Previous Issue
Volume 6, September
 
 

Organics, Volume 6, Issue 4 (December 2025) – 4 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
13 pages, 1905 KB  
Article
Efficient Degradation of Cis-Polyisoprene by GQDs/g-C3N4 Nanoparticles Under UV Light Irradiation
by Cilong Chen, Jinrui Liu, Bangsen Li, Dashuai Zhang, Peisong Zhang, Jianjun Shi and Zaifeng Shi
Organics 2025, 6(4), 47; https://doi.org/10.3390/org6040047 - 14 Oct 2025
Abstract
Rubber material with high elasticity and viscoelasticity has become the most widely used universal material, and the study of the aging failure mechanism of rubber has been meaningful research in the polymer materials field. Cis-polyisoprene was employed to analyze the mechanism of [...] Read more.
Rubber material with high elasticity and viscoelasticity has become the most widely used universal material, and the study of the aging failure mechanism of rubber has been meaningful research in the polymer materials field. Cis-polyisoprene was employed to analyze the mechanism of oxidative degradation under artificial UV irradiation, and the GQDs/g-C3N4 photocatalysis with a 2D layered structure prepared by the method of microwave-assisted polymerization enabled to accelerate the degradation procedure. The results showed that the oxidation of cis-polyisoprene occurred during the irradiation for 3 days and the structure of cis-polyisoprene changed. The α-H of the double bond was attacked by oxygen to form hydroperoxide. Then, aldehydes and ketones generated as the addition reaction of double bonds occurred. The content of the hydrogen of C=C reduced, and the oxidative degradation was dominant at the initial aging stage. The crosslinking reaction was dominant at the final aging stage and the average molecular weight decreased from 15.49 × 104 to 8.78 × 104. The GQDs could promote the charge transfer and the photodegradation efficiency and inhibit the electron–hole recombination. The light capture ability of GQDs was improved after compositing with g-C3N4. The free radicals ·O22− generated after adding GQDs/g-C3N4 nanoparticles, and the molecular weight of cis-polyisoprene decreased to 5.79 × 104, with the photocatalytic efficiency increasing by 20%. This work provided academic bases and reference values for the application of photocatalysts in the field of natural rubber degradation and rubber wastewater treatment. Full article
Show Figures

Figure 1

36 pages, 4389 KB  
Review
Synthetic Routes and Bioactivity Profiles of the Phenothiazine Privileged Scaffold
by Aigul E. Malmakova and Alan M. Jones
Organics 2025, 6(4), 46; https://doi.org/10.3390/org6040046 - 10 Oct 2025
Viewed by 133
Abstract
This review offers a focused overview of the strategies used to build and modify phenothiazine (PTZ) derivatives. It covers both classical synthetic approaches and advances reported since 2014, including transition metal-catalyzed transformations and greener techniques, such as electrosynthesis, microwave-assisted reactions, and ultrasound-promoted methods. [...] Read more.
This review offers a focused overview of the strategies used to build and modify phenothiazine (PTZ) derivatives. It covers both classical synthetic approaches and advances reported since 2014, including transition metal-catalyzed transformations and greener techniques, such as electrosynthesis, microwave-assisted reactions, and ultrasound-promoted methods. Each strategy is evaluated with respect to efficiency, scalability, and sustainability. In parallel, the review surveys the diverse bioactivity profiles of PTZ derivatives, ranging from antipsychotic, anticancer, and antimicrobial activities to emerging applications in photodynamic therapy and neuroprotection. By correlating synthetic accessibility with biological potential, this review provides an integrated perspective that highlights advances achieved since 2014 and outlines future opportunities for rational PTZ design and applications. Full article
Show Figures

Graphical abstract

14 pages, 1016 KB  
Article
The Song Remains the Same, but the Enzymes Don’t: Imidazolium ILs as Potential Disruptors of Fatty Acid Metabolism
by Savina Stoyanova and Milen G. Bogdanov
Organics 2025, 6(4), 45; https://doi.org/10.3390/org6040045 - 2 Oct 2025
Viewed by 439
Abstract
This study examined twenty-eight N-methylimidazolium ionic liquids (ILs) with various substituents and anions to assess their impact on the activity of Carnitine Acetyltransferase (CAT), an indispensable enzyme in human metabolism. In vitro experiments demonstrated that these compounds inhibited CAT in a concentration-dependent [...] Read more.
This study examined twenty-eight N-methylimidazolium ionic liquids (ILs) with various substituents and anions to assess their impact on the activity of Carnitine Acetyltransferase (CAT), an indispensable enzyme in human metabolism. In vitro experiments demonstrated that these compounds inhibited CAT in a concentration-dependent manner, with IC50 values ranging from 0.93 to 30.8 mM. Structural analysis of the ILs revealed the following structure–activity relationships: (i) the length of the hydrocarbon chain at N3 markedly affects CAT activity, with longer chains resulting in stronger inhibition; (ii) the degree of unsaturation and the presence of polar groups are not essential for increased activity; (iii) the effect of the anion aligns with the Hofmeister series. One of the most potent compounds, 1-decyl-3-methylimidazolium bromide [C10C1im]Br, was identified as a mixed inhibitor of CAT with a Ki of 0.77 mM. These findings raise concerns about the biocompatibility of commonly used imidazolium ILs, as they may interfere with fatty acid oxidation by inhibiting their cellular transport. Full article
Show Figures

Figure 1

12 pages, 779 KB  
Article
Influence of MW Irradiation on the Reaction Between (2R,7R,11S,16S)-1,8,10,17-tetraazapentacyclo[8.8.1.1.8,170.2,70.11,16]icosane and p-Substituted Phenols
by Diego Quiroga, Jaime Ríos-Motta and Augusto Rivera
Organics 2025, 6(4), 44; https://doi.org/10.3390/org6040044 - 2 Oct 2025
Viewed by 203
Abstract
4,4′-substituted-2,2′-((hexahydro-1H-benzo[d]imidazole-1,3(2H)-diyl)bis(methylene))bisphenols (1ad) and 2,6-bis{[3-(2-hydroxy-5-substitutedbenzyl)octahydro-1H-benzimidazol-1-yl]methyl}-4-substitutedphenols (2ab) were synthesized via microwave (MW) irradiation of aminal (2R,7R,11S,16S [...] Read more.
4,4′-substituted-2,2′-((hexahydro-1H-benzo[d]imidazole-1,3(2H)-diyl)bis(methylene))bisphenols (1ad) and 2,6-bis{[3-(2-hydroxy-5-substitutedbenzyl)octahydro-1H-benzimidazol-1-yl]methyl}-4-substitutedphenols (2ab) were synthesized via microwave (MW) irradiation of aminal (2R,7R,11S,16S)-1,8,10,17-tetraazapentacyclo[8.8.1.1.8,170.2,70.11,16]icosane 2 with p-substituted phenols. Microwave (MW) irradiation improved reaction rates and yields at 80 °C. Compounds 1ad were racemic, and 2ab were diastereomeric. NMR spectra revealed key signals for the perhydrobenzimidazole fragment, aromatic rings, and aminal carbons. Differences in the 13C NMR spectra highlighted structural variations, such as distinct carbonyl and methoxyl signals in 2d. MW irradiation at higher temperatures (100–120 °C) reduced yields of 1, especially for phenols with methyl (Me) and methoxy (OMe) groups, suggesting a shift toward the formation of compound 2. Additionally, higher temperatures led to polymerization byproducts, emphasizing the impact of MW energy on reaction pathways. These results provide valuable insights for designing molecules with potential applications in materials science and medicinal chemistry. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop