Limitations of Frontier Orbital and Charge Approaches in the Description of Electrophilic Aromatic Substitution
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Crampton, M.R. Organic Reaction Mechanisms; Knipe, A.C., Moloney, M.G., Eds.; Wiley: New York, NY, USA, 2020; pp. 213–295. [Google Scholar]
- Koerner, W. Fatti per servire alla determinazione del luogo chimico nelle sostanze aromatiche. G. Sci. Nat. Ed. Econ. 1869, 5, 212–256. [Google Scholar]
- Koerner, W. Studi sull’isomeria delle così dette sostanze aromatiche a sei atomi di carbonio. Gaz. Chim. Ital. 1874, 4, 305–446. [Google Scholar]
- Kermack, W.O.; Robinson, R. An explanation of the property of induced polarity of atoms and an interpretation of the theory of partial valencies on an electronic basis. J. Chem. Soc. Trans. 1922, 121, 427–440. [Google Scholar] [CrossRef]
- Lapworth, A. A theoretical derivation of the principle of induces alternate polarities. J. Chem. Soc. Trans. 1922, 121, 416–427. [Google Scholar] [CrossRef]
- Saltzman, M. Arthur Lapworth. J. Chem. Educ. 1972, 49, 750–752. [Google Scholar] [CrossRef]
- Karrer, P. Trattato di Chimica Organica; Sansoni: Firenze, Italy, 1965. [Google Scholar]
- Wheland, G.W. A quantum mechanical investigation of the orientation of substitution in aromatic molecules. J. Am. Chem. Soc. 1942, 64, 900–908. [Google Scholar] [CrossRef]
- Olah, G.A. Stable carbonium ions. IX. Methylbenzenonium hexafluoroantimonates. J. Am. Chem. Soc. 1965, 87, 1103–1108. [Google Scholar] [CrossRef]
- Olah, G.A.; Kiovsky, T.E. Stable carbonium ions. LI. Fluorobenzenonium ions. J. Am. Chem. Soc. 1967, 89, 5692–5694. [Google Scholar] [CrossRef]
- Olah, G.A.; Schlosberg, R.H.; Richard, D.; Porter, R.D.; Mo, Y.K.; Kelly, D.P.; Mateescu, G.D. Stable carbocations. CXXIV. Benzenium ion and monoalkylbenzenium ions. J. Am. Chem. Soc. 1972, 94, 2034–2043. [Google Scholar] [CrossRef]
- Corey, E.J.; Barcza, S.; Klotmann, G. Directed conversion of the phenoxy grouping into a variety of cyclic polyfunctional systems. J. Am. Chem. Soc. 1969, 91, 4782–4786. [Google Scholar] [CrossRef]
- Hahn, R.C.; Strack, D.L. Ipso nitration. II. Novel products and true positional selectivities in nitration of p-cymene. J. Am. Chem. Soc. 1974, 96, 4335–4337. [Google Scholar] [CrossRef]
- Carey, F.A.; Sundberg, R.J. Advanced Organic Chemistry; Part A: Structure and Mechanisms; Springer: New York, HY, USA, 2008. [Google Scholar]
- Fukui, K.; Yonezawa, T.; Shingu, H. A molecular orbital theory of reactivity of aromatic hydrocarbons. J. Chem. Phys. 1952, 20, 722–725. [Google Scholar] [CrossRef]
- Seeman, J.I. Kenichi Fukui, Frontier Molecular Orbital Theory, and the Woodward-Hoffmann Rules. Part II. A Sleeping Beauty in Chemistry. Chem. Rec. 2022, 22, e202100300. [Google Scholar]
- Elliott, R.J.; Sackwild, V.; Richards, W.G. Quantitative frontier orbital theory: Part I. Electrophilic aromatic substitution. J. Mol. Struct. 1982, 86, 301–314. [Google Scholar]
- Klopman, G. Chemical reactivity and the concept of charge- and frontier-controlled reactions. J. Am. Chem. Soc. 1968, 90, 223–234. [Google Scholar] [CrossRef]
- Salem, L. Intermolecular orbital theory of the interaction between conjugated systems. I. General theory. J. Am. Chem. Soc. 1968, 90, 543–552. [Google Scholar] [CrossRef]
- Salem, L. Intermolecular orbital theory of the interaction between conjugated systems. II. Thermal and photochemical cycloaddition. J. Am. Chem. Soc. 1968, 90, 553–566. [Google Scholar] [CrossRef]
- Domingo, L.R. Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry. Molecules 2016, 21, 1319. [Google Scholar] [CrossRef]
- Stuyver, T.; Danovich, D.; De Proft, F.; Shaik, S. Electrophilic aromatic substitution reactions: Mechanistic landascape, electrostatic and electric-field control of reaction rates, and mechanistic crossovers. J. Am. Chem. Soc. 2019, 141, 9719–9730. [Google Scholar] [CrossRef]
- Galabov, B.; Nalbantova, D.; Schleyer, P.v.R.; Schaefer, H.F., III. Electrophilic aromatic substitution: New insighta into an old class of reactions. Acc. Chem. Res. 2016, 49, 1191–1199. [Google Scholar] [CrossRef]
- Liu, S. Where does the electron go? The nature of ortho/para and meta group directing in electrophilic aromatic substitution. J. Chem. Phys. 2014, 141, 194109. [Google Scholar] [CrossRef] [PubMed]
- Gaussian 09. 2009. Available online: https://barrett-group.mcgill.ca/tutorials/Gaussian%20tutorial.pdf (accessed on 28 July 2025).
- Parr, R.G.; Yang, W. Density Functional Theory of Atoms and Molecules; Oxford University Press: Oxford, UK, 1989. [Google Scholar]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar]
- Krukau, A.V.; Vydrov, O.A.; Izmaylov, A.F.; Scuseria, G.E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 2006, 125, 224106. [Google Scholar] [CrossRef]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Tao, J.M.; Perdew, J.P.; Staroverov, V.N.; Scuseria, G.E. Climbing the density functional ladder: Nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett. 2003, 91, 146401. [Google Scholar] [CrossRef]
- Pounder, F.E. The Nitration of Nitrobenzene. Ph.D. Thesis, Durham University, Durham, UK, 1935. [Google Scholar]
- Baciocchi, E.; Cacace, F.; Ciranni, G.; Illuminati, G. Isomeric distributions and relative reactivities in the uncatalyzed chlorination of benzonitrile, nitrobenzene, and benzotrifluoride. The directive effects of electron-withdrawing substituents as a function of reagent and solvent. J. Am. Chem. Soc. 1972, 94, 7030–7034. [Google Scholar] [CrossRef]
- Heidar-Zadeh, F.; Ayers, P.W.; Verstraelen, T.; Vinogradov, I.; Vöhringer-Martinez, E.; Bultinck, P. Information-theoretic approaches to atoms-in.molecules: Hirshfeld family of partitioning schemes. J. Phys. Chem. A 2018, 122, 4219–4245. [Google Scholar] [CrossRef] [PubMed]
- Liu, S. Quantifying reactivity of electrophilic aromatic substitution reactions with Hirshfeld charge. J. Phys. Chem. A 2015, 119, 3107–3111. [Google Scholar] [CrossRef]
- Johnstone, J.F.; Ridd, J.H.; Sandall, J.P.B. The borderline between the classical and the electron transfer process in nitration by the nitronium ion. Chem. Commun. 1989, 244–246. [Google Scholar] [CrossRef]
- Brown, J.J.; Cockroft, S.L. Aromatic reactivity revealed: Beyond resonance theory and frontier orbitals. Chem. Sci. 2013, 4, 1772–1780. [Google Scholar] [CrossRef]
- Davey, W.; Gwilt, J.R. The preparation of mononitrobenzaldehdes. J. Chem. Soc. 1950, 204–208. [Google Scholar] [CrossRef]
- Stock, L.M. Aromatic Substitution Reactions; Prentice-Hall: Englewood Cliffs, NJ, USA, 1968; p. 63. [Google Scholar]
- Kamm, O.; Segur, J.B. Methyl m-nitrobenzoate. Org. Synth. 1923, 3, 71–72. [Google Scholar] [CrossRef]
- Yee, H.Y.; Boyle, A.J. The chlorination of benzoic acid in aqueous system by use of oxidizing acids. J. Chem. Soc. 1955, 4139–4140. [Google Scholar] [CrossRef]
- Pearson, D.E.; Stamper, W.E.; Suthers, B.R. The swamping catalyst effect. V. The halogenation of aromatic acid derivatives. J. Org. Chem. 1963, 28, 3147–3149. [Google Scholar] [CrossRef]
Functional | Atomic Coefficients | Mulliken Charges | Hirschfeld Charges | ||||||
---|---|---|---|---|---|---|---|---|---|
ortho | meta | para | ortho | meta | para | ortho | meta | para | |
B3LYP | 0.30 | 0.30 | - | 0.8 | 0.6 | 0.6 | −0.026 | −0.028 | −0.019 |
HSEH1PBE | 0.30 | 0.30 | - | 0.5 | 0.5 | 0.5 | −0.032 | −0.029 | −0.023 |
PBEPBE | 0.30 | 0.30 | - | 0.5 | 0.7 | 0.5 | −0.030 | −0.031 | −0.024 |
TPSSTPSS | 0.30 | 0.30 | - | 0.5 | 0.5 | 0.5 | −0.026 | −0.026 | −0.017 |
Compound | HOMO | NHOMO | Energy [eV] | Atomic Coefficients (Electronic Density) | Mulliken Charges | Hirshfeld Charges | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ortho | meta | para | ortho | meta | para | ortho | meta | para | ||||
Benzaldehyde | −7.36 | 0.55 0.45 | 0.63 0.58 | 0.42 | −0.022 −0.031 | −0.033 −0.037 | −0.026 | |||||
−7.49 | 0.34 (0.12) −0.14 (0.02) | 0.15 (0.02) −0.34 (0.12) | −0.19 (0.04) | |||||||||
Benzoic acid | −7.48 | −0.28 (0.08) 0.32 (0.10) | −0.32 (0.10) 0.28 (0.08) | −0.04 (0.002) | 0.58 0.45 | 0.52 0.64 | 0.49 | −0.028 −0.022 | −0.034 −0.035 | −0.027 | ||
Methyl benzoate | −7.40 | 0.31 (0.10) −0.29 (0.08) | 0.29 (0.08) −0.31 (0.10) | −0.02 (0.0004) | 0.49 0.78 | 0.55 0.33 | 0.58 | −0.024 −0.030 | −0.036 −0.036 | −0.029 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Emanuele, L.; D’Auria, M. Limitations of Frontier Orbital and Charge Approaches in the Description of Electrophilic Aromatic Substitution. Organics 2025, 6, 34. https://doi.org/10.3390/org6030034
Emanuele L, D’Auria M. Limitations of Frontier Orbital and Charge Approaches in the Description of Electrophilic Aromatic Substitution. Organics. 2025; 6(3):34. https://doi.org/10.3390/org6030034
Chicago/Turabian StyleEmanuele, Lucia, and Maurizio D’Auria. 2025. "Limitations of Frontier Orbital and Charge Approaches in the Description of Electrophilic Aromatic Substitution" Organics 6, no. 3: 34. https://doi.org/10.3390/org6030034
APA StyleEmanuele, L., & D’Auria, M. (2025). Limitations of Frontier Orbital and Charge Approaches in the Description of Electrophilic Aromatic Substitution. Organics, 6(3), 34. https://doi.org/10.3390/org6030034