Using Phosphogypsum as a Source of Calcium Sulfate When Synthesizing Calcium Molybdate Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Starting Materials
2.2. Preparation of Calcium Molybdate Nanoparticles
2.3. Characterization
3. Results and Discussion
3.1. XRD Analysis
3.2. UV-Vis Spectroscopy
3.3. FTIR Spectroscopy
3.4. FT-Raman Vibrational Spectroscopy
3.5. Scanning Electron Microscopy of Calcium Molybdate
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abouloifa, W.; Belbsir, H.; Ettaki, M.; Hayani Mounir, S.; El-Hami, K. Moroccan Phosphogypsum: Complete Physico-Chemical Characterization and Rheological Study of Phosphogypsum-Slurry. Chem. Afr. 2023, 6, 1605–1618. [Google Scholar] [CrossRef]
- Bouargane, B.; Biyoune, M.G.; Mabrouk, A.; Bachar, A.; Bakiz, B.; Ait Ahsaine, H.; Mançour Billah, S.; Atbir, A. Experimental investigation of the effects of synthesis parameters on the precipitation of calcium carbonate and portlandite from Moroccan phosphogypsum and pure gypsum using carbonation route. Waste Biomass Valor. 2020, 11, 6953–6965. [Google Scholar] [CrossRef]
- Bensemlali, M.; Joudi, M.; Nasrellah, H.; Yassine, I.; Aarfane, A.; Hatimi, B.; Hafdi, H.; Mouldar, J.; Bakasse, M. One-step synthesis and characterisation of crystalline nano-calcite from phosphogysum by precipitation method. Eur. Phys. J. Appl. Phys. 2022, 97, 50. [Google Scholar] [CrossRef]
- Bouargane, B.; Marrouche, A.; El Issiouy, S.; Biyoune, M.G.; Mabrouk, A.; Atbir, A.; Bachar, A.; Bellajrou, R.; Boukbir, L.; Bakiz, B. Recovery of Ca(OH)2, CaCO3, and Na2SO4 from Moroccan phosphogypsum waste. J. Mater. Cycles Waste Manag. 2019, 21, 1563–1571. [Google Scholar] [CrossRef]
- Avşar, C.; Gezerman, A.O. An Evaluation of Phosphogypsum (PG)-Derived Nanohydroxyapatite (HAP) Synthesis Methods and Waste Management as a Phosphorus Source in the Agricultural Industry. Mater. Sci. 2021, 29, 247–254. [Google Scholar] [CrossRef]
- Bensalah, H.; Bekheet, M.F.; Younssi, S.A.; Ouammou, M.; Gurlo, A. Hydrothermal synthesis of nanocrystalline hydroxyapatite from phosphogypsum waste. J. Environ. Chem. Eng. 2018, 6, 1347–1352. [Google Scholar] [CrossRef]
- Nasrellah, H.; Joudi, M.; Bensemlali, M.; Yassine, I.; Hatimi, B.; Hafdi, H.; Mouldar, J.; El Mhammedi, M.A.; Bakasse, M. Novel synthesis and characterization of crystalline fluorapatite from Moroccan phosphogypsum waste. Matér. Tech. 2022, 110, 102. [Google Scholar] [CrossRef]
- Ma, D.; Wang, Q. Preparation of calcium oxide by decomposition of phosphogypsum under CO and water vapor atmosphere. E3S Web Conf. 2023, 385, 04004. [Google Scholar] [CrossRef]
- Yassine, I.; Joudi, M.; Hafdi, H.; Hatimi, B.; Mouldar, J.; Bensemlali, M.; Nasrellah, H.; Mahammedi, M.A.E.; Bakasse, M. Synthesis of brushite from phophogypsum industrial waste. Biointerface Res. Appl. Chem. 2022, 12, 6580–658815. [Google Scholar] [CrossRef]
- Lachehab, A.; Mertah, O.; Kherbeche, A.; Hassoune, H. Utilization of phosphogypsum in CO2 mineral sequestration by producing potassium sulphate and calcium carbonate. Mater. Sci. Energy Technol. 2020, 3, 611–625. [Google Scholar] [CrossRef]
- Qin, T.; Wang, Q.; Yue, D.; Shen, W.; Yan, Y.; Han, Y.; Ma, Y.; Gao, C. High-pressure dielectric behavior of polycrystalline CaMoO4: The role of grain boundaries. J. Alloys Compd. 2018, 730, 1–6. [Google Scholar] [CrossRef]
- Spassky, D.; Vasil’Ev, A.; Belsky, A.; Fedorov, N.; Martin, P.; Markov, S.; Buzanov, O.; Kozlova, N.; Shlegel, V. Excitation density effects in luminescence properties of CaMoO4 and ZnMoO4. Opt. Mater. 2019, 90, 7–13. [Google Scholar] [CrossRef]
- Nobre, F.X.; Muniz, R.; Martins, F.; Silva, B.O.; de Matos, J.M.E.; da Silva, E.R.; Couceiro, P.R.C.; Brito, W.R.; Leyet, Y. Calcium molybdate: Toxicity and genotoxicity assay in Drosophila melanogaster by SMART test. J. Mol. Struct. 2020, 1200. [Google Scholar] [CrossRef]
- Wierzbicka, E.; Malinowska, A.; Wieteska, K.; Wierzchowski, W.; Lefeld-Sosnowska, M.; Świrkowicz, M.; Łukasiewicz, T.; Paulmann, C. Characterization of crystal lattice defects in calcium molybdate single crystals (CaMoO4) by means of X-ray diffraction topography. Xray Spectrom. 2015, 44, 351–355. [Google Scholar] [CrossRef]
- Jung, J.Y. White luminescent calcium molybdate phosphor synthesized at room temperature via the Co-precipitation method used in a LED flexible composite. Opt. Mater. 2022, 132, 112830. [Google Scholar] [CrossRef]
- Verma, A.; Sharma, S.K. Dual-mode luminescence: A new perspective in calcium molybdate phosphor for solar cell application. J. Mater. Sci. Mater. Electron. 2019, 30, 11778–11789. [Google Scholar] [CrossRef]
- Pandey, I.R.; Cheon, J.; Daniel, D.J.; Kim, M.; Kim, Y.; Lee, M.H.; Kim, H. A cryogenic setup for multifunctional characterization of luminescence and scintillation properties of single crystals. Rev. Sci. Instrum. 2020, 91, 103108. [Google Scholar] [CrossRef] [PubMed]
- Minakshi, M.; Mitchell, D.R.; Baur, C.; Chable, J.; Barlow, A.J.; Fichtner, M.; Banerjee, A.; Chakraborty, S.; Ahuja, R. Phase evolution in calcium molybdate nanoparticles as a function of synthesis temperature and its electrochemical effect on energy storage. Nanoscale Adv. 2019, 1, 565–580. [Google Scholar] [CrossRef] [PubMed]
- das Neves Stigger, A.R.; Hernandes, V.F.; Ferrer, M.M.; Moreira, M.L. Optical and electrical features of calcium molybdate scheelite solar cells. New J. Chem. 2023, 47, 12458–12467. [Google Scholar] [CrossRef]
- Ray, S.K.; Hur, J. Surface modifications, perspectives, and challenges of scheelite metal molybdate photocatalysts for removal of organic pollutants in wastewater. Ceram. Int. 2020, 46, 20608–20622. [Google Scholar] [CrossRef]
- Castro, M.A.M.; Tranquilin, R.L.; Paiva, A.E.M.; Correa, M.A.; Motta, F.V.; Bomio, M.R.D. Improvement of dye degradation by photocatalysis and synergistic effect of sonophotocatalysis processes using CaMoO4/g-C3N4 heterojunction. Optik 2024, 300, 171682. [Google Scholar] [CrossRef]
- Bhagwan, J.; Hussain, S.K.; Yu, J.S. Facile hydrothermal synthesis and electrochemical properties of CaMoO4 nanoparticles for aqueous asymmetric supercapacitors. ACS Sustain. Chem. Eng. 2019, 7, 12340–12350. [Google Scholar] [CrossRef]
- He, L.L.; Zhu, Y.; Qi, Q.; Li, X.Y.; Bai, J.Y.; Xiang, Z.; Wang, X. Synthesis of CaMoO4 microspheres with enhanced sonocatalytic performance for the removal of Acid Orange 7 in the aqueous environment. Sep. Purif. Technol. 2021, 276. [Google Scholar] [CrossRef]
- Shlegel, V.N.; Borovlev, Y.A.; Grigoriev, D.N.; Grigorieva, V.D.; Danevich, F.A.; Ivannikova, N.V.; Postupaeva, A.G.; Vasiliev, Y.V. Recent progress in oxide scintillation crystals development by low-thermal gradient Czochralski technique for particle physics experiments. J. Instrum. 2017, 12, C08011. [Google Scholar] [CrossRef]
- Zharikov, E.; Lis, D.; Subbotin, K.; Dudnikova, V.; Zaitseva, O. Growth of oxide laser crystals by Czochralski method. Acta Phys. Pol. A 2013, 124, 274. [Google Scholar] [CrossRef]
- Júnior, R.C.D.S.; Nogueira, A.E.; Giroto, A.S.; Torres, J.A.; Ribeiro, C.; Siqueira, K.P. Microwave-assisted synthesis of Ca1−xMnxMoO4 (x = 0, 0.2, 0.7, and 1) and its application in artificial photosynthesis. Ceram. Int. 2021, 47, 5388–5398. [Google Scholar] [CrossRef]
- Phuruangrat, A.; Thongtem, S.; Thongtem, T. Effect of Ce dopant on photocatalytic properties of CaMoO4 nanoparticles prepared by microwave-assisted method. Mater. Res. Innov. 2022, 26, 84–90. [Google Scholar] [CrossRef]
- Santiago, A.A.; Macedo, E.M.; Oliveira, F.K.; Tranquilin, R.L.; Teodoro, M.D.; Longo, E.; Motta, F.V.; Bomio, M.R. Enhanced photocatalytic activity of CaMoO4/g-C3N4 composites obtained via sonochemistry synthesis. Mater. Res. Bull. 2022, 146, 111621. [Google Scholar] [CrossRef]
- Hosseinpour-Mashkani, S.S.; Hosseinpour-Mashkani, S.S.; Sobhani-Nasab, A. Synthesis and characterization of rod-like CaMoO4 nanostructure via free surfactant sonochemical route and its photocatalytic application. J. Mater. Sci. Mater. Electron. 2016, 27, 4351. [Google Scholar] [CrossRef]
- Chen, L.P. Evolution of surface morphologies of CaMoO4 films and their luminescent properties. Rare Metals 2022, 41, 2789–2793. [Google Scholar] [CrossRef]
- Yu, P.; Bi, J.; Xiao, D.Q.; Chen, L.P.; Jin, X.L.; Yang, Z.N. Preparation and microstructure of CaMoO4 ceramic films prepared through electrochemical technique. J. Electroceram. 2006, 16, 473. [Google Scholar] [CrossRef]
- Braziulis, G.; Janulevicius, G.; Stankeviciute, R.; Zalga, A. Aqueous sol–gel synthesis and thermoanalytical study of the alkaline earth molybdate precursors. J. Therm. Anal. Calorim. 2014, 118, 613–621. [Google Scholar] [CrossRef]
- Zalga, A.; Moravec, Z.; Pinkas, J.; Kareiva, A. On the sol–gel preparation of different tungstates and molybdates. J. Therm. Anal. Calorim. 2011, 105, 3. [Google Scholar] [CrossRef]
- Jung, J.Y. Fabricated flexible composite for a UV-LED color filter and anti-counterfeiting application of calcium molybdate phosphor synthesized at room temperature. Materials 2022, 15, 2078. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, F.K.F.; Oliveira, M.C.; Gracia, L.; Tranquilin, R.L.; Paskocimas, C.A.; Motta, F.V.; Longo, E.; Andres, J.; Bomio, M.R.D. Experimental and theoretical study to explain the morphology of CaMoO4 crystals. J. Phys. Chem. Solids 2018, 114, 141–152. [Google Scholar] [CrossRef]
- Swathi, S.; Yuvakkumar, R.; Kumar, P.S.; Ravi, G.; Thambidurai, M.; Dang, C.; Velauthapillai, D. PEG mediated tetragonal calcium molybdate nanostructures for electrochemical energy conversion applications. Int. J. Hydrogen Energy 2022, 47, 26013–26022. [Google Scholar] [CrossRef]
- Ghaed-Amini, M.; Bazarganipour, M.; Salavati-Niasari, M. Calcium molybdate octahedral nanostructures, hierarchical self-assemblies controllable synthesis by coprecipitation method: Characterization and optical properties. J. Ind. Eng. Chem. 2015, 21, 1089–1097. [Google Scholar] [CrossRef]
- Phuruangrat, A.; Thongtem, T.; Thongtem, S. Preparation, characterization and photoluminescence of nanocrystalline calcium molybdate. J. Alloys Compd. 2009, 481, 568–572. [Google Scholar] [CrossRef]
- Huerta-Flores, A.M.; Juárez-Ramírez, I.; Torres-Martínez, L.M.; Carrera-Crespo, J.E.; Gómez-Bustamante, T.; Sarabia-Ramos, O. Synthesis of AMoO4 (A = Ca, Sr, Ba) photocatalysts and their potential application for hydrogen evolution and the degradation of tetracycline in water. J. Photochem. Photobiol. A 2018, 356, 29–37. [Google Scholar] [CrossRef]
- Sun, Y.; Ma, J.; Jiang, X.; Fang, J.; Song, Z.; Gao, C.; Liu, Z. Ethylene glycol-assisted electrochemical synthesis of CaMoO4 crystallites with different morphology and their luminescent properties. Solid State Sci. 2010, 12, 1283–1286. [Google Scholar] [CrossRef]
- Sathya, M.; Pushpanathan, K. Synthesis and optical properties of Pb doped ZnO nanoparticles. Appl. Surf. Sci. 2018, 449, 346–357. [Google Scholar] [CrossRef]
- Benchikhi, M.; Azzouzi, A.; Hattaf, R.; El Ouatib, R.; Durand, B. Synthesis of (Ca, Ba) co-substituted SrMoO4 hierarchical microstructures and their composition-dependent structural and optical properties. Opt. Mater. 2022, 132, 112802. [Google Scholar] [CrossRef]
- Bouzidi, C.; Horchani-Naifer, K.; Khadraoui, Z.; Elhouichet, H.; Ferid, M. Synthesis, characterization and DFT calculations of electronic and optical properties of CaMoO4. Physica B Condens. Matter. 2016, 497, 34–38. [Google Scholar] [CrossRef]
- Thomas, S.M.; Balamurugan, S.; Ashika, S.A.; Fathima, T.S. Micro-structural, thermal, and optical properties of nanostructured CaMoO4 materials screened under different processes. J. Chem. 2023, 5, 100823. [Google Scholar] [CrossRef]
- Janbua, W.; Bongkarn, T.; Vittayakorn, W.; Vittayakorn, N. Direct synthesis and growth mechanism of metal molybdate (AMoO4; A = Ca and Ba) fine particles via the Mechanochemical method. Ceram. Int. 2017, 43, S435–S443. [Google Scholar] [CrossRef]
- Abang, G.N.O.; Pin, Y.S.; Ridzuan, N. Application of silica (SiO2) nanofluid and Gemini surfactants to improve the viscous behavior and surface tension of water-based drilling fluids. Egypt. J. Pet. 2021, 30, 37–42. [Google Scholar] [CrossRef]
- Meng, G.; Xu, J.; Cheng, R.; Zhang, X.; Huang, Q.; Liu, Y.; Chen, P.; Zhang, L. Controllable synthesis and characterization of high purity calcium carbonate whisker-like fibers by electrochemical cathodic reduction method. J. Clean. Prod. 2022, 342, 130923. [Google Scholar] [CrossRef]
- Ansari, A.A.; Alam, M.; Parchur, A.K. Nd-doped calcium molybdate core and particles: Synthesis, optical and photoluminescence studies. Appl. Phys. A 2014, 116, 1719–1728. [Google Scholar] [CrossRef]
- Xiao, E.C.; Ren, Q.; Cao, Z.; Dou, G.; Qi, Z.M.; Shi, F. Phonon characteristics and intrinsic properties of phase-pure CaMoO4 microwave dielectric ceramic. J. Mater. Sci. Mater. Electron. 2020, 31, 5686–5691. [Google Scholar] [CrossRef]
- Xiang, Y.; Song, J.; Hu, G.; Liu, Y. Synthesis of CaMoO4 hierarchical structures via a simple slow-release co-precipitation method. Appl. Surf. Sci. 2015, 349, 374–379. [Google Scholar] [CrossRef]
PG | CaO | SO3 | P2O5 | TOC | Al2O3 | Fe2O3 | K2O | F | MgO | Na2O | SiO2 |
---|---|---|---|---|---|---|---|---|---|---|---|
% | 32.40 | 43.89 | 0.66 | 0.14 | 0.13 | 0.83 | 0.12 | 0.12 | 0.17 | 0.11 | 0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belaoufi, Y.; Bensemlali, M.; Hatimi, B.; Mortadi, H.; Labjar, N.; Nunzi, J.-M.; El Idrissi, M.; Aarfane, A.; Bakasse, M.; Nasrellah, H. Using Phosphogypsum as a Source of Calcium Sulfate When Synthesizing Calcium Molybdate Nanoparticles. Reactions 2024, 5, 462-471. https://doi.org/10.3390/reactions5030024
Belaoufi Y, Bensemlali M, Hatimi B, Mortadi H, Labjar N, Nunzi J-M, El Idrissi M, Aarfane A, Bakasse M, Nasrellah H. Using Phosphogypsum as a Source of Calcium Sulfate When Synthesizing Calcium Molybdate Nanoparticles. Reactions. 2024; 5(3):462-471. https://doi.org/10.3390/reactions5030024
Chicago/Turabian StyleBelaoufi, Youssef, Meryem Bensemlali, Badreddine Hatimi, Halima Mortadi, Najoua Labjar, Jean-Michel Nunzi, Mohammed El Idrissi, Abdellatif Aarfane, Mina Bakasse, and Hamid Nasrellah. 2024. "Using Phosphogypsum as a Source of Calcium Sulfate When Synthesizing Calcium Molybdate Nanoparticles" Reactions 5, no. 3: 462-471. https://doi.org/10.3390/reactions5030024
APA StyleBelaoufi, Y., Bensemlali, M., Hatimi, B., Mortadi, H., Labjar, N., Nunzi, J. -M., El Idrissi, M., Aarfane, A., Bakasse, M., & Nasrellah, H. (2024). Using Phosphogypsum as a Source of Calcium Sulfate When Synthesizing Calcium Molybdate Nanoparticles. Reactions, 5(3), 462-471. https://doi.org/10.3390/reactions5030024