Carbon Nanotubes: A Review of Synthesis Methods and Applications
Abstract
:1. Introduction
2. Methods of the Synthesis of CNTs
2.1. Arc Discharge Method
2.2. Catalytic Chemical Vapor Deposition Process
2.3. Laser Ablation Method and Other Techniques
3. Common Characterization Techniques for CNTs
4. Applications of CNTs
4.1. Applications of CNTs in Pharmaceutical
4.2. Applications of CNTs as Catalyst Support
4.3. Water Absorption and Filtration
4.4. Gas Filtration and Sensor
4.5. Application of CNT-based Composite Membranes
5. Conclusions
Funding
Conflicts of Interest
Abbreviations
AFM | Atomic-force microscopy |
BNNS | Boron nitride nanosheets |
CF | Carbon fiber |
CNS | Carbon nanostructure |
CNTs | Carbon nanotubes |
CCVD | Catalytic chemical vapor deposition |
Rct | Charge transfer resistance |
CVD | Chemical vapor deposition |
DWCNTs | Double-walled carbon nanotubes |
EIS | Electrochemical impedance spectroscopy |
FT-IR | Fourier transform infrared spectroscopy |
GO | Graphene oxide |
HDPE | High-density polyethylene |
HRTEM | High-resolution transmission electron microscopy |
HER2 | Human epidermal growth factor receptor 2 |
MOR | Methanol oxidation reaction |
MWCNTs | Multi-walled carbon nanotubes |
ORR | Oxygen reduction reaction |
PES | Polyethersulfone |
SWCNTs | Single-walled carbon nanotubes |
TPU | Thermoplastic polyurethane |
SH-CNTs | Thiol-functionalized carbon nanotubes |
TGA | Thermogravimetric analysis |
TEM | Transmission electron microscopy |
XRD | X-ray diffraction |
XPS | X-ray photoelectron spectroscopy |
References
- Jia, X.; Wei, F. Advances in Production and Applications of Carbon Nanotubes. Top. Curr. Chem. (Cham) 2017, 375, 18. [Google Scholar] [CrossRef] [PubMed]
- Panchal, M.B.; Upadhyay, S.H. Cantilevered Single Walled Boron Nitride Nanotube Based Nanomechanical Resonators of Zigzag and Armchair Forms. Phys. E Low-dimensional Syst. Nanostructures 2013, 50, 73–82. [Google Scholar] [CrossRef]
- Cho, T.H.; Su, W.S.; Leung, T.C.; Ren, W.; Chan, C.T. Electronic and Optical Properties of Single-Walled Carbon Nanotubes under a Uniform Transverse Electric Field: A First-Principles Study. Phys. Rev. B 2009, 79, 235123. [Google Scholar] [CrossRef]
- Zaporotskova, I.V.; Boroznina, N.P.; Parkhomenko, Y.N.; Kozhitov, L. V Carbon Nanotubes: Sensor Properties. A Review. Mod. Electron. Mater. 2016, 2, 95–105. [Google Scholar] [CrossRef]
- Singh, Y.T.; Patra, P.K.; Hieu, N.N.; Rai, D.P. Study of Electronic and Mechanical Properties of Single Walled Carbon Nanotube (SWCNT) via Substitutional Boron Doping in Zigzag and Armchair Pattern. Surf. Interfaces 2022, 29, 101815. [Google Scholar] [CrossRef]
- Zhang, J.; Tahmasebi, A.; Omoriyekomwan, J.E.; Yu, J. Production of Carbon Nanotubes on Bio-Char at Low Temperature via Microwave-Assisted CVD Using Ni Catalyst. Diam. Relat. Mater. 2019, 91, 98–106. [Google Scholar] [CrossRef]
- Murjani, B.O.; Kadu, P.S.; Bansod, M.; Vaidya, S.S.; Yadav, M.D. Carbon Nanotubes in Biomedical Applications: Current Status, Promises, and Challenges. Carbon Lett. 2022, 32, 1207–1226. [Google Scholar] [CrossRef]
- Maheswaran, R.; Shanmugavel, B.P. A Critical Review of the Role of Carbon Nanotubes in the Progress of Next-Generation Electronic Applications. J. Electron. Mater. 2022, 51, 2786–2800. [Google Scholar] [CrossRef]
- Yahyazadeh, A.; Khoshandam, B. Carbon Nanotube Synthesis via the Catalytic Chemical Vapor Deposition of Methane in the Presence of Iron, Molybdenum, and Iron–Molybdenum Alloy Thin Layer Catalysts. Results Phys. 2017, 7, 3826–3837. [Google Scholar] [CrossRef]
- Rahman, G.; Najaf, Z.; Mehmood, A.; Bilal, S.; Shah, A.u.H.A.; Mian, S.A.; Ali, G. An Overview of the Recent Progress in the Synthesis and Applications of Carbon Nanotubes. C 2019, 5, 3. [Google Scholar] [CrossRef]
- Maria, K.H.; Mieno, T. Synthesis of Single-Walled Carbon Nanotubes by Low-Frequency Bipolar Pulsed Arc Discharge Method. Vacuum 2015, 113, 11–18. [Google Scholar] [CrossRef]
- Raniszewski, G.; Wiak, S.; Pietrzak, L.; Szymanski, L.; Kolacinski, Z. Influence of Plasma Jet Temperature Profiles in Arc Discharge Methods of Carbon Nanotubes Synthesis. Nanomaterials 2017, 7, 50. [Google Scholar] [CrossRef] [PubMed]
- Bagiante, S.; Scalese, S.; Scuderi, V.; D’Urso, L.; Messina, E.; Compagnini, G.; Privitera, V. Role of the Growth Parameters on the Structural Order of MWCNTs Produced by Arc Discharge in Liquid Nitrogen. Phys. Status Solidi 2010, 247, 884–887. [Google Scholar] [CrossRef]
- Arora, N.; Sharma, N.N. Arc Discharge Synthesis of Carbon Nanotubes: Comprehensive Review. Diam. Relat. Mater. 2014, 50, 135–150. [Google Scholar] [CrossRef]
- Awadallah, A.E.; Abdel-Hamid, S.M.; El-Desouki, D.S.; Aboul-Enein, A.A.; Aboul-Gheit, A.K. Synthesis of Carbon Nanotubes by CCVD of Natural Gas Using Hydrotreating Catalysts. Egypt. J. Pet. 2012, 21, 101–107. [Google Scholar] [CrossRef]
- Gohier, A.; Ewels, C.P.; Minea, T.M.; Djouadi, M.A. Carbon Nanotube Growth Mechanism Switches from Tip- to Base-Growth with Decreasing Catalyst Particle Size. Carbon N. Y. 2008, 46, 1331–1338. [Google Scholar] [CrossRef]
- Dijon, J.; Szkutnik, P.D.; Fournier, A.; Goislard de Monsabert, T.; Okuno, H.; Quesnel, E.; Muffato, V.; De Vito, E.; Bendiab, N.; Bogner, A.; et al. How to Switch from a Tip to Base Growth Mechanism in Carbon Nanotube Growth by Catalytic Chemical Vapour Deposition. Carbon N. Y. 2010, 48, 3953–3963. [Google Scholar] [CrossRef]
- Yan, Y.; Miao, J.; Yang, Z.; Xiao, F.-X.; Yang, H.; Liu, B.; Yang, Y. Carbon Nanotube Catalysts: Recent Advances in Synthesis, Characterization and Applications. Chem. Soc. Rev. 2015, 44, 3295–3346. [Google Scholar] [CrossRef]
- Rattanaamonkulchai, R.; Kludpantanapan, T.; Srifa, A.; Koo-Amornpattana, W.; Chaiwat, W.; Sakdaronnarong, C.; Charinpanitkul, T.; Assabumrungrat, S.; Wongsakulphasatch, S.; Show, P.-L.; et al. Simultaneous Production of Hydrogen and Carbon Nanotubes from Biogas over Mono- and Bimetallic Catalyst. J. Environ. Chem. Eng. 2022, 10, 107910. [Google Scholar] [CrossRef]
- Bankole, M.T.; Mohammed, I.A.; Abdulkareem, A.S.; Tijani, J.O.; Ochigbo, S.S.; Abubakre, O.K.; Afolabi, A.S. Optimization of Supported Bimetallic (Fe-Co/CaCO3) Catalyst Synthesis Parameters for Carbon Nanotubes Growth Using Factorial Experimental Design. J. Alloys Compd. 2018, 749, 85–102. [Google Scholar] [CrossRef]
- Fedorovskaya, E.O.; Bulusheva, L.G.; Kurenya, A.G.; Asanov, I.P.; Rudina, N.A.; Funtov, K.O.; Lyubutin, I.S.; Okotrub, A. V Supercapacitor Performance of Vertically Aligned Multiwall Carbon Nanotubes Produced by Aerosol-Assisted CCVD Method. Electrochim. Acta 2014, 139, 165–172. [Google Scholar] [CrossRef]
- Sharifi, T.; Nitze, F.; Barzegar, H.R.; Tai, C.-W.; Mazurkiewicz, M.; Malolepszy, A.; Stobinski, L.; Wågberg, T. Nitrogen Doped Multi Walled Carbon Nanotubes Produced by CVD-Correlating XPS and Raman Spectroscopy for the Study of Nitrogen Inclusion. Carbon N. Y. 2012, 50, 3535–3541. [Google Scholar] [CrossRef]
- Toussi, S.M.; Fakhru’L-Razi, A.; Luqman Chuah, A.; Suraya, A.R. Optimization of Synthesis Condition for Carbon Nanotubes by Catalytic Chemical Vapor Deposition (CCVD). IOP Conf. Ser. Mater. Sci. Eng. 2011, 17, 012003. [Google Scholar] [CrossRef]
- Pasha, M.A.; Shafiekhani, A.; Vesaghi, M.A. Hot Filament CVD of Fe–Cr Catalyst for Thermal CVD Carbon Nanotube Growth from Liquid Petroleum Gas. Appl. Surf. Sci. 2009, 256, 1365–1371. [Google Scholar] [CrossRef]
- Dhore, V.G.; Rathod, W.S.; Patil, K.N. Synthesis and Characterization of High Yield Multiwalled Carbon Nanotubes by Ternary Catalyst. Mater. Today Proc. 2018, 5, 3432–3437. [Google Scholar] [CrossRef]
- Szabó, A.; Kecsenovity, E.; Pápa, Z.; Gyulavári, T.; Németh, K.; Horvath, E.; Hernadi, K. Influence of Synthesis Parameters on CCVD Growth of Vertically Aligned Carbon Nanotubes over Aluminum Substrate. Sci. Rep. 2017, 7, 9557. [Google Scholar] [CrossRef]
- Zhang, M.; Yudasaka, M.; Iijima, S. Production of Large-Diameter Single-Wall Carbon Nanotubes by Adding Fe to a NiCo Catalyst in Laser Ablation. J. Phys. Chem. B 2004, 108, 12757–12762. [Google Scholar] [CrossRef]
- Zhang, H.; Ding, Y.; Wu, C.; Chen, Y.; Zhu, Y.; He, Y.; Zhong, S. The Effect of Laser Power on the Formation of Carbon Nanotubes Prepared in CO2 Continuous Wave Laser Ablation at Room Temperature. Phys. B Condens. Matter 2003, 325, 224–229. [Google Scholar] [CrossRef]
- Bota, P.M.; Dorobantu, D.; Boerasu, I.; Bojin, D.; Enachescu, M. New Laser Ablation Chamber for Producing Carbon Nanomaterials Using Excimer Laser. Mater. Res. Innov. 2015, 19, 33–39. [Google Scholar] [CrossRef]
- Yuge, R.; Toyama, K.; Ichihashi, T.; Ohkawa, T.; Aoki, Y.; Manako, T. Characterization and Field Emission Properties of Multi-Walled Carbon Nanotubes with Fine Crystallinity Prepared by CO2 Laser Ablation. Appl. Surf. Sci. 2012, 258, 6958–6962. [Google Scholar] [CrossRef]
- Hameed, R.; Khashan, K.S.; Sulaiman, G.M. Preparation and Characterization of Graphene Sheet Prepared by Laser Ablation in Liquid. Mater. Today Proc. 2020, 20, 535–539. [Google Scholar] [CrossRef]
- Tabatabaie, N.; Dorranian, D. Effect of Fluence on Carbon Nanostructures Produced by Laser Ablation in Liquid Nitrogen. Appl. Phys. A 2016, 122, 558. [Google Scholar] [CrossRef]
- Mwafy, E.A.; Mostafa, A.M. Efficient Removal of Cu (II) by SnO2/MWCNTs Nanocomposite by Pulsed Laser Ablation Method. Nano-Struct. Nano-Objects 2020, 24, 100591. [Google Scholar] [CrossRef]
- Szabó, A.; Perri, C.; Csató, A.; Giordano, G.; Vuono, D.; Nagy, J.B. Synthesis Methods of Carbon Nanotubes and Related Materials. Materials 2010, 3, 3092–3140. [Google Scholar] [CrossRef]
- Teimuri-Mofrad, R.; Hadi, R.; Abbasi, H.; Fadakar Bajeh Baj, R. Synthesis, Characterization and Electrochemical Study of Carbon Nanotube/Chitosan-Ferrocene Nanocomposite Electrode as Supercapacitor Material. J. Electron. Mater. 2019, 48, 4573–4581. [Google Scholar] [CrossRef]
- Basiuk, E.V.; Huerta, L.; Basiuk, V.A. Noncovalent Bonding of 3d Metal(II) Phthalocyanines with Single-Walled Carbon Nanotubes: A Combined DFT and XPS Study. Appl. Surf. Sci. 2019, 470, 622–630. [Google Scholar] [CrossRef]
- Saravanakkumar, D.; Oualid, H.A.; Brahmi, Y.; Ayeshamariam, A.; Karunanaithy, M.; Saleem, A.M.; Kaviyarasu, K.; Sivaranjani, S.; Jayachandran, M. Synthesis and Characterization of CuO/ZnO/CNTs Thin Films on Copper Substrate and Its Photocatalytic Applications. OpenNano 2019, 4, 100025. [Google Scholar] [CrossRef]
- Li, Z.; Deng, L.; Kinloch, I.A.; Young, R.J. Raman Spectroscopy of Carbon Materials and Their Composites: Graphene, Nanotubes and Fibres. Prog. Mater. Sci. 2023, 135, 101089. [Google Scholar] [CrossRef]
- Affonso, L.N.; Marques, J.L.; Lima, V.V.C.; Gonçalves, J.O.; Barbosa, S.C.; Primel, E.G.; Burgo, T.A.L.; Dotto, G.L.; Pinto, L.A.A.; Cadaval, T.R.S. Removal of Fluoride from Fertilizer Industry Effluent Using Carbon Nanotubes Stabilized in Chitosan Sponge. J. Hazard. Mater. 2020, 388, 122042. [Google Scholar] [CrossRef]
- Parmar, K.R.; Dora, D.T.K.; Pant, K.K.; Roy, S. An Ultra-Light Flexible Aerogel-Based on Methane Derived CNTs as a Reinforcing Agent in Silica-CMC Matrix for Efficient Oil Adsorption. J. Hazard. Mater. 2019, 375, 206–215. [Google Scholar] [CrossRef]
- Dong, B.; Li, S.; Zhang, X.; Wang, J.; Peng, H. Synthesis and Characterization of Nanoalumina and CNTs-Reinforced Microcapsules with n-Dodecane as a Phase Change Material for Cold Energy Storage. Energy Fuels 2020, 34, 7700–7708. [Google Scholar] [CrossRef]
- Twinkle; Kaur, M.; Gowsamy, J.K.; Kumar, P.; Kumar, S. Synthesis and Characterization of CNT/PVDF Paper for Electronic and Energy Storage Applications. Emergent Mater. 2020, 3, 181–185. [Google Scholar] [CrossRef]
- Hoyos-Palacio, L.M.; Cuesta Castro, D.P.; Ortiz-Trujillo, I.C.; Botero Palacio, L.E.; Galeano Upegui, B.J.; Escobar Mora, N.J.; Carlos Cornelio, J.A. Compounds of Carbon Nanotubes Decorated with Silver Nanoparticles via In-Situ by Chemical Vapor Deposition (CVD). J. Mater. Res. Technol. 2019, 8, 5893–5898. [Google Scholar] [CrossRef]
- Peretz, S.; Regev, O. Carbon Nanotubes as Nanocarriers in Medicine. Curr. Opin. Colloid Interface Sci. 2012, 17, 360–368. [Google Scholar] [CrossRef]
- Gomez-Gualdron, D.A.; Burgos, J.C.; Yu, J.; Balbuena, P.B. Carbon Nanotubes: Engineering Biomedical Applications. Prog. Mol. Biol. Transl. Sci. 2011, 104, 175–245. [Google Scholar]
- Wang, L.; Xie, S.; Wang, Z.; Liu, F.; Yang, Y.; Tang, C.; Wu, X.; Liu, P.; Li, Y.; Saiyin, H.; et al. Functionalized Helical Fibre Bundles of Carbon Nanotubes as Electrochemical Sensors for Long-Term in Vivo Monitoring of Multiple Disease Biomarkers. Nat. Biomed. Eng. 2020, 4, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Park, J.; Jo, I.; Cho, S.-P.; Sung, D.; Ryu, S.; Park, M.; Min, K.-A.; Kim, J.; Hong, S.; et al. In Situ Hybridization of Carbon Nanotubes with Bacterial Cellulose for Three-Dimensional Hybrid Bioscaffolds. Biomaterials 2015, 58, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wu, Y.; Yang, Y.; Li, J.; Xie, B.; Li, X.; Lei, S.; Ou-Yang, J.; Yang, X.; Zhou, Q.; et al. Multilayered Carbon Nanotube Yarn Based Optoacoustic Transducer with High Energy Conversion Efficiency for Ultrasound Application. Nano Energy 2018, 46, 314–321. [Google Scholar] [CrossRef]
- Patlolla, A.K.; Patra, P.K.; Flountan, M.; Tchounwou, P.B. Cytogenetic Evaluation of Functionalized Single-walled Carbon Nanotube in Mice Bone Marrow Cells. Environ. Toxicol. 2016, 31, 1091–1102. [Google Scholar] [CrossRef]
- Lu, X.; Zhu, Y.; Bai, R.; Wu, Z.; Qian, W.; Yang, L.; Cai, R.; Yan, H.; Li, T.; Pandey, V. Long-Term Pulmonary Exposure to Multi-Walled Carbon Nanotubes Promotes Breast Cancer Metastatic Cascades. Nat. Nanotechnol. 2019, 14, 719–727. [Google Scholar] [CrossRef]
- Zakaria, A.B.; Picaud, F.; Rattier, T.; Pudlo, M.; Saviot, L.; Chassagnon, R.; Lherminier, J.; Gharbi, T.; Micheau, O.; Herlem, G. Nanovectorization of TRAIL with Single Wall Carbon Nanotubes Enhances Tumor Cell Killing. Nano Lett. 2015, 15, 891–895. [Google Scholar] [CrossRef] [PubMed]
- Tohidlou, H.; Shafiei, S.S.; Abbasi, S.; Asadi-Eydivand, M.; Fathi-Roudsari, M. Amine-Functionalized Single-Walled Carbon Nanotube/Polycaprolactone Electrospun Scaffold for Bone Tissue Engineering: In Vitro Study. Fibers Polym. 2019, 20, 1869–1882. [Google Scholar] [CrossRef]
- Ramachandran, K.; Raj Kumar, T.; Babu, K.J.; Gnana Kumar, G. Ni-Co Bimetal Nanowires Filled Multiwalled Carbon Nanotubes for the Highly Sensitive and Selective Non-Enzymatic Glucose Sensor Applications. Sci. Rep. 2016, 6, 36583. [Google Scholar] [CrossRef]
- Lai, Y.-T.; Kuo, J.-C.; Yang, Y.-J. A Novel Gas Sensor Using Polymer-Dispersed Liquid Crystal Doped with Carbon Nanotubes. Sens. Actuators A Phys. 2014, 215, 83–88. [Google Scholar] [CrossRef]
- Khani, H.; Rofouei, M.K.; Arab, P.; Gupta, V.K.; Vafaei, Z. Multi-Walled Carbon Nanotubes-Ionic Liquid-Carbon Paste Electrode as a Super Selectivity Sensor: Application to Potentiometric Monitoring of Mercury Ion(II). J. Hazard. Mater. 2010, 183, 402–409. [Google Scholar] [CrossRef]
- Wu, H.-X.; Cao, W.-M.; Li, Y.; Liu, G.; Wen, Y.; Yang, H.-F.; Yang, S.-P. In Situ Growth of Copper Nanoparticles on Multiwalled Carbon Nanotubes and Their Application as Non-Enzymatic Glucose Sensor Materials. Electrochim. Acta 2010, 55, 3734–3740. [Google Scholar] [CrossRef]
- Tabassum, H.; Mahmood, A.; Zhu, B.; Liang, Z.; Zhong, R.; Guo, S.; Zou, R. Recent Advances in Confining Metal-Based Nanoparticles into Carbon Nanotubes for Electrochemical Energy Conversion and Storage Devices. Energy Environ. Sci. 2019, 12, 2924–2956. [Google Scholar] [CrossRef]
- Xue, Y.; Chen, T.; Song, S.; Kim, P.; Bae, J. DNA-Directed Fabrication of NiCo2O4 Nanoparticles on Carbon Nanotubes as Electrodes for High-Performance Battery-like Electrochemical Capacitive Energy Storage Device. Nano Energy 2019, 56, 751–758. [Google Scholar] [CrossRef]
- Nawwar, M.; Poon, R.; Chen, R.; Sahu, R.P.; Puri, I.K.; Zhitomirsky, I. High Areal Capacitance of Fe3O4-decorated Carbon Nanotubes for Supercapacitor Electrodes. Carbon Energy 2019, 1, 124–133. [Google Scholar] [CrossRef]
- Li, H.; Li, Z.; Wu, Z.; Sun, M.; Han, S.; Cai, C.; Shen, W.; Liu, X.; Fu, Y. Enhanced Electrochemical Performance of CuCo2S4/Carbon Nanotubes Composite as Electrode Material for Supercapacitors. J. Colloid Interface Sci. 2019, 549, 105–113. [Google Scholar] [CrossRef]
- Rostamabadi, P.F.; Heydari-Bafrooei, E. Impedimetric Aptasensing of the Breast Cancer Biomarker HER2 Using a Glassy Carbon Electrode Modified with Gold Nanoparticles in a Composite Consisting of Electrochemically Reduced Graphene Oxide and Single-Walled Carbon Nanotubes. Microchim. Acta 2019, 186, 495. [Google Scholar] [CrossRef]
- Xue, T.; Liu, P.; Zhang, J.; Xu, J.; Zhang, G.; Zhou, P.; Li, Y.; Zhu, Y.; Lu, X.; Wen, Y. Multiwalled Carbon Nanotube-N-Doped Graphene/Poly(3,4-Ethylenedioxythiophene):Poly(Styrenesulfonate) Nanohybrid for Electrochemical Application in Intelligent Sensors and Supercapacitors. ACS Omega 2020, 5, 28452–28462. [Google Scholar] [CrossRef]
- Mohd Nurazzi, N.; Asyraf, M.R.M.; Khalina, A.; Abdullah, N.; Sabaruddin, F.A.; Kamarudin, S.H.; Ahmad, S.; Mahat, A.M.; Lee, C.L.; Aisyah, H.A. Fabrication, Functionalization, and Application of Carbon Nanotube-Reinforced Polymer Composite: An Overview. Polymers 2021, 13, 1047. [Google Scholar] [CrossRef] [PubMed]
- Sang, Z.; Ke, K.; Manas-Zloczower, I. Effect of Carbon Nanotube Morphology on Properties in Thermoplastic Elastomer Composites for Strain Sensors. Compos. Part A Appl. Sci. Manuf. 2019, 121, 207–212. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, A.; Han, S.S.; Park, S.-S. RTV Silicone Rubber Composites Reinforced with Carbon Nanotubes, Titanium-Di-Oxide and Their Hybrid: Mechanical and Piezoelectric Actuation Performance. Nano Mater. Sci. 2021, 3, 233–240. [Google Scholar] [CrossRef]
- Fantuzzi, N.; Bacciocchi, M.; Agnelli, J.; Benedetti, D. Three-Phase Homogenization Procedure for Woven Fabric Composites Reinforced by Carbon Nanotubes in Thermal Environment. Compos. Struct. 2020, 254, 112840. [Google Scholar] [CrossRef]
- Hu, C.; Liao, X.; Qin, Q.-H.; Wang, G. The Fabrication and Characterization of High Density Polyethylene Composites Reinforced by Carbon Nanotube Coated Carbon Fibers. Compos. Part A Appl. Sci. Manuf. 2019, 121, 149–156. [Google Scholar] [CrossRef]
- Batakliev, T.; Georgiev, V.; Ivanov, E.; Kotsilkova, R.; Di Maio, R.; Silvestre, C.; Cimmino, S. Nanoindentation Analysis of 3D Printed Poly (Lactic Acid)-based Composites Reinforced with Graphene and Multiwall Carbon Nanotubes. J. Appl. Polym. Sci. 2019, 136, 47260. [Google Scholar] [CrossRef]
- Li, Y.; Tian, X.; Yang, W.; Li, Q.; Hou, L.; Zhu, Z.; Tang, Y.; Wang, M.; Zhang, B.; Pan, T.; et al. Dielectric Composite Reinforced by In-Situ Growth of Carbon Nanotubes on Boron Nitride Nanosheets with High Thermal Conductivity and Mechanical Strength. Chem. Eng. J. 2019, 358, 718–724. [Google Scholar] [CrossRef]
- Chernyak, S.; Burtsev, A.; Maksimov, S.; Kupreenko, S.; Maslakov, K.; Savilov, S. Structural Evolution, Stability, Deactivation and Regeneration of Fischer-Tropsch Cobalt-Based Catalysts Supported on Carbon Nanotubes. Appl. Catal. A Gen. 2020, 603, 117741. [Google Scholar] [CrossRef]
- Yahyazadeh, A.; Borugadda, V.B.; Dalai, A.K.; Zhang, L. Optimization of Carbon Nanotube Growth via Response Surface Methodology for Fischer-Tropsch Synthesis over Fe/CNT Catalyst. Catal. Today 2022, 404, 117–131. [Google Scholar] [CrossRef]
- Wu, Z.; Mao, Y.; Wang, X.; Zhang, M. Preparation of a Cu–Ru/Carbon Nanotube Catalyst for Hydrogenolysis of Glycerol to 1,2-Propanediol via Hydrogen Spillover. Green Chem. 2011, 13, 1311–1316. [Google Scholar] [CrossRef]
- Higgins, D.C.; Meza, D.; Chen, Z. Nitrogen-Doped Carbon Nanotubes as Platinum Catalyst Supports for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells. J. Phys. Chem. C 2010, 114, 21982–21988. [Google Scholar] [CrossRef]
- Fan, J.-J.; Fan, Y.-J.; Wang, R.-X.; Xiang, S.; Tang, H.-G.; Sun, S.-G. A Novel Strategy for the Synthesis of Sulfur-Doped Carbon Nanotubes as a Highly Efficient Pt Catalyst Support toward the Methanol Oxidation Reaction. J. Mater. Chem. A 2017, 5, 19467–19475. [Google Scholar] [CrossRef]
- Wang, W.; Chu, W.; Wang, N.; Yang, W.; Jiang, C. Mesoporous Nickel Catalyst Supported on Multi-Walled Carbon Nanotubes for Carbon Dioxide Methanation. Int. J. Hydrogen Energy 2016, 41, 967–975. [Google Scholar] [CrossRef]
- Guo, L.; Chen, S.; Li, L.; Wei, Z. A CO-Tolerant PtRu Catalyst Supported on Thiol-Functionalized Carbon Nanotubes for the Methanol Oxidation Reaction. J. Power Sources 2014, 247, 360–364. [Google Scholar] [CrossRef]
- Cornelio, B.; Rance, G.A.; Laronze-Cochard, M.; Fontana, A.; Sapi, J.; Khlobystov, A.N. Palladium Nanoparticles on Carbon Nanotubes as Catalysts of Cross-Coupling Reactions. J. Mater. Chem. A 2013, 1, 8737–8744. [Google Scholar] [CrossRef]
- Gholami, Z.; Luo, G. Low-Temperature Selective Catalytic Reduction of NO by CO in the Presence of O2 over Cu:Ce Catalysts Supported by Multiwalled Carbon Nanotubes. Ind. Eng. Chem. Res. 2018, 57, 8871–8883. [Google Scholar] [CrossRef]
- Lico, D.; Vuono, D.; Siciliano, C.; Nagy, J.B.; De Luca, P. Removal of Unleaded Gasoline from Water by Multi-Walled Carbon Nanotubes. J. Environ. Manag. 2019, 237, 636–643. [Google Scholar] [CrossRef]
- Han, S.; Yang, J.; Li, X.; Li, W.; Zhang, X.; Koratkar, N.; Yu, Z.-Z. Flame Synthesis of Superhydrophilic Carbon Nanotubes/Ni Foam Decorated with Fe2O3 Nanoparticles for Water Purification via Solar Steam Generation. ACS Appl. Mater. Interfaces 2020, 12, 13229–13238. [Google Scholar] [CrossRef]
- Chandrashekhar Nayak, M.; Isloor, A.M.; Inamuddin; Lakshmi, B.; Marwani, H.M.; Khan, I. Polyphenylsulfone/Multiwalled Carbon Nanotubes Mixed Ultrafiltration Membranes: Fabrication, Characterization and Removal of Heavy Metals Pb2+, Hg2+, and Cd2+ from Aqueous Solutions. Arab. J. Chem. 2020, 13, 4661–4672. [Google Scholar] [CrossRef]
- Barrejón, M.; Syrgiannis, Z.; Burian, M.; Bosi, S.; Montini, T.; Fornasiero, P.; Amenitsch, H.; Prato, M. Cross-Linked Carbon Nanotube Adsorbents for Water Treatment: Tuning the Sorption Capacity through Chemical Functionalization. ACS Appl. Mater. Interfaces 2019, 11, 12920–12930. [Google Scholar] [CrossRef] [PubMed]
- Egbosiuba, T.C.; Abdulkareem, A.S.; Kovo, A.S.; Afolabi, E.A.; Tijani, J.O.; Roos, W.D. Enhanced Adsorption of As(V) and Mn(VII) from Industrial Wastewater Using Multi-Walled Carbon Nanotubes and Carboxylated Multi-Walled Carbon Nanotubes. Chemosphere 2020, 254, 126780. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Qiu, M.; Ding, H.; Fu, K.; Fan, Y. A Reduced Graphene Oxide Nanofiltration Membrane Intercalated by Well-Dispersed Carbon Nanotubes for Drinking Water Purification. Nanoscale 2016, 8, 5696–5705. [Google Scholar] [CrossRef] [PubMed]
- Ntim, S.A.; Mitra, S. Adsorption of Arsenic on Multiwall Carbon Nanotube–Zirconia Nanohybrid for Potential Drinking Water Purification. J. Colloid Interface Sci. 2012, 375, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Khalid, A.; Al-Juhani, A.A.; Al-Hamouz, O.C.; Laoui, T.; Khan, Z.; Atieh, M.A. Preparation and Properties of Nanocomposite Polysulfone/Multi-Walled Carbon Nanotubes Membranes for Desalination. Desalination 2015, 367, 134–144. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, P.; Liu, F.; Li, F.; An, X.; Liu, J.; Wang, Z.; Shen, C.; Sand, W. Electroactive Modified Carbon Nanotube Filter for Simultaneous Detoxification and Sequestration of Sb(III). Environ. Sci. Technol. 2019, 53, 1527–1535. [Google Scholar] [CrossRef] [PubMed]
- Zarghami, S.; Mohammadi, T.; Sadrzadeh, M.; Van der Bruggen, B. Bio-Inspired Anchoring of Amino-Functionalized Multi-Wall Carbon Nanotubes (N-MWCNTs) onto PES Membrane Using Polydopamine for Oily Wastewater Treatment. Sci. Total Environ. 2020, 711, 134951. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Kong, M.; Yu, B.; Ma, Y.; Pan, J.; Wu, G. Tunable Co/ZnO/C@MWCNTs Based on Carbon Nanotube-Coated MOF with Excellent Microwave Absorption Properties. J. Mater. Sci. Technol. 2022, 127, 153–163. [Google Scholar] [CrossRef]
- Mukhtar, A.; Mellon, N.; Saqib, S.; Khawar, A.; Rafiq, S.; Ullah, S.; Al-Sehemi, A.G.; Babar, M.; Bustam, M.A.; Khan, W.A.; et al. CO2/CH4 Adsorption over Functionalized Multi-Walled Carbon Nanotubes; an Experimental Study, Isotherms Analysis, Mechanism, and Thermodynamics. Microporous Mesoporous Mater. 2020, 294, 109883. [Google Scholar] [CrossRef]
- Seekaew, Y.; Wisitsoraat, A.; Phokharatkul, D.; Wongchoosuk, C. Room Temperature Toluene Gas Sensor Based on TiO2 Nanoparticles Decorated 3D Graphene-Carbon Nanotube Nanostructures. Sens. Actuators B Chem. 2019, 279, 69–78. [Google Scholar] [CrossRef]
- Sacco, L.; Forel, S.; Florea, I.; Cojocaru, C.-S. Ultra-Sensitive NO2 Gas Sensors Based on Single-Wall Carbon Nanotube Field Effect Transistors: Monitoring from Ppm to Ppb Level. Carbon N. Y. 2020, 157, 631–639. [Google Scholar] [CrossRef]
- Jeon, J.-Y.; Kang, B.-C.; Byun, Y.T.; Ha, T.-J. High-Performance Gas Sensors Based on Single-Wall Carbon Nanotube Random Networks for the Detection of Nitric Oxide down to the Ppb-Level. Nanoscale 2019, 11, 1587–1594. [Google Scholar] [CrossRef]
- Yang, M.; Au, C.; Deng, G.; Mathur, S.; Huang, Q.; Luo, X.; Xie, G.; Tai, H.; Jiang, Y.; Chen, C.; et al. NiWO4 Microflowers on Multi-Walled Carbon Nanotubes for High-Performance NH3 Detection. ACS Appl. Mater. Interfaces 2021, 13, 52850–52860. [Google Scholar] [CrossRef]
- Kaviyarasu, K.; Mola, G.T.; Oseni, S.O.; Kanimozhi, K.; Magdalane, C.M.; Kennedy, J.; Maaza, M. ZnO Doped Single Wall Carbon Nanotube as an Active Medium for Gas Sensor and Solar Absorber. J. Mater. Sci. Mater. Electron. 2019, 30, 147–158. [Google Scholar] [CrossRef]
- Ma, L.; Dong, X.; Chen, M.; Zhu, L.; Wang, C.; Yang, F.; Dong, Y. Fabrication and Water Treatment Application of Carbon Nanotubes (CNTs)-Based Composite Membranes: A Review. Membranes 2017, 7, 16. [Google Scholar] [CrossRef]
- Chowdhury, Z.Z.; Sagadevan, S.; Johan, R.B.; Shah, S.T.; Adebesi, A.; Md, S.I.; Rafique, R.F. A Review on Electrochemically Modified Carbon Nanotubes (CNTs) Membrane for Desalination and Purification of Water. Mater. Res. Express 2018, 5, 102001. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, G.; Vecitis, C.D. Prospects of an Electroactive Carbon Nanotube Membrane toward Environmental Applications. Acc. Chem. Res. 2020, 53, 2892–2902. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Jassby, D. Electroactive Membranes for Water Treatment: Enhanced Treatment Functionalities, Energy Considerations, and Future Challenges. Acc. Chem. Res. 2019, 52, 1177–1186. [Google Scholar] [CrossRef]
- Jain, N.; Gupta, E.; Kanu, N.J. Plethora of Carbon Nanotubes Applications in Various Fields—A State-of-the-Art-Review. Smart Sci. 2022, 10, 1–24. [Google Scholar] [CrossRef]
- Omoriyekomwan, J.E.; Tahmasebi, A.; Dou, J.; Wang, R.; Yu, J. A Review on the Recent Advances in the Production of Carbon Nanotubes and Carbon Nanofibers via Microwave-Assisted Pyrolysis of Biomass. Fuel Process. Technol. 2021, 214, 106686. [Google Scholar] [CrossRef]
Properties | SWCNTs | MWCNTs | Remarks | |
---|---|---|---|---|
Mechanical features | Young’s modulus | ~1 TPa | ~1–1.2 TPa | Approximately five-times tougher than steel |
Mechanical features | Tensile strength | ~60 GPa | ~0.15 TPa | Approximately one-hundred-times tougher than steel |
Electronic features | Bandgap | When n-m is divisible by 3 (0 eV, metallic) | ~0 eV (non-semiconducting) | Excellent electrical and thermal conductivity, current carrying capacity, and strength |
When n-m is not divisible by 3 (0.4–2 eV, semiconducting) | ||||
Thermal features | Thermal conductivity at ambient temperature | 1750–5800 W/mk | >3000 W/mk | Approximately three-times better than diamond |
Electrical features | Typical resistivity | 10−6 Ω m | Remarkable conductivity due to the nanostructures and strength of carbon bonds | |
Typical maximum current density | 107–109 A cm−2 | |||
Typical quantized conductance | 12.9 kΩ−1 |
Catalyst | Reaction Conditions | CNTs Yield (%) | Reference |
---|---|---|---|
Fe | Reaction temperature (800 °C), argon flow rate (150 cm3/min), carbon source and catalyst (Ferrocene (2 wt%) in toluene with a rate of 0.14 mL/min), deposition time (30–180 min) | The yield was not determined. | [21] |
Silicon wafers coated with a catalyst film of Fe/Co | Reaction temperature (700 °C), ammonia in a gas mixture of argon (75 mL/min), deposition time (20 min to 2 h), carbon source (mixture of acetylene and pyridine) | The yield was not determined. | [22] |
Fe-Mo-MgO | Reaction temperature (850 °C), argon flow rate (100 mL/min), mass of catalyst (100 mg), deposition time (30–45 min), carbon source (ethanol) | The CNT yield increased with synthesis time. | [23] |
Fe-Cr on Si substrate | Reaction temperature (825 °C), argon flow rate (100 sccm), deposition time (15 min), carbon source (liquid petroleum gas) | The yield was not determined. | [24] |
Fe-Co-Ni on a CaCO3 substrate | Reaction temperature (600–750 °C), argon flow rate (40 sccm), deposition time (30 min), carbon source (C2H2) | Mass of carbon deposited (0.36–0.78 gm/gm). | [25] |
Fe-Co on the surface of Al substrate | Reaction temperature (640 °C), carbon source (ethylene) nitrogen flow rate (50–75 sccm), reaction time (2–30 min) | The yield was not determined. | [26] |
Characterization Technique | Main Purpose | Reference |
---|---|---|
Atomic force microscopy | Surface roughness and topographies display small bumps of wrinkled materials. | [39] |
Contact angle | The super-oleophilic characteristics of the as-prepared CNT aerogel. | [40] |
Thermogravimetric analysis | The thermal stability of reinforced microencapsulated phase change materials with CNTs. | [41] |
X-ray diffraction | The interplanar dividing and structure of MWCNTs. | [42] |
X-ray photoelectron spectroscopy | Characterize the chemical composition of the composite and approve the presence of Ag nanoparticles in the CNTs. | [43] |
Applications | Preparation Method | CNTs Type and Dimensions | Remarks | Reference |
---|---|---|---|---|
Using CNT-based 3D scaffold for regenerative medicine | CVD method | Outer diameter of 10–20 nm and 150–200 μm long | CNTs with bacterial cellulose are proper for use as a bone graft material | [47] |
Using CNT yarns–gold particles–polymer composites for ultrasound application | CVD spinning process | CNT with a thickness of 5 μm | CNT yarns are promising structures for drug delivery applications | [48] |
Functionalized SWCNTs in mice bone marrow cells | CCVD technique | Outer diameter of 1.5–3 nm and 15–20 μm long | Interaction between CNTs and deoxyribonucleic acid (DNA) helps to understand the chemical toxicity in bone marrow | [49] |
MWCNTs lead to rapid colonization of the lungs | Commercially available MWCNTs | Average length of 20–50 μm | Enhanced tumor angiogenesis was observed in the CNT-exposed group | [50] |
SWCNTs as nanomedicine therapies in cancer cell killing | - | - | Due to absorbing electromagnetic waves, SWCNT paves the way for novel therapeutic approaches | [51] |
Amin-functionalized SWCNTs for bone tissue engineering | Commercially available SWCNTs | 200–800 nm diameter | The addition of SWCNTs enhanced the proliferation of the bone marrow-derived mesenchymal stem cells | [52] |
Applications | Preparation Method | CNT Type and Dimensions | Remarks | Reference |
---|---|---|---|---|
Polymer-dispersed liquid crystal doped with CNTs used as a gas sensor | Commercially available MWCNTs | 10–20 nm in diameter and 1–2 μm in length | The selectivity of the proposed acetone gas sensor can be detected by measuring the variations in the electrical resistance of the sensing film. | [54] |
MWCNT–ionic liquid–carbon paste electrode for determination of mercury ions (II) | Commercially available MWCNTs | 10–40 nm diameters and 1–25 μm length | Using MWCNTs in the composition of the carbon paste improved the response time of the sensor. | [55] |
Cu-nanoparticles on MWCNTs used for enzyme-free sensors in the oxidation of glucose | Commercially available MWCNTs | 60–80 nm of outer diameter and 10–15 μm of average length | Electrochemical measurements confirmed high sensitivity and fast response time due to the synergetic effects of combining copper with CNTs. | [56] |
Applications | Preparation Method | CNTs Type and Dimensions | Remarks | Reference |
---|---|---|---|---|
Effects of CNTs on rubber-based composites in terms of mechanical properties | Rubber nanocomposites were prepared through the solution casting method | The CNT diameter was 15–17 nm | The mechanical performance of the nanocomposite shows filler-induced stiffness in the composite | [65] |
Woven fabric composites reinforced with CNTs used in the automotive industry | Homogenization techniques for the fabrication of CNT-enriched polymer matrix | Randomly oriented CNTs | CNT-enriched polymer matrix improved mechanical properties such as Young’s modulus | [66] |
Fabrication of high-density polyethylene (HDPE)/carbon fiber (CF) composites reinforced with CNTs | Spray coating and the injection molding processes | Commercial MWCNTs prepared with the CVD technique with an average diameter of 20 nm | The tensile strength and modulus increased with the introduction of CNT due to the stronger adhesion at the interphase of CF and matrix | [67] |
Polylactic acid-based composites reinforced with graphene and MWCNTs | Monofiller nanocomposites were prepared through melt extrusion | MWCNTs having purity > 95 wt% and diameter > 50 nm | Carbon nanofillers improve the hardness and elasticity of the nanocomposites | [68] |
Dielectric composite reinforced with CNTs | In situ growth of CNTs using CVD | MWCNTs with outer diameters of 10–50 nm and lengths of several micrometers | The fabricated boron nitride nanosheets (BNNS)/CNT showed a high electrical resistivity of more than 1 Mohm-cm | [69] |
Reaction | Catalyst | Operating Conditions | Remarks | Reference |
---|---|---|---|---|
Oxygen reduction reaction (ORR) | Nitrogen-doped CNTs supported Pt catalyst | 4 mg of catalyst material/2 mL of ethanol and deionized water | Functionalized CNTs improve the deposition of Pt nanoparticles and offer superior performance as an ORR electrocatalyst | [73] |
Methanol oxidation reaction | Sulfur-doped CNTs supported Pt catalyst | Reaction at 90 °C for 24 h | The electrochemical characterization of the catalysts suggests the oxidation of carbonaceous intermediates formed in the anodic scan | [74] |
CO2 methanation | CNTs supported mesoporous Ni catalyst | The catalytic performance was conducted in the temperature range from 200 to 400 °C under atmospheric pressure | CNTs supported the catalyst and showed high catalytic activities due to more lattice defects | [75] |
Methanol oxidation reaction (MOR) | PtRu catalyst supported on thiol-functionalized CNTs (SH-CNTs) | The PtRu/CNTs working electrode was placed inside 0.5 M H2SO4 and methanol solution | PtRu/SH-CNT catalyst has enhanced catalytic activity for the MOR due to the electrooxidation of CO | [76] |
Cross-coupling reactions | Palladium nanoparticles deposited on MWCNT (MWCNT/PdNP) | The Suzuki-Miyaura cross-coupling reaction for the synthesis of natural products and pharmaceuticals | MWCNT/PdNP showed excellent catalytic performance due to the curvature and polarizability of carbon nanostructures | [77] |
Reduction of NO by CO in the presence of O2 | Cu-Ce catalysts supported on MWCNTs | Catalytic performance was evaluated using 200 mg of catalyst at different temperatures, from 140 to 260 °C | Cu:Ce/CNT catalyst revealed that an increased amount of Ce can adsorb and dissociate NO at low temperatures | [78] |
Chemical Types | Removal Approaches | Description | Reference |
---|---|---|---|
Humic acid | Facile vacuum-assisted filtration process | The separation performance of the nanofiltration membrane confirmed that the CNT content should be moderate to ensure dispersion and permeability. | [84] |
Arsenic | Microwave-accelerated reaction system | The MWCNT-ZrO2 sorbent has the advantage of effective arsenic removal over a wide range of pH. | [85] |
Volatile organic materials | The phase inversion technique | Polysulfone/MWCNTs’ membrane pore size and porosity start decreasing upon increasingMWCNTs’ loading. | [86] |
Sb(III) | Electrosorption–hydrothermal process | TiO2-CNT filter shows the highest Sb(III) sorption capacity at a pH of 3. | [87] |
Oily wastewater | The phase inversion method was employed for the preparation of polyethersulfone (PES) membranes. | The amino-functionalized MWCNTs onto the PES membrane showed an enhanced flux compared to the unmodified PES membrane. | [88] |
Electromagnetic pollution | Pyrolysis and aqueous self-assembly methods used to prepare Co/ZnO/C@MWCNTs composites. | The addition of MWCNTs facilitates interfacial polarization and the conduction of electromagnetic waves, which results in the design of synthetic multi-component absorbers. | [89] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yahyazadeh, A.; Nanda, S.; Dalai, A.K. Carbon Nanotubes: A Review of Synthesis Methods and Applications. Reactions 2024, 5, 429-451. https://doi.org/10.3390/reactions5030022
Yahyazadeh A, Nanda S, Dalai AK. Carbon Nanotubes: A Review of Synthesis Methods and Applications. Reactions. 2024; 5(3):429-451. https://doi.org/10.3390/reactions5030022
Chicago/Turabian StyleYahyazadeh, Arash, Sonil Nanda, and Ajay K. Dalai. 2024. "Carbon Nanotubes: A Review of Synthesis Methods and Applications" Reactions 5, no. 3: 429-451. https://doi.org/10.3390/reactions5030022
APA StyleYahyazadeh, A., Nanda, S., & Dalai, A. K. (2024). Carbon Nanotubes: A Review of Synthesis Methods and Applications. Reactions, 5(3), 429-451. https://doi.org/10.3390/reactions5030022