Biodiesel Production from Edible Oil Using Heteropoly Acid Catalysts at Room Temperature
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Catalyst Preparation
2.3. Characterization
2.4. Transesterification Reaction
3. Results and Discussion
3.1. Effect of Reaction Time
3.2. Effect of Methanol/Oil Ratio
3.3. Effect of Catalyst Weight
3.4. Catalyst Reusability
3.5. Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, A.F.; Bennet, J.A.; Manayil, J.C.; Wilson, K. Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification. Chem. Soc. Rev. 2014, 43, 7887–7916. [Google Scholar] [CrossRef] [PubMed]
- Melero, J.A.; Iglesias, J.; Morales, G. Heterogeneous acid catalysts for biodiesel production: Current status and future challenges. Green Chem. 2009, 11, 1285–1308. [Google Scholar] [CrossRef]
- Endalew, A.K.; Kiros, Y.; Zanzi, R. Inorganic heterogeneous catalysts for biodiesel production from vegetable oils. Biomass Bioenerg. 2011, 35, 3787–3809. [Google Scholar] [CrossRef]
- Ma, F.; Hanna, M.A. Biodiesel production: A review. Bioresour. Technol. 1999, 70, 1–15. [Google Scholar] [CrossRef]
- Lotero, E.; Liu, Y.; Lopez, D.E.; Suwannakarn, K.; Bruce, D.A.; Goodwin, J.G. Synthesis of Biodiesel via Acid Catalysis. Ind. Eng. Chem. Res. 2005, 44, 5353–5363. [Google Scholar] [CrossRef]
- Hanif, M.A.; Nisar, S.; Rashid, U. Supported solid and heteropoly acid catalysts for production of biodiesel. Catal. Rev. 2017, 59, 165–188. [Google Scholar] [CrossRef]
- de Godói Silva, V.W.; Laier, L.O.; Silva, M.J.d. Novel H3PW12O40: Catalysed Esterification Reactions of Fatty Acids at Room Temperature for Biodiesel Production. Catal. Lett. 2010, 135, 207–211. [Google Scholar] [CrossRef]
- Hamad, B.; Lopes de Souza, G.; Sapaly, G.; Carneiro Rocha, M.G.; Pries de Oliveira, P.G.; Gonzalez, W.A.; Andrade Sales, E.; Essayem, N. Transesterification of rapeseed oil with ethanol over heterogeneous heteropolycids. Catal. Commun. 2008, 10, 92–97. [Google Scholar] [CrossRef]
- Narasimharao, K.; Brown, D.R.; Lee, A.F.; Newman, A.D.; Siril, P.F.; Tavener, S.J.; Wilson, K. Structure-activity relations in Cs-doped heteropolyacid catalysts for biodiesel production. J. Catal. 2007, 248, 226–234. [Google Scholar] [CrossRef]
- Timofeeva, M.N. Acid catalysis by heteropoly acids. Appl. Catal. A 2003, 256, 19–35. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Wei, F.F.; Li, Q.; Huang, J.S.; Feng, Y.M.; Zhang, Y.T. Mesoporous Ag1(NH4)2PW12O40 heteropolyacids as effective catalysts for the esterification of oleic acid to biodiesel. RSC Adv. 2017, 7, 51090–51095. [Google Scholar] [CrossRef]
- Chai, F.; Cao, F.; Zhai, F.; Chen, Y.; Wang, X.; Su, Z. Transesterification of Vegetable Oil to Biodiesel using a Heteropolyacid Solid Catalyst. Adv. Synth. Catal. 2007, 349, 1057–1065. [Google Scholar] [CrossRef]
- Lee, S.H.; Lee, M.S.; Hong, S.S. Transesterification of Canola Oil with Methanol Over Heteropolyacids. J. Biobased Mater. Bioenergy 2014, 8, 202–207. [Google Scholar] [CrossRef]
- Su, F.; Guo, Y. Advancements in solida cid catalysts for biodiesel production. Green Chem. 2014, 16, 2934–2957. [Google Scholar] [CrossRef]
- Dias, J.A.; Caliman, E.; Dias, S.C.L. Effects of cesium ion exchange on acidity of 12-tungstophosphoric acid. Microporous Mesoporous Mater. 2004, 76, 221–232. [Google Scholar] [CrossRef]
- Tatematsu, S.; Hibi, Y.; Okuhara, T.; Misono, M. Preparation process and catalytic activity of CsxH3-xPW12O40. Chem. Lett. 1984, 13, 865–868. [Google Scholar] [CrossRef]
- Doyle, A.M.; Albayati, T.M.; Abbas, A.S.; Alismaeel, Z.T. Biodiesel production by esterification of oleic acid over zeolite Y prepared from kaolin. Renew. Energy 2016, 97, 19–23. [Google Scholar] [CrossRef]
- Rocchiccioli-Deltcheff, C.; Fournier, M.; Franck, R.; Thouvenot, R. Vibrational investigations of polyoxometalates. 2. Evidence for anion-anion interactions in molybdenum (VI) and tungsten (VI) compounds related to the Keggin structure. Inorg. Chem. 1983, 22, 207–216. [Google Scholar] [CrossRef]
- Matkovic, S.R.; Briand, L.E.; Bañares, M.Á. Investigation of the thermal stability of phosphotungstic Wells-Dawson heteropolyc-acid through in situ Raman spectroscopy. Mater. Res. Bull. 2011, 46, 1946–1948. [Google Scholar] [CrossRef]
- Sheikh, R.; Choi, M.S.; Im, J.S.; Park, Y.H.J. Study on the solid acid catalysts in biodiesel production from high acid value oil. Ind. Eng. Chem. 2013, 19, 1413–1419. [Google Scholar] [CrossRef]
- Hiskia, A.; Mylonas, A.; Papaconstantinou, E. Comparison of the photoredox properties of polyoxometallates and semiconducting particles. Chem. Soc. Rev. 2001, 30, 62–69. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fioravante, N.L.; Cao, G.; Yi, N. Biodiesel Production from Edible Oil Using Heteropoly Acid Catalysts at Room Temperature. Reactions 2024, 5, 587-593. https://doi.org/10.3390/reactions5030028
Fioravante NL, Cao G, Yi N. Biodiesel Production from Edible Oil Using Heteropoly Acid Catalysts at Room Temperature. Reactions. 2024; 5(3):587-593. https://doi.org/10.3390/reactions5030028
Chicago/Turabian StyleFioravante, Noah L., Guoqiang Cao, and Nan Yi. 2024. "Biodiesel Production from Edible Oil Using Heteropoly Acid Catalysts at Room Temperature" Reactions 5, no. 3: 587-593. https://doi.org/10.3390/reactions5030028
APA StyleFioravante, N. L., Cao, G., & Yi, N. (2024). Biodiesel Production from Edible Oil Using Heteropoly Acid Catalysts at Room Temperature. Reactions, 5(3), 587-593. https://doi.org/10.3390/reactions5030028