol. By modifying the chain length of the enone in the initial step and employing allylic alcohols other than geraniol, a range of cannabigerol derivatives can be synthesized, including the natural product cannabigerovarin. Full article
Show Figures

Figure 1

12 pages, 1949 KiB  
Article
Density Functional Theory Study on Mechanism and Selectivity of Nickel-Catalyzed Hydroboration of Vinylarenes
by Jingwei Wu, Yongzhu Zhou, Lei Zhang, Jie Zhang, Pei Song, Xiaoling Wang and Cuihong Wang
Organics 2025, 6(3), 30; https://doi.org/10.3390/org6030030 - 11 Jul 2025
Viewed by 224
Abstract
Density functional theory calculations were performed to elucidate the mechanistic details and origins of the selectivity of the nickel-catalyzed hydroboration of vinylarenes using B2pin2/MeOH. The catalytic cycles involved four sequential elementary steps: hydronickelation, anion exchange, transmetalation, and reductive elimination. [...] Read more.
Density functional theory calculations were performed to elucidate the mechanistic details and origins of the selectivity of the nickel-catalyzed hydroboration of vinylarenes using B2pin2/MeOH. The catalytic cycles involved four sequential elementary steps: hydronickelation, anion exchange, transmetalation, and reductive elimination. Kinetic analyses identified hydronickelation as the rate-determining step with an activation barrier of 19.8 kcal/mol, while transmetalation proceeded through a stepwise mechanism characterized by two distinct transition states. Comprehensive analyses of the relevant transition structures and energetics demonstrated that the observed R-enantioselectivity (94% ee) originated from favorable nonbonding interactions. Lastly, our calculations suggested that the Markovnikov regioselectivity was predominantly governed by steric factors rather than electronic effects. Full article
Show Figures

Figure 1

23 pages, 3606 KiB  
Article
Complementary Synthesis of Anti- and Syn-Hydroxymethyl 1,3-Diols via Regioselective Ring Opening of TIPS-Protected 2,3-Epoxy Alcohols: Toward Polypropionate Fragments
by Raúl R. Rodríguez-Berríos and José A. Prieto
Organics 2025, 6(3), 29; https://doi.org/10.3390/org6030029 - 10 Jul 2025
Viewed by 659
Abstract
Hydroxymethyl 1,3-diol motifs are common structural motifs in natural products, particularly in polypropionates with important therapeutic potential. However, general and complementary methods for their regio- and diastereoselective synthesis remain limited. In this study, we expanded a second-generation epoxide-based methodology involving the regioselective cleavage [...] Read more.
Hydroxymethyl 1,3-diol motifs are common structural motifs in natural products, particularly in polypropionates with important therapeutic potential. However, general and complementary methods for their regio- and diastereoselective synthesis remain limited. In this study, we expanded a second-generation epoxide-based methodology involving the regioselective cleavage of TIPS-monoprotected cis- and trans-2,3-epoxy alcohols using alkenyl Grignard reagents. Regioselective ring opening of cis-epoxides provided anti-1,3-diols, while trans-epoxides afforded the corresponding syn-1,3-diols. The use of cis-propenylmagnesium bromide and vinyl Grignard reagents enabled direct access to cis- and terminal homoallylic 1,3-diols, respectively, with moderate to good yields (46–88%) and excellent regioselectivities (95:5). In contrast, reactions with trans-propenyl Grignard reagent led to partial alkene isomerization, limiting their synthetic utility. To address this, a complementary two-step approach employing propynyl alanate addition followed by sodium/ammonia reduction was incorporated, providing access to trans-homoallylic 1,3-diols with high diastereoselectivity. All 1,3-diols were characterized by NMR spectroscopy, confirming regioselective epoxide opening. These combined strategies offer a practical and modular platform for the synthesis of syn- and anti-hydroxymethylated 1,3-diols and their application to the construction of polypropionate-type fragments, supporting future efforts in the total synthesis of polyketide natural products. Full article
Show Figures

Figure 1

16 pages, 637 KiB  
Review
Structural Innovations in Vancomycin: Overcoming Resistance and Expanding the Antibacterial Spectrum
by Ricardo Cartes-Velásquez, Felipe Morales-León, Franco Valdebenito-Maturana, Pablo Sáez-Riquelme, Nicolás Rodríguez-Ortíz and Hernán Carrillo-Bestagno
Organics 2025, 6(3), 28; https://doi.org/10.3390/org6030028 - 23 Jun 2025
Viewed by 814
Abstract
Vancomycin, a cornerstone antibiotic against severe Gram-positive infections, is increasingly challenged by resistance in Methicillin-resistant Staphylococcus aureus (MRSA) and Vancomycin Enterococcus spp. (VRE), necessitating the development of novel therapeutic strategies. This review examines how structural modifications to vancomycin can enhance its antibacterial activity [...] Read more.
Vancomycin, a cornerstone antibiotic against severe Gram-positive infections, is increasingly challenged by resistance in Methicillin-resistant Staphylococcus aureus (MRSA) and Vancomycin Enterococcus spp. (VRE), necessitating the development of novel therapeutic strategies. This review examines how structural modifications to vancomycin can enhance its antibacterial activity and explores the critical role of computational approaches in designing the next generation of analogs. By analyzing the existing literature, we highlight how strategic alterations, such as the introduction of lipophilic side chains, substitutions on the sugar moieties, and modifications to the aglycone core, have yielded derivatives with improved antibacterial potency. Notably, certain analogs (e.g., Vanc-83, Dipi-Van-Zn) have demonstrated expanded activity against Gram-negative bacteria and exhibited enhanced pharmacokinetic profiles, including prolonged half-lives and improved tissue penetration, crucial for effective treatment. Semisynthetic glycopeptides like telavancin, dalbavancin, and oritavancin exemplify successful translation of structural modifications, offering sustained plasma concentrations and simplified dosing regimens that improve patient compliance. Complementing these experimental efforts, computational methods, including molecular docking and molecular dynamics simulations, provide valuable insights into drug–target interactions, guiding the rational design of more effective analogs. Furthermore, physiologically based pharmacokinetic modeling aids in predicting the in vivo behavior and optimizing the pharmacokinetic properties of these novel compounds. This review highlights a critical path forward in the fight against multidrug-resistant infections. By meticulously examining the previously carried out structural refinement of vancomycin, guided by computational predictions and validated through rigorous experimental testing, we underscore its immense potential. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop