Fast and Efficient Synthesis of Fluoro Phenyl 1,2,3-Triazoles via Click Chemistry with Ultrasound Irradiation and Their Biological Efficacy Against Candida albicans
Abstract
1. Introduction
2. Materials and Methods
2.1. General Methods
2.2. Synthesis of Fluoro Phenyl Azides
2.3. Procedure for the Synthesis of Fluoro Phenyl 1,2,3-Triazoles 3A-3H
2.4. Evaluation of Fluoro Phenyl 1,2,3-Triazoles Against C. albicans
2.5. Evaluation of Effect of Fluoro Phenyl 1,2,3-Triazoles on Inhibition of Yeast Growth
2.6. Evaluation of Effect of Fluoro Phenyl 1,2,3-Triazoles on the Yeast–Mycelium Transition of C. albicans
3. Results and Discussion
3.1. Synthesis of Fluoro Phenyl 1,2,3-Triazoles
3.2. Effect of Fluoro Phenyl 1,2,3-Triazoles on Inhibition of Yeast Growth
3.3. Effect of Fluoro Phenyl 1,2,3-Triazoles on the Yeast–Mycelium Transition of C. albicans
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mareković, I.; Pleško, S.; Vranješ, V.R.; Herljević, Z.; Kuliš, T.; Jandrlić, M. Epidemiology of Candidemia: Three-Year Results from a Croatian Tertiary Care Hospital. J. Fungi 2021, 7, 267. [Google Scholar] [CrossRef]
- Talapko, J.; Juzbasic, M.; Matijevic, T.; Pustijanac, E.; Bekic, S.; Kotris, I.; Skrlec, I. Candida albicans—The Virulence Factors and Clinical Manifestations of Infection. J. Fungi 2021, 7, 79. [Google Scholar] [CrossRef]
- Huang, G. Regulation of phenotypic transitions in the fungal pathogen Candida albicans. Virulence 2012, 3, 251–261. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, R.; Luan, Z.; Ma, X. Risk of invasive candidiasis with prolonged duration of ICU stay: A systematic review and meta-analysis. BMJ Open 2020, 10, e036452. [Google Scholar] [CrossRef]
- Kim, J.; Sudbery, P. Candida albicans, a major human fungal pathogen. Res. Microbiol 2011, 49, 171–177. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Diekema, D.J. Epidemiology of Invasive Candidiasis: A Persistent Public Health Problem. Clin. Microbiol. Rev. 2007, 20, 133–163. [Google Scholar] [CrossRef]
- Pristov, K.E.; Ghannoum, M.A. Resistance of Candida to azoles and echinocandins worldwide. Clin. Microbiol. Infect. 2019, 25, 792–798. [Google Scholar] [CrossRef]
- Sullivan, D.J.; Moran, G.P.; Pinjon, E.; Al-Mosaid, A.; Stokes, C.; Vaughan, C.; Coleman, D.C. Comparison of epidemiology, drug resistance mechanisms, and virulence of Candida dubliniensis and Candida albicans. FEMS Yeast Rev. 2004, 4, 369–376. [Google Scholar] [CrossRef]
- Sanguinetti, M.; Posteraro, B.; Lass-Flörl, C. Antifungal drug resistance among Candida species: Mechanisms and clinical impact. Mycoses 2015, 58, 2–13. [Google Scholar] [CrossRef]
- Buckle, D.R.; Smith, H.; Spicer, B.A.; Tedder, J.M. Studies on v-Triazoles. Antiallergic 4,9-Dihydro-4,9-dioxo-1H-naphtho [2,3-d}-v-triazoles. J. Med. Chem. 1983, 26, 714–719. [Google Scholar] [CrossRef]
- Mani, G.S.; Donthiboina, K.; Shaik, S.P.; Shankaraiah, N.; Kamal, A. Iodine-mediated C–N and N–N bond formation: A facile one-pot synthetic approach to 1,2,3-triazoles under metal-free and azide-free conditions. RSC Adv. 2019, 9, 27021–27031. [Google Scholar] [CrossRef]
- Sharghi, H.; Ebrahimpourmoghaddam, S.; Doroodmand, M.M.; Purkhosrow, A. Synthesis of Vasorelaxaing 1,4-Disubstituted 1,2,3-Triazoles Catalyzed by a 4′-Phenyl-2,2′:6′,2″-Terpyridine Copper(II) Complex Immobilized on Activated Multiwalled Carbon Nanotubes. Asian J. Org. Chem. 2012, 1, 377–388. [Google Scholar] [CrossRef]
- Chavan, P.V.; Pandit, K.S.; Desai, U.V.; Wadgaonkar, P.P.; Nawale, L.; Bhansali, S.; Sarkar, D. Click-chemistry-based multicomponent condensation approach for design and synthesis of spirochromene-tethered 1,2,3-triazoles as potential antitubercular agents. Res. Chem. Intermed. 2017, 43, 5675–5690. [Google Scholar] [CrossRef]
- Abdel-Wahab, B.F.; Abdel-Latif, E.; Mohamed, H.A.; Awad, G.E. Design and synthesis of new 4-pyrazolin-3-yl-1, 2, 3-triazoles and 1,2,3-triazol-4-yl-pyrazolin-1-ylthiazoles as potential antimicrobial agents. Eur. J. Med. Chem. 2012, 52, 263–268. [Google Scholar] [CrossRef]
- Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of Multidrug Resistance in Cancer Chemotherapy. Int. J. Mol. Sci. 2020, 21, 3233. [Google Scholar] [CrossRef]
- Nagesh, H.N.; Suresh, N.; Prakash, G.V.S.B.; Gupta, S.; Rao, J.V.; Sekhar, K.V.G.C. Synthesis and biological evaluation of novel phenanthridinyl piperazine triazoles via click chemistry as antiproliferative agents. Med. Chem. Res. 2015, 24, 523–532. [Google Scholar] [CrossRef]
- Dixit, D.; Verma, P.K.; Marwaha, R.K. A review on ‘triazoles’: Their chemistry, synthesis and pharmacological potentials. J. Indian Chem. Soc. 2021, 18, 2535–2565. [Google Scholar] [CrossRef]
- Huisgen, R. Kinetics and reaction mechanisms: Selected examples from the experience of forty years. Pure Appl. Chem. 1989, 61, 613–628. [Google Scholar] [CrossRef]
- Tornoe, C.W.; Christensen, C.; Meldal, M. Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal alkynes to Azides. J. Org. Chem. 2002, 67, 3057–3063. [Google Scholar] [CrossRef]
- Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes. Angew. Chem. Int. Ed. 2002, 42, 2596–2599. [Google Scholar] [CrossRef]
- Aguilar-Morales, C.M.; de Loera, D.; Contreras-Celedón, C.; CortésGarcía, C.J.; Chacón-García, L. Synthesis of 1,5-disubstituted tetrazole-1,2,3 triazoles hybrids via Ugi-azide/CuAAC. Synth. Commun. 2019, 49, 2086–2209. [Google Scholar] [CrossRef]
- Noriega, S.; Leyva, E.; Moctezuma, E.; Flores, L.; Loredo-Carrillo, S. Recent Catalysts Used in the Synthesis of 1,4-Disubstituted 1,2,3-Triazoles by Heterogeneous and Homogeneous Methods. Curr. Org. Chem. 2020, 24, 536–549. [Google Scholar] [CrossRef]
- Horne, W.S.; Stout, C.D.; Ghadiri, M.R. A heterocyclic peptide nanotube. J. Am. Chem. Soc. 2003, 125, 9372–9376. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Kumar, V. Copper (I) catalyzed azide-alkyne click reaction: Synthesis and metal-ion binding studies of some 1,2,3-triazole derivatives. Asian J. Chem. 2016, 28, 613–616. [Google Scholar] [CrossRef]
- Yoo, E.J.; Ahlquist, M.; Kim, S.H.; Bae, I.; Fokin, V.V.; Sharpless, K.B.; Chang, S. Copper-Catalyzed Synthesis of N-Sulfonyl-1,2,3-triazoles: Controlling Selectivity. Angew. Chem. Int. Ed. 2007, 46, 1730–1733. [Google Scholar] [CrossRef]
- Dai, J.; Tian, S.; Yang, X.; Liu, Z. Synthesis methods of 1,2,3-/1,2,4-triazoles: A review. Front Chem. 2022, 10, 891484. [Google Scholar] [CrossRef]
- Meldal, M.; Diness, F. Recent fascinating aspects of the CuAAC click reaction. Trends Chem. 2020, 2, 569–584. [Google Scholar] [CrossRef]
- Aguilar, J.; Leyva, E.; Loredo-Carrillo, S.E.; Cárdenas-Chaparro, A.; Martínez-Richa, A.; Hernández-López, H.; Araujo-Huitrado, J.G.; Granados-López, A.J.; López-Hernández, Y.; López, J.A. Synthesis of Novel Fluoro Phenyl Triazoles Via Click Chemistry with or without Microwave Irradiation and their Evaluation as Anti-proliferative Agents in SiHa Cells. Curr. Org. Synth. 2024, 21, 559–570. [Google Scholar] [CrossRef] [PubMed]
- Díaz, D.D.; Finn, M.G.; Sharpless, K.B.; Fokin, V.V.; Hawker, C.J. Cicloadición 1, 3-dipolares de azidas y alquinos: I Principales aspectos sintéticos. An. De La Real Soc. Esp. De Quim. 2008, 3, 173–180. [Google Scholar]
- Acosta, I.; Contreras, D.; Tovar, J.; Turrubiartes, E.A.; Pacheco, N.C.; Rodríguez, A.; Cárdenas, J.F.; Martínez, V.M. Properties and Effect of Fresh Concentrated Extract of Garlic on Different Bacteria and Fungi. Asian J. Res. Biochem. 2022, 10, 15–32. [Google Scholar] [CrossRef]
- Lee, K.L.; Buckley, H.R.; Campbell, C.C. An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida albicans. Sabouraudia 1975, 13, 148–153. [Google Scholar] [CrossRef]
- Castillo, J.C.; Bravo, N.-F.; Tamayo, L.V.; Mestizo, P.D.; Hurtado, J.; Macías, M.; Portilla, J. Water-Compatible Synthesis of 1,2,3-Triazoles under Ultrasonic Conditions by a Cu(I) Complex-Mediated Click Reaction. ACS Omega 2020, 5, 30148–30159. [Google Scholar] [CrossRef]
- Kategaonkar, A.H.; Shinde, P.V.; Kategaonkar, A.H.; Pasale, S.K.; Shingate, B.B.; Shingarea, M.S. Synthesis and biological evaluation of new 2-chloro-3-((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)quinoline derivatives via click chemistry approach. Eur. J. Med. Chem. 2010, 45, 3142–3146. [Google Scholar] [CrossRef]
- Appukkuttan, P.; Dehaen, W.; Fokin, V.V.; Van der Eycken, E. A Microwave-Assisted Click Chemistry Synthesis of 1,4-Disubstituted 1,2,3-Triazoles via a Copper(I)-Catalyzed Three-Component Reaction. Org. Lett. 2004, 6, 4223–4225. [Google Scholar] [CrossRef]
- Suárez, A. Reacciones de cicloadición 1,3-dipolares a alquinos catalizadas por cobre. An. De La Real Soc. Esp. De Quim. 2012, 108, 306–313. [Google Scholar]
- Hajipour, A.R.; Karimzadeh, M.; Fakhari, F.; Karimi, H. CuFeO2/tetrabutylammonium bromide catalyzes selective synthesis of 1,4-disubstituted 1,2,3-triazoles in neat water at room temperature. Appl. Organomet. Chem. 2016, 30, 946–948. [Google Scholar] [CrossRef]
- Leyva, E.; Rodríguez-Gutiérrez, I.R.; Moctezuma, E.; Noriega, S. Mechanisms, Copper Catalysts, and Ligands Involved in the Synthesis of 1,2,3-Triazoles Using Click Chemistry. Curr. Org. Chem. 2022, 26, 2098–2121. [Google Scholar] [CrossRef]
- Ye, W.; Xiao, X.; Wang, L.; Hou, S.; Hu, C. Synthesis of mono and binuclear Cu(II) complexes bearing unsymmetrical bipyridinepyrazole-amine ligand and their applications in azide-alkyne cycloaddition. Organometallics 2017, 36, 2116–2125. [Google Scholar] [CrossRef]
- Bock, V.D.; Hiemstra, H.; van Maarseveen, J.H. CuI-Catalyzed Alkyne–Azide “Click” Cycloadditions from a Mechanistic and Synthetic Perspective. Eur. J. Org. Chem. 2006, 1, 51–68. [Google Scholar] [CrossRef]
- Devaraj, N.K.; Finn, M.G. Introduction: Click chemistry. Chem. Rev. 2021, 121, 6697–6698. [Google Scholar] [CrossRef] [PubMed]
- Mason, T.J. Ultrasound in synthetic organic chemistry. Chem. Soc. Rev. 1997, 26, 443. [Google Scholar] [CrossRef]
- Jaiswal, P.K.; Sharma, V.; Prikhodko, J.; Mashevskaya, I.V.; Chaudhary, S. “On water” ultrasound-assisted one pot efficient synthesis of functionalized 2-oxo-benzo[1,4]oxazines: First application to the synthesis of anticancer indole alkaloid, Cephalandole A. Tetrahedron Lett. 2017, 58, 2077–2083. [Google Scholar] [CrossRef]
- Saranya, S.; Radhika, S.; Afsina Abdulla, C.M.; Anilkumar, G. Ultrasound irradiation in heterocycle synthesis: An overview. J Heterocycl. Chem. 2021, 58, 1570–1580. [Google Scholar] [CrossRef]
- Talha, A.; Tachallait, H.; Benhida, R.; Bougrin, K. Green one-pot four-component synthesis of 3,5-disubstituted isoxazoles- sulfonates and sulfonamides using a combination of NaDCC as metal-free catalyst and ultrasonic activation in water. Tetrahedron Lett. 2021, 81, 153366. [Google Scholar] [CrossRef]
- Borah, B.; Chowhan, L.R. Ultrasound-assisted transition-metal-free catalysis:a sustainable route towards the synthesis of bioactive heterocycles. RSC Adv. 2022, 12, 14022–14051. [Google Scholar] [CrossRef] [PubMed]
- Asgharzadehahmadi, S.; Abdul Raman, A.A.; Parthasarathy, R.; Sajjadi, B. Sonochemical reactors: Review on features, advantages and limitations. Renew. Sustain. Energy Rev. 2016, 63, 302–314. [Google Scholar] [CrossRef]
- Phakhodee, W.; Duangkamol, C.; Wiriya, N.; Pattarawarapan, M. Ultrasound-assisted synthesis of substituted 2-aminobenzimidazoles, 2-aminobenzoxazoles, and related heterocycles. Tetrahedron Lett. 2016, 57, 5290–5293. [Google Scholar] [CrossRef]
- Fu, N.; Wang, S.; Zhang, Y.; Zhang, C.; Yang, D.; Weng, L.; Zhao, B.; Wang, L. Efficient click chemistry towards fatty acids containing 1,2,3-triazole: Design and synthesis as potential antifungal drugs for Candida albicans. Eur. J. Med. Chem. 2017, 136, 596–602. [Google Scholar] [CrossRef] [PubMed]
- Peyton, L.R.; Gallagher, S.; Hashemzadeh, M. Triazole antifungals: A review. Drugs Today 2015, 51, 705–718. [Google Scholar] [CrossRef] [PubMed]
- Sheikhi, N.; Bahraminejad, M.; Saeedi, M.; Mirfazli, S.S. A review: DFA-approved fluorine-containing small molecules from 2015–2022. Eur. J. Med. Chem. 2023, 260, 115758. [Google Scholar] [CrossRef]
- Leyva, E.; Aguilar, J.; González-Balderas, R.M.; Vega-Rodríguez, S.; Loredo-Carrillo, S.E. Synthesis of nitrophenyl and fluorophenyl azides and diazides by SNAr under phase transfer or microwave irradiation: Fast and mild methodologies to prepare photoaffinity labeling, crosslinking, and click chemistry reagents. J. Phys. Org. Chem. 2020, 34, e4171. [Google Scholar] [CrossRef]
R | Azide | Time (h) | Yield (%) | Triazol | RT | US | ||
---|---|---|---|---|---|---|---|---|
Time (min) | Yield (%) | Time (min) | Yield (%) | |||||
H | 2A | 0.5 | 94 | 3A | 40 | 94 | 2 | 96 |
2-F | 2B | 1 | 90 | 3B | 25 | 97 | 1 | 98 |
3-F | 2C | 1 | 95 | 3C | 72 | 98 | 3 | 98 |
4-F | 2D | 1 | 92 | 3D | 27 | 84 | 3 | 97 |
2,4-F | 2E | 1 | 91 | 3E | 20 | 98 | 0.5 | 97 |
2,6-F | 2F | 1 | 87 | 3F | 132 | 90 | 1 | 87 |
3,4-F | 2G | 1 | 90 | 3G | 46 | 95 | 1 | 97 |
2,4,6-F | 2H | 1 | 85 | 3H | 24 | 98 | 1 | 81 |
R | RT | US | ||||||
---|---|---|---|---|---|---|---|---|
With Phen | Without Phen | With Phen | Without Phen | |||||
Time (min) | Yield (%) | Time (min) | Yield (%) | Time (min) | Yield (%) | Time (min) | Yield (%) | |
H | 40 | 93 | 240 | 20 | 2 | 96 | 20 | 79 |
2,4-F | 20 | 98 | 140 | 35 | 0.5 | 97 | 20 | 24 |
3-F | 114 | 98 | 420 | 67 | 3 | 98 | 20 | 39 |
Triazol | % Inhibition at Different Concentrations (µg/mL) | |||
---|---|---|---|---|
250 | 500 | 750 | 1000 | |
3A | 22 | 29 | 33 | 19 |
3B | 57 | 57 | 44 | 46 |
3C | 19 | 19 | 22 | 29 |
3D | 29 | 34 | 37 | 39 |
3E | 14 | 19 | 19 | 20 |
3F | 24 | 24 | 24 | 54 |
3G | 19 | 19 | 19 | 22 |
3H | 14 | 16 | 23 | 58 |
Compound | Inhibition Yeast–Mycelium Transition |
---|---|
3A | + |
3B | + |
3C | + |
3D | + |
3E | + |
3F | + |
3G | + |
3H | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leyva, E.; Aguilar, J.; Loredo-Carrillo, S.E.; Acosta-Rodríguez, I. Fast and Efficient Synthesis of Fluoro Phenyl 1,2,3-Triazoles via Click Chemistry with Ultrasound Irradiation and Their Biological Efficacy Against Candida albicans. Organics 2025, 6, 42. https://doi.org/10.3390/org6030042
Leyva E, Aguilar J, Loredo-Carrillo SE, Acosta-Rodríguez I. Fast and Efficient Synthesis of Fluoro Phenyl 1,2,3-Triazoles via Click Chemistry with Ultrasound Irradiation and Their Biological Efficacy Against Candida albicans. Organics. 2025; 6(3):42. https://doi.org/10.3390/org6030042
Chicago/Turabian StyleLeyva, Elisa, Johana Aguilar, Silvia E. Loredo-Carrillo, and Ismael Acosta-Rodríguez. 2025. "Fast and Efficient Synthesis of Fluoro Phenyl 1,2,3-Triazoles via Click Chemistry with Ultrasound Irradiation and Their Biological Efficacy Against Candida albicans" Organics 6, no. 3: 42. https://doi.org/10.3390/org6030042
APA StyleLeyva, E., Aguilar, J., Loredo-Carrillo, S. E., & Acosta-Rodríguez, I. (2025). Fast and Efficient Synthesis of Fluoro Phenyl 1,2,3-Triazoles via Click Chemistry with Ultrasound Irradiation and Their Biological Efficacy Against Candida albicans. Organics, 6(3), 42. https://doi.org/10.3390/org6030042