Open AccessArticle
Modeling and Research of the Process of Bench Tests of Plunger Hydraulic Cylinders with Energy Recovery
by
Alexander Rybak, Besarion Meskhi, Dmitry Rudoy, Anastasiya Olshevskaya, Svetlana Teplyakova, Yuliya Serdyukova and Alexey Pelipenko
Designs 2025, 9(3), 53; https://doi.org/10.3390/designs9030053 (registering DOI) - 29 Apr 2025
Abstract
The practice of operating hydraulic machines and equipment shows that failures can occur earlier than the specified lifespan. At the same time, at the stage of carrying out strength calculations of the designed machines and equipment, significant safety margins are incorporated into parts
[...] Read more.
The practice of operating hydraulic machines and equipment shows that failures can occur earlier than the specified lifespan. At the same time, at the stage of carrying out strength calculations of the designed machines and equipment, significant safety margins are incorporated into parts and units. That is, calculated machine lifespans often exceed actual values. Accurate data require full-scale lifespan testing or observations of operation. However, resource tests are economically expensive, since they require a significant amount of energy, and, as a result, lead to a negative impact on the environment. It is possible to level out the listed shortcomings during resource tests by using energy-efficient and energy-saving technologies, such as energy recovery. This study enhances energy efficiency and assesses engineering systems during equipment design. In particular, we present a hydromechanical drive design for testing reciprocating hydraulic machines. The study analyzes energy-saving and energy recovery methods during operation. On the basis of the analysis and previously conducted studies, we developed a mathematical model for hydraulic equipment testing. The developed model is based on the volumetric stiffness theory, enabling analysis of the design and functional characteristics of test stand components on their dynamic behavior and energy efficiency.
Full article
►▼
Show Figures