- Article
Chitosan-Based Molecularly Imprinted Polymers as Functional Adsorbents: Selective m-Cresol Removal from Red Wine
- Diana Abril,
- Liudis L. Pino-Ramos and
- Oscar Valdés
- + 7 authors
In this preliminary study, chitosan-based molecularly imprinted polymers crosslinked with glutaraldehyde were synthesized and evaluated for the selective removal of m-cresol, a volatile phenol associated with the sensory defect known as smoke taint in wine. Three formulations of chitosan-based molecularly imprinted polymers (MIP-Gs) were synthesized using glutaraldehyde as a crosslinker and m-cresol as a template. Non-imprinted polymers (NIP-Gs) served as controls. The polymers were characterized by Fourier-transform infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy, which confirmed successful crosslinking and structural differences between MIPs and NIPs. Adsorption performance was evaluated using solid-phase extraction cartridges packed with the synthesized polymers, employing a Cabernet Sauvignon wine. The MIPs exhibited higher adsorption efficiency and selectivity toward m-cresol compared to NIPs, achieving removal rates of 15% to 40%, depending on polymer formulation and analyte concentration. Molecular dynamics simulations were used to investigate polymer–analyte interactions at the molecular level, providing mechanistic insight into the preferential binding of m-cresol within the imprinted cavities. Physicochemical analyses of red wine showed that m-cresol removal occurred with minimal impact on key phenolic parameters, supporting the functional selectivity of MIPs. These results demonstrate that chitosan-based MIPs constitute a promising class of materials for selective adsorption applications in complex liquid systems.
6 February 2026







