Previous Issue
Volume 5, June
 
 

Reactions, Volume 5, Issue 3 (September 2024) – 12 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
12 pages, 2110 KiB  
Article
The Influence of the Structure of Organochlorine Compounds on Their Decomposition Process in a Dielectric Barrier Discharge
by Bogdan Ulejczyk
Reactions 2024, 5(3), 623-634; https://doi.org/10.3390/reactions5030031 - 11 Sep 2024
Viewed by 262
Abstract
The decomposition efficiency of C2HCl3 and CHCl3 in a barrier discharge is very different, even though these compounds differ little in chemical composition. In both compounds, there are three chlorine atoms and one hydrogen atom. The difference between them [...] Read more.
The decomposition efficiency of C2HCl3 and CHCl3 in a barrier discharge is very different, even though these compounds differ little in chemical composition. In both compounds, there are three chlorine atoms and one hydrogen atom. The difference between them is the presence of one carbon atom in CHCl3 and two carbon atoms connected by a double bond in C2HCl3 and the higher polarizability of C2HCl3. The polarizability of C2HCl3 is 10.21 Å3 and that of CHCl3 is 8.39 Å3. As a result of these differences, the C2HCl3 conversion was two to three times higher than the CHCl3 conversion. The main product of CHCl3 decomposition containing chlorine was ClO2, while Cl2, COCl2, HCl, CCl4, and Cl were formed in smaller amounts. The main products of C2HCl3 decomposition, which contain chlorine, were COCl2, HCl, and Cl. CCl4 was not formed. Cl2 and ClO2 were formed in smaller amounts. Pathways of C2HCl3 and CHCl3 decomposition are shown in this paper. The process was carried out at low power (0.2–0.8 W) in air. The gas flow was 10 L/h, and the concentration of the decomposed compound was 0.4%. The volume of the gas space of the reactor (plasma zone) was 27 cm3. Full article
Show Figures

Figure 1

16 pages, 2857 KiB  
Article
Impact of Inverse Manganese Promotion on Silica-Supported Cobalt Catalysts for Long-Chain Hydrocarbons via Fischer–Tropsch Synthesis
by Ntebogang Thibanyane, Joshua Gorimbo and Yali Yao
Reactions 2024, 5(3), 607-622; https://doi.org/10.3390/reactions5030030 - 9 Sep 2024
Viewed by 360
Abstract
One of the challenges in Fischer–Tropsch synthesis (FTS) is the high reduction temperatures, which cause sintering and the formation of silicates. These lead to pore blockages and the coverage of active metals, particularly in conventional catalyst promotion. To address the challenge, this article [...] Read more.
One of the challenges in Fischer–Tropsch synthesis (FTS) is the high reduction temperatures, which cause sintering and the formation of silicates. These lead to pore blockages and the coverage of active metals, particularly in conventional catalyst promotion. To address the challenge, this article investigates the effects of the preparation method, specifically the inverse promotion of SiO2-supported Co catalysts with manganese (Mn), and their reduction in H2 for FTS. The catalysts were prepared using stepwise incipient wetness impregnation of a cobalt nitrate precursor into a promoted silica support. The properties of the catalysts were characterized using XRD, XPS, TPR, and BET techniques. The structure–performance relationship of the inversely promoted catalysts in FTS was studied using a fixed-bed reactor to obtain the best performing catalysts for heavy hydrocarbons (C5+). XRD and XPS results indicated that Co3O4 is the dominant cobalt phase in oxidized catalysts. It was found that with increase in Mn loading, the reduction temperature increased in the following sequence 10%Co/SiO2 < 10%Co/0.25%Mn-SiO2 < 10%Co/0.5%Mn-SiO2 < 10%Co/3.0%Mn-SiO2. The catalyst with the lowest Mn loading, 10%Co/0.25%Mn-SiO2, exhibited higher C5+ selectivity, which can be attributed to less MSI and higher reducibility. This catalyst showed the lowest CH4 selectivity possibly due to lower H2 uptake and higher CO chemisorption. Full article
(This article belongs to the Special Issue Fischer-Tropsch Synthesis: Bridging Carbon Sustainability)
Show Figures

Figure 1

13 pages, 1440 KiB  
Article
Zirconium Complexes Bearing Methyl/tButyl Salicylate and Their Catalytic Activity on ε-Caprolactone
by Gamze Uzun and Asgar Kayan
Reactions 2024, 5(3), 594-606; https://doi.org/10.3390/reactions5030029 - 2 Sep 2024
Viewed by 223
Abstract
In this study, methyl/tbutyl salicylate-bearing zirconium complexes (C1C8) were prepared by the reaction of zirconium (IV) propoxide/butoxide with salicylic acid, 3-methylsalicylic acid, 4-methylsalicylic acid, and 3,5-di-tert-butylsalicylic acid in alcohols, respectively. All these complexes (C1 [...] Read more.
In this study, methyl/tbutyl salicylate-bearing zirconium complexes (C1C8) were prepared by the reaction of zirconium (IV) propoxide/butoxide with salicylic acid, 3-methylsalicylic acid, 4-methylsalicylic acid, and 3,5-di-tert-butylsalicylic acid in alcohols, respectively. All these complexes (C1C8) were characterized by 1H NMR, 13C NMR, FTIR, mass spectroscopy (MS), elemental, and thermogravimetric analyses (TGA). These complexes were utilized as catalysts in the ring-opening polymerization (ROP) of Ɛ-caprolactone and were very effective. Polycaprolactone (PCL) was characterized by 1H-NMR, 13C NMR, and gel permeation chromatography (GPC). In this study, perhaps for the first time, the effects of electron-donating substituents (Me and tBu) on Ɛ-caprolactone polymerization reactions on salicylate ligands linked to zirconium atoms were investigated. Full article
Show Figures

Figure 1

7 pages, 980 KiB  
Communication
Biodiesel Production from Edible Oil Using Heteropoly Acid Catalysts at Room Temperature
by Noah L. Fioravante, Guoqiang Cao and Nan Yi
Reactions 2024, 5(3), 587-593; https://doi.org/10.3390/reactions5030028 - 1 Sep 2024
Viewed by 323
Abstract
Edible oils are one of the renewable sources that enable the possibility of producing biodiesel sustainably. The transesterification of canola oil with methanol using cesium-modified phosphotungstic acid (Cs2.5H0.5PW12O40) as a heterogeneous catalyst was studied. Reaction [...] Read more.
Edible oils are one of the renewable sources that enable the possibility of producing biodiesel sustainably. The transesterification of canola oil with methanol using cesium-modified phosphotungstic acid (Cs2.5H0.5PW12O40) as a heterogeneous catalyst was studied. Reaction conditions, specifically reaction time, catalyst loading, and the ratio of methanol to canola oil, were systematically explored. The canola oil conversion reached 55% at room temperature after 24 h. The reusability tests showed that the conversion of canola oil to biodiesel was maintained. Full article
Show Figures

Graphical abstract

20 pages, 2123 KiB  
Article
C2-Symmetric Amino Acid Amide-Derived Organocatalysts
by Zahraa S. Al-Taie, Simon J. Coles, Aileen Congreve, Dylan Ford, Lucy Green, Peter N. Horton, Leigh F. Jones, Pippa Kett, Rolf Kraehenbuehl, Patrick J. Murphy, Graham J. Tizzard, Niles B. Willmore and Oliver T. Wright
Reactions 2024, 5(3), 567-586; https://doi.org/10.3390/reactions5030027 - 24 Aug 2024
Viewed by 362
Abstract
N-alkylated C2-symmetric amino acid amide derivatives were shown to catalyse the Michael addition of 2-hydroxy-1,4-napthoquinone to β-nitrostyrene, achieving a maximum ee of 44%. The corresponding trifluoroacetic acid salts also catalysed the aldol reaction between 4-nitrobenzaldehyde and hydroxyacetone, leading to the [...] Read more.
N-alkylated C2-symmetric amino acid amide derivatives were shown to catalyse the Michael addition of 2-hydroxy-1,4-napthoquinone to β-nitrostyrene, achieving a maximum ee of 44%. The corresponding trifluoroacetic acid salts also catalysed the aldol reaction between 4-nitrobenzaldehyde and hydroxyacetone, leading to the formation of predominantly syn-aldol products in up to 55% ee. Aspects of the solvent dependence of the aldol reaction and the H-bonding of the catalyst were investigated. Full article
Show Figures

Figure 1

75 pages, 60182 KiB  
Review
Synthesis of 2-Azetidinones via Cycloaddition Approaches: An Update
by Franca Maria Cordero, Donatella Giomi and Fabrizio Machetti
Reactions 2024, 5(3), 492-566; https://doi.org/10.3390/reactions5030026 - 16 Aug 2024
Viewed by 373
Abstract
The present review is a comprehensive update of the synthesis of monocyclic β-lactams via cycloaddition reactions. According to the IUPAC definition of cycloaddition, both elementary and stepwise processes (formal cycloadditions) have been considered. The years 2019–2022 are covered by the cited literature. The [...] Read more.
The present review is a comprehensive update of the synthesis of monocyclic β-lactams via cycloaddition reactions. According to the IUPAC definition of cycloaddition, both elementary and stepwise processes (formal cycloadditions) have been considered. The years 2019–2022 are covered by the cited literature. The focus of the review is on synthetic aspects with emphasis on the structural scope, reaction conditions, mechanistic aspects, and selectivity results. Selected significant data related to biological activities and synthetic applications are also highlighted. Full article
(This article belongs to the Special Issue Cycloaddition Reactions at the Beginning of the Third Millennium)
Show Figures

Figure 1

20 pages, 2549 KiB  
Article
Autocatalytic Acetylation of Crude Glycerol Using Acetic Acid: A Kinetic Model
by Federico M. Perez, Francisco Pompeo, Gerardo F. Santori and Martín N. Gatti
Reactions 2024, 5(3), 472-491; https://doi.org/10.3390/reactions5030025 - 9 Aug 2024
Viewed by 712
Abstract
The aim of this work was to develop a kinetic model based on the power law to describe the evolution of glycerol conversion and product distribution in the crude glycerol (G) acetylation reaction with acetic acid (AA) without the use of a catalyst. [...] Read more.
The aim of this work was to develop a kinetic model based on the power law to describe the evolution of glycerol conversion and product distribution in the crude glycerol (G) acetylation reaction with acetic acid (AA) without the use of a catalyst. For this purpose, experimental tests were carried out with analytical glycerol under different reaction conditions (T = 80–160 °C, AA/G = 1–9 molar ratio, t = 0.25–2 h). The results showed the formation of mono- (MAG), di- (DAG) and tri- (TAG) acetylglycerols, liquid products with multiple applications in the chemical industry. From these results, a kinetic model based on the power law was implemented, which could acceptably estimate the experimental concentrations with an average relative error of 14.9%. Then, crude glycerol samples from different biodiesel industries were characterized by identifying and quantifying the impurities present in them (H2O, CH3OH, NaOH, NaCOOH, MONG and NaCl), and employed as reactants in the reaction tests. Given the significant differences observed in the glycerol conversion values compared to those obtained with analytical glycerol, further reaction tests were conducted to elucidate the effect of each impurity over the glycerol conversion. In these tests, the different impurities were added individually, maintaining the same concentration range as that of the crude glycerol samples. From the results obtained, global activity factors were introduced, which allowed us to modify the kinetic model to estimate glycerol conversions in the crude glycerol samples with an average relative error of 7%. It is hoped that this kinetic model will be a powerful tool useful for designing reactors on an industrial scale. Full article
Show Figures

Figure 1

10 pages, 2941 KiB  
Article
Using Phosphogypsum as a Source of Calcium Sulfate When Synthesizing Calcium Molybdate Nanoparticles
by Youssef Belaoufi, Meryem Bensemlali, Badreddine Hatimi, Halima Mortadi, Najoua Labjar, Jean-Michel Nunzi, Mohammed El Idrissi, Abdellatif Aarfane, Mina Bakasse and Hamid Nasrellah
Reactions 2024, 5(3), 462-471; https://doi.org/10.3390/reactions5030024 - 7 Aug 2024
Viewed by 896
Abstract
Calcium molybdate (CaMoO4) is of significant interest due to its unique properties and numerous industrial applications, such as catalysis, electrochemistry, and optoelectronics. In this study, we developed an economical and environmentally friendly method to synthesize calcium molybdate from Moroccan phosphogypsum (PG) [...] Read more.
Calcium molybdate (CaMoO4) is of significant interest due to its unique properties and numerous industrial applications, such as catalysis, electrochemistry, and optoelectronics. In this study, we developed an economical and environmentally friendly method to synthesize calcium molybdate from Moroccan phosphogypsum (PG) industrial waste and sodium molybdate, all at room temperature. Comprehensive analysis through X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman vibrational spectroscopy, and scanning electron microscopy (SEM) revealed the high purity of the synthesized calcium molybdate, with particle sizes of only 12 nm. Additionally, optical characteristics were studied using ultraviolet-visible spectroscopy (UV-vis), which showed an optical band gap of Egap = 3.96 eV for CaMoO4. These results confirm the successful synthesis of calcium molybdate nanoparticles from Moroccan phosphogypsum, demonstrating an effective pathway to valorize this industrial waste into a valuable material. This approach contributes to environmental sustainability by reducing dependence on rare chemicals while offering innovative solutions for the industry’s sustainable development. Full article
(This article belongs to the Special Issue Nanoparticles: Synthesis, Properties, and Applications)
Show Figures

Figure 1

10 pages, 2464 KiB  
Communication
A New Nonaqueous Flow Battery with Extended Cycling
by Diqing Yue, Weilin Zhang, Ivy Zhao, Xiaoting Fang, Yuyue Zhao, Jenny Li, Feng Zhao and Xiaoliang Wei
Reactions 2024, 5(3), 452-461; https://doi.org/10.3390/reactions5030023 - 28 Jul 2024
Viewed by 781
Abstract
Nonaqueous flow batteries hold promise given their high cell voltage and energy density, but their performance is often plagued by the crossover of redox compounds. In this study, we used permselective lithium superionic conducting (LiSICON) ceramic membranes to enable reliable long-term use of [...] Read more.
Nonaqueous flow batteries hold promise given their high cell voltage and energy density, but their performance is often plagued by the crossover of redox compounds. In this study, we used permselective lithium superionic conducting (LiSICON) ceramic membranes to enable reliable long-term use of organic redox molecules in nonaqueous flow cells. With different solvents on each side, enhanced cell voltages were obtained for a flow battery using viologen-based negolyte and TEMPO-based posolyte molecules. The thermoplastic assembly of the LiSICON membrane realized leakless cell sealing, thus overcoming the mechanical brittleness challenge. As a result, stable cycling was achieved in the flow cells, which showed good capacity retention over an extended test time. Full article
Show Figures

Figure 1

23 pages, 5679 KiB  
Review
Carbon Nanotubes: A Review of Synthesis Methods and Applications
by Arash Yahyazadeh, Sonil Nanda and Ajay K. Dalai
Reactions 2024, 5(3), 429-451; https://doi.org/10.3390/reactions5030022 - 4 Jul 2024
Viewed by 1777
Abstract
Carbon nanotubes (CNTs) are cylindrical-shaped materials composed of hexagonally arranged hybridized carbon atoms with versatility in synthesis methods and diverse applications. This review is focused on the fabrication, physicochemical and spectroscopic characterization, and industrial applications of CNTs. This review discusses some promising synthesis [...] Read more.
Carbon nanotubes (CNTs) are cylindrical-shaped materials composed of hexagonally arranged hybridized carbon atoms with versatility in synthesis methods and diverse applications. This review is focused on the fabrication, physicochemical and spectroscopic characterization, and industrial applications of CNTs. This review discusses some promising synthesis methods for the preparation of CNTs such as catalytic chemical vapor deposition, arc discharge, and laser ablation. A comparative discussion is made between these synthesis methods in terms of strengths, opportunities and challenges. Furthermore, functionalization and purification of CNTs’ surface leading to improved functionality has also been highlighted in this article. Finally, the analytical techniques employed to shed light on the physicochemical and morphological properties of CNTs are described. Full article
(This article belongs to the Special Issue Nanoparticles: Synthesis, Properties, and Applications)
Show Figures

Figure 1

10 pages, 3228 KiB  
Article
Investigation of the First Hydrogenation of LaNi5
by Salma Sleiman, Samaneh Shahgaldi and Jacques Huot
Reactions 2024, 5(3), 419-428; https://doi.org/10.3390/reactions5030021 - 2 Jul 2024
Viewed by 517
Abstract
The first hydrogenation of most metal hydrides is a lengthy process that usually requires high pressure and temperature. This, in turn, significantly increases the production cost of metal hydrides. In this paper, the low temperature hydride-forming LaNi5 was selected to investigate the mechanism [...] Read more.
The first hydrogenation of most metal hydrides is a lengthy process that usually requires high pressure and temperature. This, in turn, significantly increases the production cost of metal hydrides. In this paper, the low temperature hydride-forming LaNi5 was selected to investigate the mechanism of first hydrogenation. For the first time, the effect of particle size, temperature and pressure on the incubation time were studied. We found that the first hydrogenation of LaNi5 follows an Arrhenius process, with an activation energy of EA = 78 ± 4 kJ/mol H2. We also found that the pre-exponential factor depends on the applied pressure. Full article
(This article belongs to the Special Issue Hydrogen Production and Storage, 2nd Edition)
Show Figures

Figure 1

40 pages, 16401 KiB  
Article
The Effect of Temperature and Treatment Regime on the Physical, Chemical, and Biological Properties of Poultry Litter Biochar
by Joyce Clarke and Maria Olea
Reactions 2024, 5(3), 379-418; https://doi.org/10.3390/reactions5030020 - 25 Jun 2024
Viewed by 689
Abstract
Poultry litter was converted to biochar by torrefaction and to hydrochar by hydrothermal carbonisation. Many parameters were measured for the resulting chars, to investigate the effects of the production method and production temperature. SEM showed the presence of large quantities of crystalline material [...] Read more.
Poultry litter was converted to biochar by torrefaction and to hydrochar by hydrothermal carbonisation. Many parameters were measured for the resulting chars, to investigate the effects of the production method and production temperature. SEM showed the presence of large quantities of crystalline material on the surface of the biochars. The elemental composition of some crystals was determined as 35% K and 31% Cl. This was confirmed as sylvite (KCl) crystals, which explains the high levels of water-extractable potassium in the biochar and may also be important in germination inhibition. Biochars almost totally inhibited germination, whilst hydrochars decreased germination. Although germination occurred on hydrochar, root growth was severely inhibited. Consequently, the germination index may be better to determine total phytotoxicity as it measures both effects and could be used as a bioassay for chars used as soil amendments. Washing removed germination inhibition in a low-temperature char (350 °C), possibly by removing KCl; however, root toxicity remained. There were very low levels of heavy metals, suggesting they are not the source of toxicity. In biochars, pore mean size decreased with temperature from 350 °C to 600 °C, due to changes in pore size distribution. The mean pore size was measured directly using SEM. The merits of this method are discussed. Low-temperature biochars seem best suited for fuel as they have a high calorific value, high hydrophobicity, a low ash content and a high yield. Higher temperatures are better for soil amendment and sequestration applications with a smaller mean pore size, higher surface area, and higher pH. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop