Lipid-Based Colloidal Nanocarriers for Site-Specific Drug Delivery
Abstract
1. Introduction
2. Types of Lipid-Based Nanocarriers
3. LNP Structure and Role in Nucleic Acid Therapeutics
3.1. Material Considerations and Structural Design of LNPs for mRNA Therapeutics
3.1.1. Ionizable Cationic Lipid
3.1.2. Neutral/Helper Phospholipids
3.1.3. Cholesterol
3.1.4. Lipid Anchored Polyethylene Glycol (PEG) Constructs
| Lipid | Function | Ref. |
|---|---|---|
| Cationic ionizable lipids | ||
OF-Deg-Lin
| Selective delivery of nucleic acids, such as mRNA, siRNA, and other therapeutic oligonucleotides, into B lymphocytes | [54] |
OF-C4-Deg-Lin
| Selective delivery of nucleic acids, including siRNAs, mRNAs, microRNAs (miRNAs) | [55] |
FTT5
| in vivo delivery of nucleic acids, including mRNA encoding human factor VIII, base-editing components (such as guide RNAs and editor mRNAs), siRNAs, and other therapeutic oligonucleotides | [56] |
Dlin-MC3-DMA
| Used in albumin receptor-mediated delivery of mRNA to the liver | [57] |
OF-02
| Enhanced hepatic delivery of nucleic acids, including mRNA, siRNA, and other therapeutic oligonucleotides, enabling efficient gene expression or silencing in the liver. | [58] |
A6
| Albumin receptor mediated mRNA delivery | [57] |
| Neutral/helper lipids | ||
DSPC
| Used in mRNA vaccines and vaccine candidates, including COVID-19. | [50] |
DOPE
| Facilitates the delivery of a broad range of nucleic acids, including mRNA, siRNA, microRNA (miRNA), and other therapeutic oligonucleotides, by promoting membrane fusion and endosomal escape. | [59] |
| PEG lipids | ||
DMG-PEG 2000
| Used in the delivery of nucleic acids, including mRNA vaccines and vaccine candidates (such as COVID-19 vaccines), as well as other therapeutic RNAs like siRNA and microRNA, where it enhances nanoparticle stability, circulation time, and reduces immune recognition. | [50] |
ALC-0159
| Facilitates the delivery of nucleic acids, including mRNA vaccines (e.g., COVID-19 vaccines) and other therapeutic RNAs such as siRNA and microRNA, by improving nanoparticle stability, circulation time, and reducing immune clearance. | [50] |
4. Role of Ionizable Lipids in Nucleic Acid Delivery
4.1. Unsaturated Ionizable Lipids
4.2. Multi-Tail Ionizable Lipids
4.3. Ionizable Polymer-Lipids
4.4. Biodegradable Ionizable Lipids
4.5. Branched-Tail Ionizable Lipids
5. Key Properties and Design Factors
6. Mechanisms of Targeted Drug Delivery
7. Recent Developments and Applications
8. AI-Driven Acceleration of Stereochemistry-Aware LNP Design
9. Scalability and Reproducibility in Large-Scale LBN Production
10. Challenges and Future Outlook
11. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| SLNPs | Solid Lipid Nanoparticles |
| LBNPs | Lipid-based nanoparticles |
| NLCs | Nanostructured Lipid Carriers |
| EPR | Enhanced Permeability and Retention |
| LBNs | Lipid-Based Nanocarriers |
| LPHNs | Lipid-Polymer Hybrid Nanoparticles |
| SEDDS | Self-Emulsifying Drug Delivery Systems |
| LNP | Lipid Nanoparticle |
| PEG | Polyethylene Glycol |
| HSPC | Hydrogenated Soy Phosphatidylcholine |
| DSPC | 1,2-Distearoyl-sn-glycero-3-phosphocholine |
| DOPE | Dioleoylphosphatidylethanolamine |
| PEG-DMG | Polyethylene Glycol–Dimyristoyl Glycerol |
| Dlin-MC3-DMA | Dilinoleylmethyl-4-dimethylaminobutyrate |
| Chol | Cholesterol |
| IVIS | In Vivo Imaging System |
| DeepLNP-GNN | Deep Learning–Based Lipid Nanoparticle Graph Neural Network |
| AUROC | Area Under the Receiver Operating Characteristic |
| SMILES | Simplified Molecular Input Line Entry System |
| RTRT | Real-Time Release Testing |
References
- Yew, Y.P.; Shameli, K.; Mohamad, S.E.; Lee, K.X.; Teow, S.Y. Green synthesized montmorillonite/carrageenan/Fe3O4 nanocomposites for pH-responsive release of protocatechuic acid and its anticancer activity. Int. J. Mol. Sci. 2020, 21, 4851. [Google Scholar] [CrossRef]
- Jazayeri, S.D.; Ideris, A.; Zakaria, Z.; Shameli, K.; Moeini, H.; Omar, A.R. Cytotoxicity and immunological responses following oral vaccination of nanoencapsulated avian influenza virus H5 DNA vaccine with green synthesis silver nanoparticles. J. Control. Release 2012, 161, 116–123. [Google Scholar] [CrossRef]
- Yusefi, M.; Chan, H.Y.; Teow, S.Y.; Kia, P.; Soon, M.L.K.; Che Sidik, N.A.; Shameli, K. 5-fluorouracil encapsulated chitosan-cellulose fiber bionanocomposites: Synthesis, characterization and in vitro analysis towards colorectal cancer cells. Nanomaterials 2021, 11, 1691. [Google Scholar] [CrossRef]
- Kartouzian, A.; Heiz, A.; Shameli, K.; Moeini, H. Polyethylenimine-Conjugated Au-NPs as an Efficient Vehicle for in vitro and in vivo DNA Vaccine Delivery. Int. J. Nanomed. 2025, 20, 4021–4034. [Google Scholar] [CrossRef]
- Rehman, M.; Tahir, N.; Sohail, M.F.; Qadri, M.U.; Duarte, S.O.D.; Brandão, P.; Esteves, T.; Javed, I.; Fonte, P. Lipid-based nanoformulations for drug delivery: An ongoing perspective. Pharmaceutics 2024, 16, 1376. [Google Scholar] [CrossRef]
- Karmaker, S.; Rosales, P.D.; Tirumuruhan, B.; Viravalli, A.; Boehnke, N. More than a delivery system: The evolving role of lipid-based nanoparticles. Nanoscale 2025, 17, 11864–11893. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Li, W.; Wang, Z.; Lu, J. Lipid-based nanotechnology: Liposome. Pharmaceutics 2023, 16, 34. [Google Scholar] [CrossRef] [PubMed]
- Mall, J.; Naseem, N.; Haider, M.F.; Rahman, M.A.; Khan, S.; Siddiqui, S.N. Nanostructured lipid carriers as a drug delivery system: A comprehensive review with therapeutic applications. Intell. Pharm. 2025, 3, 243–255. [Google Scholar] [CrossRef]
- Upadhyay, P.; Aslam, R.; Tiwari, V.; Upadhyay, S. Lipid-based nanocarrier drug delivery approach for biomedical application. Curr. Nanomater. 2024, 9, 92–108. [Google Scholar] [CrossRef]
- Liu, Y.; Castro Bravo, K.M.; Liu, J. Targeted liposomal drug delivery: A nanoscience and biophysical perspective. Nanoscale Horiz. 2021, 6, 78–94. [Google Scholar] [CrossRef]
- Kartouzian, A.; Cameron, R.P. Unlocking the hidden dimension: Power of chirality in scientific exploration. Philos. Trans. R. Soc. A—Math. Phys. Eng. Sci. 2024, 382, 20230321. [Google Scholar] [CrossRef] [PubMed]
- Barron, L.D. Symmetry and Chirality: Where Physics Shakes Hands with Chemistry and Biology. Isr. J. Chem. 2021, 61, 517–529. [Google Scholar] [CrossRef]
- Kartouzian, A. Spectroscopy for model heterogeneous asymmetric catalysis. Chirality 2019, 31, 641–657. [Google Scholar] [CrossRef]
- Ristow, F.; Liang, K.; Pittrich, J.; Scheffel, J.; Fehn, N.; Kienberger, R.; Heiz, U.; Kartouzian, A.; Iglev, H. Large-area SHG-CD probe intrinsic chirality in polycrystalline films. J. Mater. Chem. C 2022, 10, 12715–12723. [Google Scholar] [CrossRef]
- von Weber, A.; Jakob, M.; Kratzer, E.; Kartouzian, A.; Heiz, U. In situ Second-Harmonic Generation Circular Dichroism with Submonolayer Sensitivity. Chemphyschem 2019, 20, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Fehn, N.; Brandt, V.K.; Stasi, M.; Boekhoven, J.; Heiz, U.; Kartouzian, A. Tunable induced circular dichroism in gels. Chirality 2022, 34, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Heister, P.; Lünskens, T.; Thämer, M.; Kartouzian, A.; Gerlach, S.; Verbiest, T.; Heiz, U. Orientational changes of supported chiral 2,2′-dihydroxy-1,1′binaphthyl molecules. Phys. Chem. Chem. Phys. 2014, 16, 7299–7306. [Google Scholar] [CrossRef]
- Pittrich, J.; Liang, K.V.; Dörringer, L.; Kienberger, R.; Heiz, U.; Kartouzian, A.; Iglev, H. From molecules to materials: SHG-CD microscopy of structured chiral films. Appl. Surf. Sci. 2025, 680, 161331. [Google Scholar] [CrossRef]
- Liang, K.; Ristow, F.; Li, K.; Pittrich, J.; Fehn, N.; Dörringer, L.; Heiz, U.; Kienberger, R.; Pescitelli, G.; Iglev, H.; et al. Negative Nonlinear CD-ee Dependence in Polycrystalline BINOL Thin Films. J. Am. Chem. Soc. 2023, 145, 27933–27938. [Google Scholar] [CrossRef]
- Panagiotopoulou, C.; Liu, S.P.; Pittrich, J.; Iglev, H.; Deschler, F.; Kartouzian, A. Chiroptical Amplification Beyond Enantiopurity in Chiral Films. Adv. Opt. Mater. 2025, 13, e01895. [Google Scholar] [CrossRef]
- Lee, J.; Jung, W.; Lee, D.; Kang, M.; Chung, H.J.; Yeom, J. Chirality-Controlled Lipid Nanoparticles for mRNA Delivery. ACS Appl. Mater. Interfaces 2025, 17, 18150–18159. [Google Scholar] [CrossRef]
- Xu, L.; Wang, X.; Wang, W.; Sun, M.; Choi, W.J.; Kim, J.-Y.; Hao, C.; Li, S.; Qu, A.; Lu, M.; et al. Enantiomer-dependent immunological response to chiral nanoparticles. Nature 2022, 601, 366–373. [Google Scholar] [CrossRef]
- Anwar, D.M.; Hedeya, H.Y.; Ghozlan, S.H.; Ewas, B.M.; Khattab, S.N. Surface-modified lipid-based nanocarriers as a pivotal delivery approach for cancer therapy: Application and recent advances in targeted cancer treatment. Beni-Suef Univ. J. Basic Appl. Sci. 2024, 13, 106. [Google Scholar] [CrossRef]
- Garbati, P.; Picco, C.; Magrassi, R.; Signorello, P.; Cacopardo, L.; Dalla Serra, M.; Faticato, M.G.; De Luca, M.; Balestra, F.; Scavo, M.P.; et al. Targeting the gut: A systematic review of specific drug nanocarriers. Pharmaceutics 2024, 16, 431. [Google Scholar] [CrossRef]
- Giordano, A.; Provenza, A.C.; Reverchon, G.; Baldino, L.; Reverchon, E. Lipid-based nanocarriers: Bridging diagnosis and cancer therapy. Pharmaceutics 2024, 16, 1158. [Google Scholar] [CrossRef]
- Izadiyan, Z.; Misran, M.; Kalantari, K.; Webster, T.J.; Kia, P.; Basrowi, N.A.; Rasouli, E.; Shameli, K. Advancements in Liposomal Nanomedicines: Innovative Formulations, Therapeutic Applications, and Future Directions in Precision Medicine. Int. J. Nanomed. 2025, 20, 1213–1262. [Google Scholar] [CrossRef] [PubMed]
- Bukke, S.P.N.; Venkatesh, C.; Bandenahalli Rajanna, S.; Saraswathi, T.S.; Kusuma, P.K.; Goruntla, N.; Balasuramanyam, N.; Munishamireddy, S. Solid lipid nanocarriers for drug delivery: Design innovations and characterization strategies—A comprehensive review. Discov. Appl. Sci. 2024, 6, 279. [Google Scholar] [CrossRef]
- Mehta, M.; Bui, T.A.; Yang, X.; Aksoy, Y.; Goldys, E.M.; Deng, W. Lipid-based nanoparticles for drug/gene delivery: An overview of the production techniques and difficulties encountered in their industrial development. ACS Mater. Au 2023, 3, 600–619. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.; Patel, B.; Thakkar, H. Lipid based nanocarriers: Promising drug delivery system for topical application. Eur. J. Lipid Sci. Technol. 2021, 123, 2000264. [Google Scholar] [CrossRef]
- Kumar, R.; Dkhar, D.S.; Kumari, R.; Divya; Mahapatra, S.; Dubey, V.K.; Chandra, P. Lipid based nanocarriers: Production techniques, concepts, and commercialization aspect. J. Drug Deliv. Sci. Technol. 2022, 74, 103526. [Google Scholar] [CrossRef]
- Khan, S.; Sharma, A.; Jain, V. An overview of nanostructured Lipid Carriers and its application in drug delivery through different routes. Adv. Pharm. Bull. 2023, 13, 446–460. [Google Scholar] [CrossRef]
- Alam, M.; Rizwanullah, M.; Mir, S.R.; Amin, S. Promising prospects of lipid-based topical nanocarriers for the treatment of psoriasis. OpenNano 2023, 10, 100123. [Google Scholar] [CrossRef]
- Chelliah, R.; Rubab, M.; Vijayalakshmi, S.; Karuvelan, M.; Barathikannan, K.; Oh, D.-H. Liposomes for drug delivery: Classification, therapeutic applications, and limitations. Next Nanotechnol. 2025, 8, 100209. [Google Scholar] [CrossRef]
- Pande, S. Liposomes for drug delivery: Review of vesicular composition, factors affecting drug release and drug loading in liposomes. Artif. Cells Nanomed. Biotechnol. 2023, 51, 428–440. [Google Scholar] [CrossRef] [PubMed]
- Bunjes, H.; Unruh, T. Characterization of lipid nanoparticles by differential scanning calorimetry, X-ray and neutron scattering. Adv. Drug Deliv. Rev. 2007, 59, 379–402. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.-H.; Chen, H.-L.; Dong, J.-R. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) as food-grade nanovehicles for hydrophobic nutraceuticals or bioactives. Appl. Sci. 2023, 13, 1726. [Google Scholar] [CrossRef]
- Haider, M.; Abdin, S.M.; Kamal, L.; Orive, G. Nanostructured lipid carriers for delivery of chemotherapeutics: A review. Pharmaceutics 2020, 12, 288. [Google Scholar] [CrossRef] [PubMed]
- Ferreira Soares, D.C.; Domingues, S.C.; Viana, D.B.; Tebaldi, M.L. Polymer-hybrid nanoparticles: Current advances in biomedical applications. Biomed. Pharmacother. 2020, 131, 110695. [Google Scholar] [CrossRef]
- Khan, M.S.; Baskoy, S.A.; Yang, C.; Hong, J.; Chae, J.; Ha, H.; Lee, S.; Tanaka, M.; Choi, Y.; Choi, J. Lipid-based colloidal nanoparticles for applications in targeted vaccine delivery. Nanoscale Adv. 2023, 5, 1853–1869. [Google Scholar] [CrossRef]
- Kim, S.; Choi, B.; Kim, Y.; Shim, G. Immune-Modulating Lipid Nanomaterials for the Delivery of Biopharmaceuticals. Pharmaceutics 2023, 15, 1760. [Google Scholar] [CrossRef]
- Senjab, R.; Alsawaftah, N.M.; AbuWatfa, W.; Husseini, G. Advances in liposomal nanotechnology: From concept to clinics. RSC Pharm. 2024, 1, 928–948. [Google Scholar] [CrossRef]
- Viegas, C.; Patrício, A.B.; Prata, J.M.; Nadhman, A.; Chintamaneni, P.K.; Fonte, P. Solid lipid nanoparticles vs. Nanostructured lipid carriers: A comparative review. Pharmaceutics 2023, 15, 1593. [Google Scholar] [CrossRef]
- Godase, S.S.; Kulkarni, N.S.; Dhole, S.N. A comprehensive review on novel lipid-based nano drug delivery. Adv. Pharm. Bull. 2024, 14, 34–47. [Google Scholar] [CrossRef]
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef]
- Eygeris, Y.; Gupta, M.; Kim, J.; Sahay, G. Chemistry of Lipid Nanoparticles for RNA Delivery. Acc. Chem. Res. 2022, 55, 2–12. [Google Scholar] [CrossRef]
- Schoenmaker, L.; Witzigmann, D.; Kulkarni, J.A.; Verbeke, R.; Kersten, G.; Jiskoot, W.; Crommelin, D.J.A. mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability. Int. J. Pharm. 2021, 601, 120586. [Google Scholar] [CrossRef]
- Tilstra, G.; Couture-Senécal, J.; Lau, Y.M.A.; Manning, A.M.; Wong, D.S.M.; Janaeska, W.W.; Wuraola, T.A.; Pang, J.; Khan, O.F. Iterative Design of Ionizable Lipids for Intramuscular mRNA Delivery. J. Am. Chem. Soc. 2023, 145, 2294–2304. [Google Scholar] [CrossRef]
- Kanasty, R.; Dorkin, J.R.; Vegas, A.; Anderson, D. Delivery materials for siRNA therapeutics. Nat. Mater. 2013, 12, 967–977. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Zaks, T.; Langer, R.; Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 2021, 6, 1078–1094. [Google Scholar] [CrossRef] [PubMed]
- Tenchov, R.; Bird, R.; Curtze, A.E.; Zhou, Q. Lipid Nanoparticles─From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS Nano 2021, 15, 16982–17015. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Ashwanikumar, N.; Robinson, E.; Xia, Y.; Mihai, C.; Griffith, J.P., 3rd; Hou, S.; Esposito, A.A.; Ketova, T.; Welsher, K.; et al. Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA. Nat. Commun. 2020, 11, 983. [Google Scholar] [CrossRef]
- Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U.S. Poly(ethylene glycol) in drug delivery: Pros and cons as well as potential alternatives. Angew. Chem. Int. Ed. Engl. 2010, 49, 6288–6308. [Google Scholar] [CrossRef]
- Kim, J.; Eygeris, Y.; Gupta, M.; Sahay, G. Self-assembled mRNA vaccines. Adv. Drug Deliv. Rev. 2021, 170, 83–112. [Google Scholar] [CrossRef] [PubMed]
- Fenton, O.S.; Kauffman, K.J.; Kaczmarek, J.C.; McClellan, R.L.; Jhunjhunwala, S.; Tibbitt, M.W.; Zeng, M.D.; Appel, E.A.; Dorkin, J.R.; Mir, F.F.; et al. Synthesis and Biological Evaluation of Ionizable Lipid Materials for the In Vivo Delivery of Messenger RNA to B Lymphocytes. Adv. Mater. 2017, 29, 1606944. [Google Scholar] [CrossRef]
- Fenton, O.S.; Kauffman, K.J.; McClellan, R.L.; Kaczmarek, J.C.; Zeng, M.D.; Andresen, J.L.; Rhym, L.H.; Heartlein, M.W.; DeRosa, F.; Anderson, D.G. Customizable Lipid Nanoparticle Materials for the Delivery of siRNAs and mRNAs. Angew. Chem. Int. Ed. Engl. 2018, 57, 13582–13586. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, W.; Nguyen, G.N.; Zhang, C.; Zeng, C.; Yan, J.; Du, S.; Hou, X.; Li, W.; Jiang, J.; et al. Functionalized lipid-like nanoparticles for in vivo mRNA delivery and base editing. Sci. Adv. 2020, 6, eabc2315. [Google Scholar] [CrossRef]
- Miao, L.; Lin, J.; Huang, Y.; Li, L.; Delcassian, D.; Ge, Y.; Shi, Y.; Anderson, D.G. Synergistic lipid compositions for albumin receptor mediated delivery of mRNA to the liver. Nat. Commun. 2020, 11, 2424. [Google Scholar] [CrossRef] [PubMed]
- Fenton, O.S.; Kauffman, K.J.; McClellan, R.L.; Appel, E.A.; Dorkin, J.R.; Tibbitt, M.W.; Heartlein, M.W.; DeRosa, F.; Langer, R.; Anderson, D.G. Bioinspired Alkenyl Amino Alcohol Ionizable Lipid Materials for Highly Potent In Vivo mRNA Delivery. Adv. Mater. 2016, 28, 2939–2943. [Google Scholar] [CrossRef]
- Evers, M.J.W.; Kulkarni, J.A.; van der Meel, R.; Cullis, P.R.; Vader, P.; Schiffelers, R.M. State-of-the-Art Design and Rapid-Mixing Production Techniques of Lipid Nanoparticles for Nucleic Acid Delivery. Small Methods 2018, 2, 1700375. [Google Scholar] [CrossRef]
- Swingle, K.L.; Hamilton, A.G.; Mitchell, M.J. Lipid Nanoparticle-Mediated Delivery of mRNA Therapeutics and Vaccines. Trends Mol. Med. 2021, 27, 616–617. [Google Scholar] [CrossRef]
- Han, X.; Mitchell, M.J.; Nie, G. Nanomaterials for Therapeutic RNA Delivery. Matter 2020, 3, 1948–1975. [Google Scholar] [CrossRef]
- Han, X.; Zhang, H.; Butowska, K.; Swingle, K.L.; Alameh, M.-G.; Weissman, D.; Mitchell, M.J. An ionizable lipid toolbox for RNA delivery. Nat. Commun. 2021, 12, 7233. [Google Scholar] [CrossRef]
- Krohn-Grimberghe, M.; Mitchell, M.J.; Schloss, M.J.; Khan, O.F.; Courties, G.; Guimaraes, P.P.G.; Rohde, D.; Cremer, S.; Kowalski, P.S.; Sun, Y.; et al. Nanoparticle-encapsulated siRNAs for gene silencing in the haematopoietic stem-cell niche. Nat. Biomed. Eng. 2020, 4, 1076–1089. [Google Scholar] [CrossRef]
- Lin, Y.X.; Wang, Y.; Ding, J.; Jiang, A.; Wang, J.; Yu, M.; Blake, S.; Liu, S.; Bieberich, C.J.; Farokhzad, O.C.; et al. Reactivation of the tumor suppressor PTEN by mRNA nanoparticles enhances antitumor immunity in preclinical models. Sci. Transl. Med. 2021, 13, eaba9772. [Google Scholar] [CrossRef]
- Qiu, M.; Glass, Z.; Chen, J.; Haas, M.; Jin, X.; Zhao, X.; Rui, X.; Ye, Z.; Li, Y.; Zhang, F.; et al. Lipid nanoparticle-mediated codelivery of Cas9 mRNA and single-guide RNA achieves liver-specific in vivo genome editing of Angptl3. Proc. Natl. Acad. Sci. USA 2021, 118, e2020401118. [Google Scholar] [CrossRef]
- Hajj, K.A.; Ball, R.L.; Deluty, S.B.; Singh, S.R.; Strelkova, D.; Knapp, C.M.; Whitehead, K.A. Branched-Tail Lipid Nanoparticles Potently Deliver mRNA In Vivo due to Enhanced Ionization at Endosomal pH. Small 2019, 15, e1805097. [Google Scholar] [CrossRef]
- Ball, R.L.; Hajj, K.A.; Vizelman, J.; Bajaj, P.; Whitehead, K.A. Lipid Nanoparticle Formulations for Enhanced Co-delivery of siRNA and mRNA. Nano Lett. 2018, 18, 3814–3822. [Google Scholar] [CrossRef] [PubMed]
- Sabnis, S.; Kumarasinghe, E.S.; Salerno, T.; Mihai, C.; Ketova, T.; Senn, J.J.; Lynn, A.; Bulychev, A.; McFadyen, I.; Chan, J.; et al. A Novel Amino Lipid Series for mRNA Delivery: Improved Endosomal Escape and Sustained Pharmacology and Safety in Non-human Primates. Mol. Ther. 2018, 26, 1509–1519. [Google Scholar] [CrossRef]
- Haghighi, E.; Abolmaali, S.S.; Dehshahri, A.; Mousavi Shaegh, S.A.; Azarpira, N.; Tamaddon, A.M. Navigating the intricate in-vivo journey of lipid nanoparticles tailored for the targeted delivery of RNA therapeutics: A quality-by-design approach. J. Nanobiotechnol. 2024, 22, 710. [Google Scholar] [CrossRef]
- Li, H.; Jin, K.; Luo, M.; Wang, X.; Zhu, X.; Liu, X.; Jiang, T.; Zhang, Q.; Wang, S.; Pang, Z. Size dependency of circulation and biodistribution of biomimetic nanoparticles: Red blood cell membrane-coated nanoparticles. Cells 2019, 8, 881. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, M.K.; Pedersen, J.N.; Marie, R. Size and surface charge characterization of nanoparticles with a salt gradient. Nat. Commun. 2020, 11, 2337. [Google Scholar] [CrossRef]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef]
- Kong, W.; Wei, Y.; Dong, Z.; Liu, W.; Zhao, J.; Huang, Y.; Yang, J.; Wu, W.; He, H.; Qi, J. Role of size, surface charge, and PEGylated lipids of lipid nanoparticles (LNPs) on intramuscular delivery of mRNA. J. Nanobiotechnol. 2024, 22, 553. [Google Scholar] [CrossRef] [PubMed]
- Vasileva, O.; Zaborova, O.; Shmykov, B.; Ivanov, R.; Reshetnikov, V. Composition of lipid nanoparticles for targeted delivery: Application to mRNA therapeutics. Front. Pharmacol. 2024, 15, 1466337. [Google Scholar] [CrossRef]
- Kamiya, M.; Matsumoto, M.; Yamashita, K.; Izumi, T.; Kawaguchi, M.; Mizukami, S.; Tsurumaru, M.; Mukai, H.; Kawakami, S. Stability study of mRNA-lipid nanoparticles exposed to various conditions based on the evaluation between physicochemical properties and their relation with protein expression ability. Pharmaceutics 2022, 14, 2357. [Google Scholar] [CrossRef] [PubMed]
- Gibaud, T.; Barry, E.; Zakhary, M.J.; Henglin, M.; Ward, A.; Yang, Y.; Berciu, C.; Oldenbourg, R.; Hagan, M.F.; Nicastro, D.; et al. Reconfigurable self-assembly through chiral control of interfacial tension. Nature 2012, 481, 348–351. [Google Scholar] [CrossRef] [PubMed]
- Duan, P.; Li, Y.; Li, L.; Deng, J.; Liu, M. Multiresponsive Chiroptical Switch of an Azobenzene-Containing Lipid: Solvent, Temperature, and Photoregulated Supramolecular Chirality. J. Phys. Chem. B 2011, 115, 3322–3329. [Google Scholar] [CrossRef]
- Xu, T.; Wang, J.-Y.; Wang, Y.; Jin, S.; Tang, Y.; Zhang, S.; Yuan, Q.; Liu, H.; Yan, W.; Jiao, Y.; et al. C(sp)-C(sp) Lever-Based Targets of Orientational Chirality: Design and Asymmetric Synthesis. Molecules 2024, 29, 2274. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, T.; Jin, S.; Wang, J.-Y.; Yuan, Q.; Liu, H.; Tang, Y.; Zhang, S.; Yan, W.; Jiao, Y.; et al. Design and Asymmetric Control of Orientational Chirality by Using the Combination of C(sp2)-C(sp) Levers and Achiral N-Protecting Group. Chem.–A Eur. J. 2024, 30, e202400005. [Google Scholar] [CrossRef]
- Liu, J.; Deng, C.; Yang, L.; Ma, H.; Gao, C.; Li, S.; Zhao, J.; Yue, T. Decoding Chiral Interactions: Molecular Insights into the Selective Binding of Nanoparticles at Biological Interfaces. J. Phys. Chem. Lett. 2025, 16, 6040–6051. [Google Scholar] [CrossRef]
- Hu, J.; Cochrane, W.G.; Jones, A.X.; Blackmond, D.G.; Paegel, B.M. Chiral lipid bilayers are enantioselectively permeable. Nat. Chem. 2021, 13, 786–791. [Google Scholar] [CrossRef]
- Henriques, S.T.; Peacock, H.; Benfield, A.H.; Wang, C.K.; Craik, D.J. Is the Mirror Image a True Reflection? Intrinsic Membrane Chirality Modulates Peptide Binding. J. Am. Chem. Soc. 2019, 141, 20460–20469. [Google Scholar] [CrossRef]
- Yeom, J.; Guimaraes, P.P.G.; Ahn, H.M.; Jung, B.-K.; Hu, Q.; McHugh, K.; Mitchell, M.J.; Yun, C.-O.; Langer, R.; Jaklenec, A. Chiral Supraparticles for Controllable Nanomedicine. Adv. Mater. 2020, 32, 1903878. [Google Scholar] [CrossRef]
- Sato, K.; Ji, W.; Álvarez, Z.; Palmer, L.C.; Stupp, S.I. Chiral Recognition of Lipid Bilayer Membranes by Supramolecular Assemblies of Peptide Amphiphiles. ACS Biomater. Sci. Eng. 2019, 5, 2786–2792. [Google Scholar] [CrossRef] [PubMed]
- Eghiaian, F. Lipid Chirality Revisited: A Change in Lipid Configuration Transforms Membrane-Bound Protein Domains. Biophys. J. 2015, 108, 2757–2758. [Google Scholar] [CrossRef]
- Wang, X.; Wang, C.; Chu, H.; Qin, H.; Wang, D.; Xu, F.; Ai, X.; Quan, C.; Li, G.; Qing, G. Molecular chirality mediated amyloid formation on phospholipid surfaces. Chem. Sci. 2020, 11, 7369–7378. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Barz, M. Investigating the stability of RNA-lipid nanoparticles in biological fluids: Unveiling its crucial role for understanding LNP performance. J. Control. Release 2025, 381, 113559. [Google Scholar] [CrossRef]
- Lee, Y.; Jeong, M.; Park, J.; Jung, H.; Lee, H. Immunogenicity of lipid nanoparticles and its impact on the efficacy of mRNA vaccines and therapeutics. Exp. Mol. Med. 2023, 55, 2085–2096. [Google Scholar] [CrossRef] [PubMed]
- Mendes, B.B.; Conniot, J.; Avital, A.; Yao, D.; Jiang, X.; Zhou, X.; Sharf-Pauker, N.; Xiao, Y.; Adir, O.; Liang, H.; et al. Nanodelivery of nucleic acids. Nat. Rev. Methods Primers 2022, 2, 24. [Google Scholar] [CrossRef]
- Di, J.; Xu, Y.; Li, T. Critical quality attributes of lipid nanoparticles and in vivo fate. Asian J. Pharm. Sci. 2025, 20, 101092. [Google Scholar] [CrossRef]
- Dilliard, S.A.; Siegwart, D.J. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nat. Rev. Mater. 2023, 8, 282–300. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, J.; Xu, M.; Ho, S.; Wei, Y.; Ho, H.-P.; Yong, K.-T. Engineered multi-domain lipid nanoparticles for targeted delivery. Chem. Soc. Rev. 2025, 54, 5961–5994. [Google Scholar] [CrossRef]
- Li, L.; Wang, H.; Ye, J.; Chen, Y.; Wang, R.; Jin, D.; Liu, Y. Mechanism study on nanoparticle negative surface charge modification by ascorbyl palmitate and its improvement of tumor targeting ability. Molecules 2022, 27, 4408. [Google Scholar] [CrossRef]
- Zöller, K.; Haddadzadegan, S.; Lindner, S.; Veider, F.; Bernkop-Schnürch, A. Design of charge converting lipid nanoparticles via a microfluidic coating technique. Drug Deliv. Transl. Res. 2024, 14, 3173–3185. [Google Scholar] [CrossRef]
- Imtiaz, S.; Ferdous, U.T.; Nizela, A.; Hasan, A.; Shakoor, A.; Zia, A.W.; Uddin, S. Mechanistic study of cancer drug delivery: Current techniques, limitations, and future prospects. Eur. J. Med. Chem. 2025, 290, 117535. [Google Scholar] [CrossRef] [PubMed]
- Apostolou, M.; Fatokun, A.A.; Assi, S.; Khan, I. Targeted Lipid-Based Drug Delivery Systems for Lung Cancer Therapy. Appl. Sci. 2024, 14, 6759. [Google Scholar] [CrossRef]
- Hariri, A.; Mirian, M.; Zarepour, A.; Khosravi, A.; Iravani, S.; Zarrabi, A. Lipid nanoparticles driving mRNA vaccine innovations: From concept to clinic. Appl. Mater. Today 2025, 44, 102786. [Google Scholar] [CrossRef]
- Hajiaghapour Asr, M.; Dayani, F.; Saedi Segherloo, F.; Kamedi, A.; Neill, A.O.; MacLoughlin, R.; Doroudian, M. Lipid nanoparticles as promising carriers for mRNA vaccines for viral lung infections. Pharmaceutics 2023, 15, 1127. [Google Scholar] [CrossRef]
- Sujeevan, O. Lipid-based nanoparticles and their recent advances. GSC Adv. Res. Rev. 2024, 18, 182–188. [Google Scholar] [CrossRef]
- Antonara, L.; Triantafyllopoulou, E.; Chountoulesi, M.; Pippa, N.; Dallas, P.P.; Rekkas, D.M. Lipid-based drug delivery systems: Concepts and recent advances in transdermal applications. Nanomaterials 2025, 15, 1326. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Fobian, S.-F.; Gurrieri, E.; Amin, M.; D’Agostino, V.G.; Falahati, M.; Zalba, S.; Debets, R.; Garrido, M.J.; Saeed, M.; et al. Lipid-based nanosystems: The next generation of cancer immune therapy. J. Hematol. Oncol. 2024, 17, 53. [Google Scholar] [CrossRef]
- Swetha, K.; Kotla, N.G.; Tunki, L.; Jayaraj, A.; Bhargava, S.K.; Hu, H.; Bonam, S.R.; Kurapati, R. Recent advances in the lipid nanoparticle-mediated delivery of mRNA vaccines. Vaccines 2023, 11, 658. [Google Scholar] [CrossRef]
- Shah, S.; Madhu, H.; Soniwala, M.; Mori, D.; Vyas, A.; Chauhan, A.; Prajapati, B. Lipid-Based Nanoparticles; Wiley-Scrivener: Hoboken, NJ, USA, 2024; pp. 241–273. [Google Scholar] [CrossRef]
- Waheed, I.; Ali, A.; Tabassum, H.; Khatoon, N.; Lai, W.-F.; Zhou, X. Lipid-based nanoparticles as drug delivery carriers for cancer therapy. Front. Oncol. 2024, 14, 1296091. [Google Scholar] [CrossRef] [PubMed]
- Meulewaeter, S.; Zhang, Y.; Wadhwa, A.; Fox, K.; Lentacker, I.; Harder, K.W.; Cullis, P.R.; De Smedt, S.C.; Cheng, M.H.Y.; Verbeke, R. Considerations on the design of lipid-based mRNA vaccines against cancer. J. Mol. Biol. 2024, 436, 168385. [Google Scholar] [CrossRef] [PubMed]
- Uti, D.E.; Alum, E.U.; Atangwho, I.J.; Ugwu, O.P.-C.; Egbung, G.E.; Aja, P.M. Lipid-based nano-carriers for the delivery of anti-obesity natural compounds: Advances in targeted delivery and precision therapeutics. J. Nanobiotechnol. 2025, 23, 336. [Google Scholar] [CrossRef] [PubMed]
- Santhanakrishnan, K.R.; Koilpillai, J.; Narayanasamy, D. PEGylation in pharmaceutical development: Current status and emerging trends in macromolecular and immunotherapeutic drugs. Cureus 2024, 16, e66669. [Google Scholar] [CrossRef]
- Kong, L.; Campbell, F.; Kros, A. DePEGylation strategies to increase cancer nanomedicine efficacy. Nanoscale Horiz. 2019, 4, 378–387. [Google Scholar] [CrossRef]
- Thi, T.T.H.; Suys, E.J.A.; Lee, J.S.; Nguyen, D.H.; Park, K.D.; Truong, N.P. Lipid-Based Nanoparticles in the Clinic and Clinical Trials: From Cancer Nanomedicine to COVID-19 Vaccines. Vaccines 2021, 9, 359. [Google Scholar] [CrossRef]
- Rahat, I.; Yadav, P.; Singhal, A.; Fareed, M.; Purushothaman, J.R.; Aslam, M.; Balaji, R.; Patil-Shinde, S.; Rizwanullah, M. Polymer lipid hybrid nanoparticles for phytochemical delivery: Challenges, progress, and future prospects. Beilstein J. Nanotechnol. 2024, 15, 1473–1497. [Google Scholar] [CrossRef]
- Sivadasan, D.; Sultan, M.H.; Madkhali, O.; Almoshari, Y.; Thangavel, N. Polymeric lipid hybrid nanoparticles (PLNs) as emerging drug delivery platform-A comprehensive review of their properties, preparation methods, and therapeutic applications. Pharmaceutics 2021, 13, 1291. [Google Scholar] [CrossRef]
- Wu, Y.; Yu, S.; de Lázaro, I. Advances in lipid nanoparticle mRNA therapeutics beyond COVID-19 vaccines. Nanoscale 2024, 16, 6820–6836. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, J.; Xing, H.; Liu, C.; Zha, W.; Dong, S.; Jiang, Y.; Li, X. Enhanced immunogenicity induced by mRNA vaccines with various lipid nanoparticles as carriers for SARS-CoV-2 infection. J. Mater. Chem. B Mater. Biol. Med. 2023, 11, 7454–7465. [Google Scholar] [CrossRef]
- Cai, Y.; Liao, J.; Tan, H. mRNA-lipid Nanoparticle Vaccines: Structure and Delivery. Highlights Sci. Eng. Technol. 2023, 36, 1459–1467. [Google Scholar] [CrossRef]
- Zong, Y.; Lin, Y.; Wei, T.; Cheng, Q. Lipid Nanoparticle (LNP) Enables mRNA Delivery for Cancer Therapy. Adv. Mater. 2023, 35, 2303261. [Google Scholar] [CrossRef]
- Adams, D.; Gonzalez-Duarte, A.; O’Riordan, W.D.; Yang, C.-C.; Ueda, M.; Kristen, A.V.; Tournev, I.; Schmidt, H.H.; Coelho, T.; Berk, J.L.; et al. Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis. N. Engl. J. Med. 2018, 379, 11–21. [Google Scholar] [CrossRef]
- Gillmore, J.D.; Gane, E.; Taubel, J.; Kao, J.; Fontana, M.; Maitland, M.L.; Seitzer, J.; O’Connell, D.; Walsh, K.R.; Wood, K.; et al. CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis. N. Engl. J. Med. 2021, 385, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Tran, D.M.; Cavedon, A.; Cai, X.; Rajendran, R.; Lyle, M.J.; Martini, P.G.V.; Miao, C.H. Treatment of Hemophilia A Using Factor VIII Messenger RNA Lipid Nanoparticles. Mol. Ther. Nucleic Acids 2020, 20, 534–544. [Google Scholar] [CrossRef]
- Gurevitz, C.; Bajaj, A.; Khera, A.V.; Do, R.; Schunkert, H.; Musunuru, K.; Rosenson, R.S. Gene therapy and genome editing for lipoprotein disorders. Eur. Heart J. 2025, 46, 3420–3433. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Li, N.; Gao, S.; Xue, Q.; Ying, J.; Wang, S.; Tao, X.; Zhao, J.; Mao, Y.; Wang, B.; et al. Neoadjuvant PD-1 inhibitor (Sintilimab) in NSCLC. J. Thorac. Oncol. 2020, 15, 816–826. [Google Scholar] [CrossRef]
- Huang, C.; Li, H.; Duan, X.; Zhang, P.; Qi, S.; Du, J.; Song, X.; Tong, A.; Yu, G. Inhaled non-viral delivery systems for RNA therapeutics. Acta Pharm. Sin. B 2025, 15, 2402–2430. [Google Scholar] [CrossRef]
- Yamazaki, K.; Kubara, K.; Ishii, S.; Kondo, K.; Suzuki, Y.; Miyazaki, T.; Mitsuhashi, K.; Ito, M.; Tsukahara, K. Lipid nanoparticle-targeted mRNA formulation as a treatment for ornithine-transcarbamylase deficiency model mice. Mol. Ther. Nucleic Acids 2023, 33, 210–226. [Google Scholar] [CrossRef] [PubMed]
- An, D.; Schneller, J.L.; Frassetto, A.; Liang, S.; Zhu, X.; Park, J.S.; Theisen, M.; Hong, S.J.; Zhou, J.; Rajendran, R.; et al. Systemic Messenger RNA Therapy as a Treatment for Methylmalonic Acidemia. Cell Rep. 2017, 21, 3548–3558. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Rabinovsky, R.; Deforzh, E.; Kobayashi, A.; Kuzkina, A.; Varghese, J.F.; Rai, D.; Korecka, J.A.; Khurana, V.; Murugaiyan, G.; et al. Lipid nanoparticle formulation for gene editing and RNA-based therapies for glioblastoma. Neuro-Oncology 2025, noaf162. [Google Scholar] [CrossRef] [PubMed]
- Tong, H.; Ma, Z.; Yu, J.; Li, D.; Zhu, Q.; Shi, H.; Wu, Y.; Yang, H.; Zheng, Y.; Sun, D.; et al. Optimizing Peptide-Conjugated Lipid Nanoparticles for Efficient siRNA Delivery across the Blood–Brain Barrier and Treatment of Glioblastoma Multiforme. ACS Chem. Biol. 2025, 20, 942–952. [Google Scholar] [CrossRef]
- Neganova, M.E.; Aleksandrova, Y.R.; Sukocheva, O.A.; Klochkov, S.G. Benefits and limitations of nanomedicine treatment of brain cancers and age-dependent neurodegenerative disorders. Semin. Cancer Biol. 2022, 86, 805–833. [Google Scholar] [CrossRef]
- Sukocheva, O.A.; Liu, J.; Neganova, M.E.; Beeraka, N.M.; Aleksandrova, Y.R.; Manogaran, P.; Grigorevskikh, E.M.; Chubarev, V.N.; Fan, R. Perspectives of using microRNA-loaded nanocarriers for epigenetic reprogramming of drug resistant colorectal cancers. Semin. Cancer Biol. 2022, 86, 358–375. [Google Scholar] [CrossRef]
- Golubovskaya, V.; Sienkiewicz, J.; Sun, J.; Huang, Y.; Hu, L.; Zhou, H.; Harto, H.; Xu, S.; Berahovich, R.; Bodmer, W.; et al. mRNA-Lipid Nanoparticle (LNP) Delivery of Humanized EpCAM-CD3 Bispecific Antibody Significantly Blocks Colorectal Cancer Tumor Growth. Cancers 2023, 15, 2860. [Google Scholar] [CrossRef]
- Rojas, L.A.; Sethna, Z.; Soares, K.C.; Olcese, C.; Pang, N.; Patterson, E.; Lihm, J.; Ceglia, N.; Guasp, P.; Chu, A.; et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 2023, 618, 144–150. [Google Scholar] [CrossRef]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Marc, G.P.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Moradi Kashkooli, F.; Bhandari, A.; Gu, B.; Kolios, M.C.; Kohandel, M.; Zhan, W. Multiphysics modelling enhanced by imaging and artificial intelligence for personalised cancer nanomedicine: Foundations for clinical digital twins. J. Control. Release 2025, 386, 114138. [Google Scholar] [CrossRef]
- Desai, N.; Rana, D.; Patel, M.; Bajwa, N.; Prasad, R.; Vora, L.K. Nanoparticle therapeutics in clinical perspective: Classification, marketed products, and regulatory landscape. Small 2025, 21, e2502315. [Google Scholar] [CrossRef]
- Buya, A.B.; Mahlangu, P.; Witika, B.A. From lab to industrial development of lipid nanocarriers using quality by design approach. Int. J. Pharm. X 2024, 8, 100266. [Google Scholar] [CrossRef]
- Souto, E.B.; Blanco-Llamero, C.; Krambeck, K.; Kiran, N.S.; Yashaswini, C.; Postwala, H.; Severino, P.; Priefer, R.; Prajapati, B.G.; Maheshwari, R. Regulatory insights into nanomedicine and gene vaccine innovation: Safety assessment, challenges, and regulatory perspectives. Acta Biomater. 2024, 180, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.; Ahmed, M.M.S.; Islam, M.A.; Hossain, N.; Chowdhury, M.A. Advances in nanoparticles in targeted drug delivery—A review. Results Surf. Interfaces 2025, 19, 100529. [Google Scholar] [CrossRef]
- Ahmad, A.; Imran, M.; Sharma, N. Precision nanotoxicology in drug development: Current trends and challenges in safety and toxicity implications of customized multifunctional nanocarriers for drug-delivery applications. Pharmaceutics 2022, 14, 2463. [Google Scholar] [CrossRef]
- Shi, Y.; Li, X.; Li, Z.; Sun, J.; Gao, T.; Wei, G.; Guo, Q. Nano-formulations in disease therapy: Designs, advances, challenges, and future directions. J. Nanobiotechnol 2025, 23, 396. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ding, Y.; Chong, K.; Cui, M.; Cao, Z.; Tang, C.; Tian, Z.; Hu, Y.; Zhao, Y.; Jiang, S. Recent Advances in Lipid Nanoparticles and Their Safety Concerns for mRNA Delivery. Vaccines 2024, 12, 1148. [Google Scholar] [CrossRef]
- Xu, X.; Xia, T. Recent advances in site-specific lipid nanoparticles for mRNA delivery. ACS Nanosci. Au 2023, 3, 192–203. [Google Scholar] [CrossRef]










| Type | Key Structure/Composition | Advantages | Limitations | Applications | Ref. |
|---|---|---|---|---|---|
| Liposomes | Phospholipid bilayers with an aqueous core | Biocompatible, modifiable surface, can load both hydrophilic & lipophilic drugs | Excessive, stability issues | Cancer therapy, vaccines, liver disorders | [41] |
| SLNs | Solid lipid matrix stabilized by surfactants | Good protection of sensitive drugs; controlled release; improved stability | Crystalline lipid matrix may limit drug loading, drug expulsion during storage. | Various bioactives, ocular, oral delivery | [42] |
| NLCs | Blend of solid + liquid lipids forming imperfect matrix | Increased drug loading capacity, better long-term stability, improved release profile | Still relatively novel; formulation complexity may increase cost | Poorly soluble drugs, nutraceuticals, brain delivery | [8] |
| LPHNs | Lipid core or shell combined with polymeric layer | Combines benefits of both lipids & polymers: tunable release, enhanced protection, targeting possibilities | More complex to manufacture; potential regulatory hurdles | Peptides, nucleic acids, anticancer agents | [5] |
| SEDDS | Oil + surfactant/co-surfactant forming nanosized oil-in-water droplets | Excellent for enhancing solubility of poorly water-soluble drugs; simple preparation and scalability | Potential for surfactant-related toxicity; sometimes limited target specificity | Oral delivery of BCS class II/IV drugs, nutraceuticals | [43] |
| Key Information | Key Finding | Ref. |
|---|---|---|
| LNPs enhance mRNA stability and delivery | Ionizable lipids and microfluidic synthesis improve safety and scalability of mRNA vaccines | [97] |
| LNPs enable efficient and stable delivery of mRNA vaccines for respiratory viruses | LNPs composed of ionizable lipids, PEG, and cholesterol improve mRNA protection, targeting, and vaccine efficacy | [98] |
| LNPs enhance drug solubility, stability, and targeted delivery | LNPs improve pharmacokinetics and therapeutic effects but require solutions for leakage, stability, and immunogenicity challenges | [99] |
| LNPs enable efficient and biocompatible transdermal drug delivery | Systems like liposomes, SLNs, NLCs, and ethosomes enhance skin penetration and API efficacy but require optimization for large scale and stable formulations | [100] |
| LNPs enhance the delivery and efficacy of cancer immunotherapies | LNPs improve targeting, reduce toxicity, and modulate the tumor microenvironment, addressing key limitations in immune checkpoint and cellular therapies | [101] |
| LNPs are essential carriers for efficient mRNA delivery in vaccines | Ionizable lipids play a key role in mRNA complexing and delivery, advancing COVID-19 vaccine design and other therapeutic applications | [102] |
| LNPs improve vaccine delivery, stability, and immune response | SLNs and nanostructured lipid carriers enhance antigen targeting and adjuvant effects but face challenges in safety, stability, and large-scale production. | [103] |
| LNPs are biocompatible carriers that improve targeted cancer drug delivery | Different types of LNPs, including their synthesis and characterization methods, are highlighted, and recent developments and their applications in various cancer therapies are emphasized | [104] |
| Therapeutic effectiveness relies on delivery efficiency, and LNPs are promising carriers | LNPs enhance mRNA and vaccine delivery with improved stability and efficacy | [39] |
| mRNA vaccines are a promising cancer therapy, with recent clinical trials showing potential. Cancer mRNA vaccines differ from COVID-19 vaccines in mRNA design, lipid carriers, and administration routes | How lipid composition in vaccine design affects efficacy and safety, and summarizes strategies and next-generation mRNA vaccines that are being developed for cancer treatment | [105] |
| LNP enable targeted delivery of mRNA therapeutics for vaccines, cancer, and genetic diseases | LNP lipid composition affects bio-distribution, guiding optimized organ-specific mRNA delivery | [74] |
| Obesity is a global health issue, and natural anti-obesity compounds face delivery challenges | LNPs improve delivery, stability, and efficacy of these compounds for precision obesity treatment | [106] |
| Disease/Application Area | Nanocarrier Type | Therapeutic Cargo | Development Stage | Expanded Description & Key Source (DOI) | Ref. |
|---|---|---|---|---|---|
| Transthyretin amyloidosis (ATTR) | MC3-based ionizable LNPs | siRNA (Patisiran/Onpattro®) | FDA-approved | First approved LNP-siRNA therapy; liver-targeted silencing of TTR mRNA with sustained clinical benefit. | [116] |
| ATTR (in vivo gene editing) | Ionizable LNPs | Cas9 mRNA + sgRNA (NTLA-2001) | Phase I/II | First systemic CRISPR-Cas9 therapy in humans achieving permanent gene disruption in vivo. | [117] |
| Hemophilia A | Ionizable LNPs (MC3-like) | mRNA encoding Factor VIII | Preclinical/early clinical | Transient hepatic expression of factor VIII demonstrates non-viral protein replacement using LNPs. | [118] |
| Familial hypercholesterolemia | LNPs/Viral Vectors | CRISPR/Cas9 | Clinical Trials (Phase 1/2) | Aims to permanently lower LDL-C by “knocking out” genes that inhibit LDL receptor recycling. High durability expected | [119] |
| Alpha-1 antitrypsin deficiency | LNPs | mRNA or CRISPR components | Preclinical | LNP delivery explored for restoring functional AAT protein or correcting mutant alleles in liver. | [120] |
| Pulmonary diseases | Non-viral vectors, Inhalable LNPs | mRNA/siRNA/ASOs | Preclinical/translational | Aerosolization allows for the nebulization of mRNA-loaded LNPs, enabling uniform distribution across the lung surface. | [121] |
| Ornithine transcarbamylase deficiency (OTC) | Liver-targeted LNPs | mRNA/human OTC | Preclinical | Intravenously delivered hOTC mRNA encapsulated in LNPs effectively restores the urea cycle. The mRNA produces hOTC proteins that localize to the mitochondria of hepatocytes, forming a functional homotrimer. | [122] |
| Methylmalonic acidemia (MMA) | Ionizable LNPs | mRNA encoding metabolic enzymes | Preclinical | mRNA-LNP restores MUT; cuts toxins 80%; saves lives | [123] |
| Glioblastoma (GBM)-Brain Cancer | Modified ionizable LNPs | CRISPR-Cas9/mRNA/sgRNA | Preclinical | LNP-mediated CRISPR editing suppresses tumor growth and improves survival in GBM models. | [124] |
| Glioblastoma (RNA interference) | LNP modified with Angiopep-2 peptide | targeting Polo-like Kinase 1 (PLK1) | Preclinical | A peptide-conjugated LNP system designed to cross the blood–brain barrier (BBB). The Angiopep-2 modification enables significant brain accumulation. | [125] |
| Brain mRNA delivery (neurological research) | MC3-based LNPs | Reporter or therapeutic mRNA | Preclinical | Intracerebral LNP injection enables widespread mRNA expression in CNS tissue. | [126] |
| Colorectal cancer (CRC) | Ionizable LNPs | mRNA (e.g., TRAIL, p53) | Preclinical | LNP-mediated mRNA delivery induces apoptosis and suppresses tumor growth in CRC models. | [127] |
| Colorectal cancer immunotherapy | LNP-mRNA | Bispecific antibody mRNA (EpCAM-CD3) | Preclinical | In situ production of bispecific antibodies via LNPs enhances anti-tumor immune responses. | [128] |
| Personalized cancer vaccines | LNP-mRNA vaccines | Neoantigen-encoding mRNA | Phase II/III | LNP-based mRNA vaccines (e.g., mRNA-4157/V940) induce tumor-specific T-cell responses. | [129] |
| COVID-19 and infectious diseases | Ionizable LNPs | mRNA vaccines (Spike protein) | Approved | LNPs enable rapid, scalable mRNA vaccination with strong efficacy and acceptable safety. | [130] |
| Key Information | Key Finding | Ref. |
|---|---|---|
| LNPs stabilize and deliver mRNA vaccines efficiently | Advances in lipid design, targeting, and scalable production improve mRNA vaccine efficacy and safety | [97] |
| Lipid-based nanoparticles (LBNPs) are widely used for drug delivery in cancer, offering advantages in both preclinical and clinical settings | Advances include novel lipid formulations, targeted delivery strategies, and understanding lipid–drug interactions to improve biodistribution, with future potential from machine learning (ML) and data-driven LBNPs design | [104] |
| LNPs are effective RNA delivery systems, but targeted delivery to specific organs requires careful optimization of lipid composition | Recent advances show that modifying lipid types, apparent pKa, and cholesterol content can redirect LNPs to organs like the spleen, lungs, and pancreas, though some targets like the brain and eyes still need direct administration strategies | [74] |
| LBNPs offer a non-invasive, biocompatible route for transdermal drug delivery, improving skin penetration and therapeutic effectiveness | Advances in liposomes, ethosomes, SLNs, transferosomes, and nanostructured lipid carriers enhance efficacy, reduce side effects, and highlight the importance of physicochemical characterization for clinical translation | [100] |
| LBNPs improve delivery, stability, and targeted action of anti-obesity compounds, enabling precision and individualized therapy | Recent advances focus on smart tissue targeting, stimulus-responsive activation, and interdisciplinary strategies to overcome scalability, regulatory, and clinical translation challenges | [106] |
| LBNPs are biocompatible carriers that improve solubility, stability, and targeted delivery of hydrophilic and hydrophobic drugs | Advances address challenges like drug leakage, stability, and immunogenicity, while optimizing encapsulation, pharmacokinetics, and therapeutic efficacy | [99] |
| LNPs protect unstable mRNA and enable targeted delivery, improving the safety and efficacy of mRNA therapies | LNPs allow organ-, tissue-, or cell-specific mRNA delivery, enhancing therapeutic effects while minimizing off-target adverse effects | [139] |
| LNPs are advanced carriers for in vivo mRNA delivery, critical for COVID-19 vaccines and other therapies, with ionizable lipids playing a central role | LNP composition is optimized for vaccines, genome editing, and protein therapy, addressing challenges in efficiency, safety, and delivery against SARS-CoV-2 variants. | [102] |
| LNPs enhance cancer immunotherapy by improving delivery, targeting, and modulation of the immune system, addressing limitations like low accumulation and toxicity | LNPs enable nucleic acid delivery, stimulus-responsive and biomimetic therapies, and enhanced immunotherapy, with ongoing clinical challenges | [101] |
| Lipid-based mRNA vaccines are promising for cancer therapy, with differences from COVID-19 vaccines in mRNA modification, lipid carriers, and administration routes | Lipid composition and vaccine design influence immune targeting, efficacy, and safety, with strategies and next-generation vaccines being developed to enhance cancer immunotherapy | [105] |
| LBNPs improve delivery, stability, and targeted action of natural anti-obesity compounds, addressing poor bioavailability and rapid metabolism | Advanced, functionalized, and stimulus-responsive nanocarriers enhance precision obesity therapy, though challenges remain in scalability, regulatory approval, and long-term safety | [106] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Shameli, K.; Kalali, B.; Moeini, H.; Kartouzian, A. Lipid-Based Colloidal Nanocarriers for Site-Specific Drug Delivery. Colloids Interfaces 2026, 10, 7. https://doi.org/10.3390/colloids10010007
Shameli K, Kalali B, Moeini H, Kartouzian A. Lipid-Based Colloidal Nanocarriers for Site-Specific Drug Delivery. Colloids and Interfaces. 2026; 10(1):7. https://doi.org/10.3390/colloids10010007
Chicago/Turabian StyleShameli, Kamyar, Behnam Kalali, Hassan Moeini, and Aras Kartouzian. 2026. "Lipid-Based Colloidal Nanocarriers for Site-Specific Drug Delivery" Colloids and Interfaces 10, no. 1: 7. https://doi.org/10.3390/colloids10010007
APA StyleShameli, K., Kalali, B., Moeini, H., & Kartouzian, A. (2026). Lipid-Based Colloidal Nanocarriers for Site-Specific Drug Delivery. Colloids and Interfaces, 10(1), 7. https://doi.org/10.3390/colloids10010007











