Designing Sustainable Asphalt Pavement Structures with a Cement-Treated Base (CTB) and Recycled Concrete Aggregate (RCA): A Case Study from a Developing Country
Abstract
1. Introduction
2. Case Study
- Design traffic was estimated through an exhaustive transportation study. The road experiences a high volume of mixed traffic, amounting to 7.8 million equivalent single-axle loads over the design period. The magnitude of this traffic classifies the analyzed roadway as a major roadway according to the Colombian National Institute of Highways (INVIAS, its acronym in the Spanish language), as it exceeds 5 million equivalent single-axle loads over the design period.
- The subgrade soil in this case study is characterized as gravelly sand. It presents a resilient modulus of approximately 76 MPa (≈11,000 psi). This modulus was determined from laboratory tests following the AASHTO T 307 Standard Method [34].
- Barranquilla City has a tropical climate characterized by a mean daily maximum temperature of approximately 32.6 °C (90.7 °F), an average annual relative humidity of 80%, and an annual precipitation of around 900 mm.
- Conventional road construction materials, both treated and untreated, including GB, GSB, CTB, and HMA (with 25 mm nominal maximum aggregate size), were considered in the design of the pavement structures. The mechanical parameters of these materials were sourced from preceding studies [27,35]. In this regard, Figure 2 shows the characterization of the HMAs in terms of grain size distribution, rutting resistance, and fatigue life. A detailed overview of the material types, composition, resilient modulus, and other properties is presented in Table 1 and Table 2.
- In Figure 2, it is noticeable that all HMAs were designed following the same grain size distribution, which is within the regulatory limits established by the Colombian government through INVIAS. On the other hand, this graph shows the rutting resistance from a creep test in terms of the flow number and the final creep rate. According to these results, incorporating 15% of coarse RCA improves the rutting resistance of HMA, whereas higher replacement levels have an adverse effect. In terms of fatigue life, however, a clear trend of deterioration is observed: as the coarse RCA content increases, the HMA exhibits reduced fatigue strength. It is also important to highlight that the results regarding fatigue life were obtained through the indirect tensile test on cylindrical-shaped samples loaded at 50% of the indirect tensile strength measured in dry conditions.
Pavement Structure Design
Design. | Layer | AASHTO Structural Number | Allowable Response (ε) | Predicted Response (ε) | Damage Ratio (%) | ||||
---|---|---|---|---|---|---|---|---|---|
Material | Thickness (mm) | εt | εz | εt | εz | εt | εz | ||
CFP-0 | HMA-0 | 178 | 4.93 | 1.84 × 10−4 | 1.84 × 10−4 | 100% | |||
GB | 178 | ||||||||
GSB | 203 | ||||||||
Subgrade | ∞ | 3.41 × 10−4 | 2.74 × 10−4 | 80% | |||||
CFP-15 | HMA-15 | 203 | 4.83 | 1.90 × 10−4 | 1.70 × 10−4 | 89% | |||
GB | 152 | ||||||||
GSB | 152 | ||||||||
Subgrade | ∞ | 3.41 × 10−4 | 2.85 × 10−4 | 84% | |||||
CFP-30 | HMA-30 | 203 | 4.48 | 2.19 × 10−4 | 1.95 × 10−4 | 89% | |||
GB | 152 | ||||||||
GSB | 152 | ||||||||
Subgrade | ∞ | 3.41 × 10−4 | 3.11 × 10−4 | 91% | |||||
CFP-45 | HMA-45 | 203 | 4.55 | 2.51 × 10−4 | 2.15 × 10−4 | 86% | |||
GB | 152 | ||||||||
GSB | 229 | ||||||||
Subgrade | ∞ | 3.41 × 10−4 | 2.83 × 10−4 | 83% | |||||
SRP-0 | HMA-0 | 102 | 4.47 | 1.84 × 10−4 | ∼0 | ∼0 | |||
CTB | 203 | 8.58 × 10−5 | 6.61 × 10−5 | 77% | |||||
GB | 254 | ||||||||
Subgrade | ∞ | 3.41 × 10−4 | 1.47 × 10−4 | 43% | |||||
SRP-15 | HMA-15 | 102 | 4.47 | 1.90 × 10−4 | ∼0 | ∼0 | |||
CTB | 152 | 8.58 × 10−5 | 8.02 × 10−5 | 93% | |||||
GB | 330 | ||||||||
Subgrade | ∞ | 3.41 × 10−4 | 1.78 × 10−4 | 52% | |||||
SRP-30 | HMA-30 | 102 | 4.44 | 2.19 × 10−4 | ∼0 | ∼0 | |||
CTB | 152 | 8.58 × 10−5 | 8.11 × 10−5 | 95% | |||||
GB | 356 | ||||||||
Subgrade | ∞ | 3.41 × 10−4 | 1.80 × 10−4 | 53% | |||||
SRP-45 | HMA-45 | 152 | 4.45 | 2.51 × 10−4 | ∼0 | ∼0 | |||
CTB | 203 | 8.58 × 10−5 | 6.52 × 10−5 | 76% | |||||
GB | 203 | ||||||||
Subgrade | ∞ | 3.41 × 10−4 | 1.46 × 10−4 | 43% | |||||
IBP-0 | HMA-0 | 152 | 4.53 | 1.84 × 10−4 | 1.81 × 10−4 | 98% | |||
GB | 203 | ||||||||
CTB | 127 | 8.58 × 10−5 | 5.76 × 10−5 | 67% | |||||
Subgrade | ∞ | 3.41 × 10−4 | 1.61 × 10−4 | 47% | |||||
IBP-15 | HMA-15 | 152 | 4.45 | 1.90 × 10−4 | 1.85 × 10−4 | 97% | |||
GB | 178 | ||||||||
CTB | 152 | 8.58 × 10−5 | 5.87 × 10−5 | 68% | |||||
Subgrade | ∞ | 3.41 × 10−4 | 1.58 × 10−4 | 46% | |||||
IBP-30 | HMA-30 | 152 | 4.47 | 2.19 × 10−4 | 2.17 × 10−4 | 99% | |||
GB | 229 | ||||||||
CTB | 152 | 8.58 × 10−5 | 5.34 × 10−5 | 62% | |||||
Subgrade | ∞ | 3.41 × 10−4 | 1.47 × 10−4 | 43% | |||||
IBP-45 | HMA-45 | 152 | 4.45 | 2.51 × 10−4 | 2.33 × 10−4 | 93% | |||
GB | 203 | ||||||||
CTB | 203 | 8.58 × 10−5 | 4.92 × 10−5 | 57% | |||||
Subgrade | ∞ | 3.41 × 10−4 | 1.30 × 10−4 | 38% | |||||
SCP-0 | HMA-0 | 203 | 4.44 | 1.84 × 10−4 | 1.23 × 10−5 | 7% | |||
CTB | 152 | 8.58 × 10−5 | 6.77 × 10−5 | 79% | |||||
Subgrade | ∞ | 3.41 × 10−4 | 1.53 × 10−4 | 45% | |||||
SCP-15 | HMA-15 | 203 | 4.46 | 1.90 × 10−4 | 7.75 × 10−6 | 4% | |||
CTB | 178 | 8.58 × 10−5 | 6.08 × 10−5 | 71% | |||||
Subgrade | ∞ | 3.41 × 10−4 | 1.39 × 10−4 | 41% | |||||
SCP-30 | HMA-30 | 203 | 4.45 | 2.19 × 10−4 | 1.61 × 10−6 | 1% | |||
CTB | 229 | 8.58 × 10−5 | 5.00 × 10−5 | 58% | |||||
Subgrade | ∞ | 3.41 × 10−4 | 1.18 × 10−4 | 35% | |||||
SCP-45 | HMA-45 | 203 | 4.50 | 2.51 × 10−4 | ∼0 | ∼0 | |||
CTB | 279 | 8.58 × 10−5 | 4.17 × 10−5 | 49% | |||||
Subgrade | ∞ | 3.41 × 10−4 | 9.99 × 10−5 | 29% |
3. Life-Cycle Assessment (LCA)
3.1. Goal and Scope Definition Phase
3.2. LCI Analysis Phase
3.3. LCIA Phase
3.4. Interpretation Phase
4. Life-Cycle Cost Analysis (LCCA)
5. Discussion
5.1. Limitations of the Study
5.2. Generalizability of Results
5.3. Methodological Reproducibility
6. Summary and Conclusions
- The SRP-15 design was identified as the most cost-effective configuration, demonstrating significant economic advantages due to its optimized use of coarse RCA (at 15% replacement of NAs) and reduced CTB thickness. Nonetheless, from an environmental perspective, CFP-30 emerged as the least impactful design, indicating that the optimal solution depends on the prioritization of cost or environmental impact.
- Incorporating RCA into HMA reduces costs up to an optimal threshold (30% for CFP and 15% for SRP). Beyond these levels, costs and environmental impacts increase significantly due to the higher asphalt binder demand associated with the RCA’s porous structure.
- SCP designs, which employ thicker CTB layers, exhibit higher total costs and environmental burdens compared to other configurations. This indicates that excessive reliance on a CTB, even with RCA integration, may not yield overall sustainability benefits.
- The Pareto front analysis identified CFP-30, IBP-15, SRP-15, and SCP-0 as optimal designs balancing environmental impacts and monetary costs. Notably, these configurations demonstrate that sustainability-focused strategies must carefully integrate both material and design considerations to avoid counterproductive outcomes.
- The analysis of cost distribution revealed that raw material extraction and transportation account for the largest share of total costs, regardless of the pavement configuration. The preceding highlights the critical roles of logistics and material sourcing in sustainable pavement design, suggesting that optimizing supply chain strategies and promoting local sourcing could significantly reduce both costs and environmental impacts.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AASHTO | American Association of State Highway and Transportation Officials |
AC | ACidification |
CFP | Conventional flexible pavement |
CTB | Cement-Treated Base |
EC | ECotoxicity |
EU | EUtrophication |
FHWA | Federal Highway Administration |
GB | Granular Base |
GSB | Granular Sub-Base |
GW | Global Warming |
HA | Habitat Alteration |
HHC | Human Health Cancer |
HHCAPs | Human Health Criteria Air Pollutants |
HHNC | Human Health NonCancer |
HMA | Hot Mix Asphalt |
IAQ | Indoor Air Quality |
IBP | Inverted Base Pavement |
ISO | International Organization for Standardization |
LCA | Life-Cycle Assessment |
LCCA | Life-Cycle Cost Analysis |
LCI | Life-Cycle Inventory |
LCIA | Life-Cycle Impact Assessment |
NA | Natural Aggregate |
NRP | Natural Resource Depletion |
OAC | Optimal asphalt content |
OD | Ozone Depletion |
RCA | Recycled Concrete Aggregate |
SCP | Simple Composite Pavement |
SM | SMog |
SRP | Semi-Rigid Pavement |
VFA | Voids filled with asphalt |
VMA | Voids in mineral aggregate |
VTM | Voids in the total mix |
WI | Water Intake |
References
- Cervero, R.; Guerra, E.; Al, S. Chapter 7: Transit-Oriented Development. In Beyond Mobility: Planning Cities for People and Places; Island Press: Washington, DC, USA, 2017; pp. 109–141. [Google Scholar]
- Shamdasani, Y. Rural Road Infrastructure & Agricultural Production: Evidence from India. J. Dev. Econ. 2021, 152, 102686. [Google Scholar] [CrossRef]
- Urazán-Bonells, C.F.; Rondón-Quintana, H.A.; Zafra-Mejía, C.A. Correlation between Sectoral GDP and the Values of Road Freight Transportation in Colombia. Economies 2024, 12, 205. [Google Scholar] [CrossRef]
- Norouzi, Y.; Ghasemi, S.H.; Nowak, A.S.; Jalayer, M.; Mehta, Y.; Chmielewski, J. Performance-Based Design of Asphalt Pavements Concerning the Reliability Analysis. Constr. Build. Mater. 2022, 332, 127393. [Google Scholar] [CrossRef]
- Wang, H.-P.; Guo, Y.-X.; Wu, M.-Y.; Xiang, K.; Sun, S.-R. Review on Structural Damage Rehabilitation and Performance Assessment of Asphalt Pavements. Rev. Adv. Mater. Sci. 2021, 60, 438–449. [Google Scholar] [CrossRef]
- Kumar, P.; Shukla, S. Flexible Pavement Construction Using Different Waste Materials: A Review. Mater. Today Proc. 2022, 65, 1697–1702. [Google Scholar] [CrossRef]
- Huang, Y.; Bird, R.N.; Heidrich, O. A Review of the Use of Recycled Solid Waste Materials in Asphalt Pavements. Resour. Conserv. Recycl. 2007, 52, 58–73. [Google Scholar] [CrossRef]
- Qiao, Y.; Dawson, A.R.; Parry, T.; Flintsch, G.; Wang, W. Flexible Pavements and Climate Change: A Comprehensive Review and Implications. Sustainability 2020, 12, 1057. [Google Scholar] [CrossRef]
- Duque, J.; Martinez-Arguelles, G.; Nuñez, Y.; Peñabaena-Niebles, R.; Polo-Mendoza, R. Designing Climate Change (CC)-Resilient Asphalt Pavement Structures: A Comprehensive Literature Review on Adaptation Measures and Advanced Soil Constitutive Models. Results Eng. 2024, 24, 103648. [Google Scholar] [CrossRef]
- Guerrero-Bustamante, O.; Camargo, R.; Dawd, I.; Duque, J.; Polo-Mendoza, R.; Javier, G.; Diaz, J.; Daza, O.; Cucunuba, J.; Acosta, C. Implementation of Crumb Rubber (CR) in Road Pavements: A Comprehensive Literature Review. Infrastructures 2024, 9, 223. [Google Scholar] [CrossRef]
- Chhabra, R.S.; Naga, G. Stabilization of Cement-Treated Base Mixes Incorporating High Reclaimed Asphalt Pavement Materials Using Stabilizer Rich in SiO2 and Al2O3. Constr. Build. Mater. 2023, 365, 130089. [Google Scholar] [CrossRef]
- Bressi, S.; Primavera, M.; Santos, J. A Comparative Life Cycle Assessment Study with Uncertainty Analysis of Cement Treated Base (CTB) Pavement Layers Containing Recycled Asphalt Pavement (RAP) Materials. Resour. Conserv. Recycl. 2022, 180, 106160. [Google Scholar] [CrossRef]
- Pham, P.N. Utilization of Rubber Aggregates in Cement-Treated Bases: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2023, 1289, 012076. [Google Scholar] [CrossRef]
- Chakravarthi, S.; Shankar, S. Utilization of Recycled Aggregates in Cement-Treated Bases: A State-of-the-Art Review. Innov. Infrastruct. Solut. 2021, 6, 191. [Google Scholar] [CrossRef]
- Ismail, A.; Baghini, M.S.; Karim, M.R.; Shokri, F.; Al-Mansob, R.A.; Firoozi, A.A.; Firoozi, A.A. Laboratory Investigation on the Strength Characteristics of Cement-Treated Base. Appl. Mech. Mater. 2014, 507, 353–360. [Google Scholar] [CrossRef]
- Priastiwi, Y.A.; Sukamta; Hidayat, A.; Hafidz, M.; Widyandika, R.; Wiguna, E. Study Optimization Cement Content of Cement Treated Base (CTB) Using Compressive Strength Parameter. IOP Conf. Ser. Earth Environ. Sci. 2023, 1203, 012036. [Google Scholar] [CrossRef]
- Jiang, B.; Xu, L.; Cao, Z.; Yang, Y.; Sun, Z.; Xiao, F. Interlayer Distress Characteristics and Evaluations of Semi-Rigid Base Asphalt Pavements: A Review. Constr. Build. Mater. 2024, 431, 136441. [Google Scholar] [CrossRef]
- Papadopoulos, E.; Santamarina, J.C. Inverted Base Pavements: Construction and Performance. Int. J. Pavement Eng. 2019, 20, 697–703. [Google Scholar] [CrossRef]
- SHRP S2-R21-RR-2: Composite Pavement Systems, Volume 1, HMA/PCC Composite Pavements. In Strategic Highway Research Program (SHRP 2); Transportation Research Board: Washington, DC, USA, 2013; pp. 1–135.
- Daheshpour, A.E.; Hayati, P. Analytical-Field Investigation of the Effect of Elastic Modulus Parameter of the Cement Treated Base (CTB) According to FAA Manual on the Airfield Concrete Block Pavement (ACBP) Performance. Case Stud. Constr. Mater. 2025, 22, e04120. [Google Scholar] [CrossRef]
- Ai, X.; Pei, Z.; Xu, M.; Fan, L.; Tu, L.; Yang, J.; Feng, D.; Yi, J. Micromechanical Behavior of Cement-Treated Base Materials Incorporating Recycled Crushed Aggregates Arising from C&D Waste Powder Based on DEM. Constr. Build. Mater. 2023, 403, 133100. [Google Scholar] [CrossRef]
- Sravanthi, B.; Radhakrishnan, V.; Andrews, J.K.; Saudagar, A.S.R. Comparative Study on the Performance of Cement Treated Base Layer Materials and Fly Ash-Based Geopolymer Base Layer Materials. Innov. Infrastruct. Solut. 2025, 10, 3. [Google Scholar] [CrossRef]
- Yadav, N.; Kumar, R.; Jethy, B. Influence of Supplementary Cementitious Materials along with Construction and Demolition Waste in Pavement Cement-Treated Sub-Base Applications. Innov. Infrastruct. Solut. 2024, 9, 65. [Google Scholar] [CrossRef]
- Milad, A.; Babalghaith, A.M.; Al-Sabaeei, A.M.; Dulaimi, A.; Ali, A.; Reddy, S.S.; Bilema, M.; Yusoff, N.I.M. A Comparative Review of Hot and Warm Mix Asphalt Technologies from Environmental and Economic Perspectives: Towards a Sustainable Asphalt Pavement. Int. J. Environ. Res. Public Health 2022, 19, 14863. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Z.; Zhu, Y.; Zhang, H. A Review of Sustainability in Hot Asphalt Production: Greenhouse Gas Emissions and Energy Consumption. Appl. Sci. 2024, 14, 10246. [Google Scholar] [CrossRef]
- Covilla-Varela, E.; Turbay, E.; Polo-Mendoza, R.; Martínez-Arguelles, G.; Cantero-Durango, J. Recycled Concrete Aggregates (RCA)-Based Asphalt Mixtures: A Performance-Related Evaluation with Sustainability-Criteria Verification. Constr. Build. Mater. 2023, 403, 133203. [Google Scholar] [CrossRef]
- Cantero-Durango, J.; Polo-Mendoza, R.; Martinez-Arguelles, G.; Fuentes, L. Properties of Hot Mix Asphalt (HMA) with Several Contents of Recycled Concrete Aggregate (RCA). Infrastructures 2023, 8, 109. [Google Scholar] [CrossRef]
- Xu, X.; Luo, Y.; Sreeram, A.; Wu, Q.; Chen, G.; Cheng, S.; Chen, Z.; Chen, X. Potential Use of Recycled Concrete Aggregate (RCA) for Sustainable Asphalt Pavements of the Future: A State-of-the-Art Review. J. Clean. Prod. 2022, 344, 130893. [Google Scholar] [CrossRef]
- Ye, X.; Chen, Y.; Yang, H.; Xiang, Y.; Ye, Z.; Li, W.; Hu, C. Enhancing Self-Healing of Asphalt Mixtures Containing Recycled Concrete Aggregates and Reclaimed Asphalt Pavement Using Induction Heating. Constr. Build. Mater. 2024, 439, 137361. [Google Scholar] [CrossRef]
- Neupane, R.P.; Devi, N.R.; Imjai, T.; Rajput, A.; Noguchi, T. Cutting-Edge Techniques and Environmental Insights in Recycled Concrete Aggregate Production: A Comprehensive Review. Resour. Conserv. Recycl. Adv. 2025, 25, 200241. [Google Scholar] [CrossRef]
- Cheng, H.; Wang, Y.; Liu, J.; Poon, C.-S.; Ren, P.; Liu, Y.; Chen, Z. The Long-Term Re-Cementation of Recycled Concrete Aggregate in Road Sub-Base and Its Impacts on Pavement Performance. Transp. Geotech. 2024, 49, 101431. [Google Scholar] [CrossRef]
- Bastidas-Martínez, J.G.; Reyes-Lizcano, F.A.; Rondón-Quintana, H.A. Use of Recycled Concrete Aggregates in Asphalt Mixtures for Pavements: A Review. J. Traffic Transp. Eng. 2022, 9, 725–741. [Google Scholar] [CrossRef]
- Espino-Gonzalez, C.U.; Martinez-Molina, W.; Alonso-Guzman, E.M.; Chavez-Garcia, H.L.; Arreola-Sanchez, M.; Sanchez-Calvillo, A.; Navarrete-Seras, M.A.; Borrego-Perez, J.A.; Mendoza-Sanchez, J.F. Asphalt Mixes Processed with Recycled Concrete Aggregate (RCA) as Partial Replacement of the Natural Aggregate. Materials 2021, 14, 4196. [Google Scholar] [CrossRef]
- AASHTO T 307-99; Standard Method of Test for Determining the Resilient Modulus of Soils and Aggregate Materials. American Association of State Highway and Transportation Officials: Washington, DC, USA, 2012; pp. 1–40.
- Polo-Mendoza, R.; Mora, O.; Duque, J.; Turbay, E.; Martinez-Arguelles, G.; Fuentes, L.; Guerrero, O.; Perez, S. Environmental and Economic Feasibility of Implementing Perpetual Pavements (PPs) against Conventional Pavements: A Case Study of Barranquilla City, Colombia. Case Stud. Constr. Mater. 2023, 18, e02112. [Google Scholar] [CrossRef]
- Zheng, Y.X.; Cai, Y.C.; Zhang, Y.M. Study on Temperature Field of Asphalt Concrete Pavement. In Proceedings of the GeoHunan International Conference: Emerging Technologies for Material, Design, Rehabilitation, and Inspection of Roadway Pavements, Hunan, China, 9–11 June 2011; pp. 266–273. [Google Scholar]
- Song, Y.; Yang, C.H.; Hong, S.K.; Hwang, S.J.; Kim, J.H.; Choi, J.Y.; Ryu, S.K.; Sung, T.H. Road Energy Harvester Designed as a Macro-Power Source Using the Piezoelectric Effect. Int. J. Hydrog. Energy 2016, 41, 12563–12568. [Google Scholar] [CrossRef]
- AASHTO. AASHTO Guide for Design of Pavement Structures; American Association of State Highway and Transportation Officials: Washington, DC, USA, 1993; pp. 1–622. [Google Scholar]
- Hunter, R.; Self, A.; Read, J. The Shell Bitumen Handbook, 6th ed.; ICE Publishing: Bristol, UK, 2015; ISBN 978-0-7277-5837-8. [Google Scholar]
- Austroads. AP-G17/04: Pavement Design—A Guide to the Structural Design of Road Pavements; Austroads: Sydney, Australia, 2006. [Google Scholar]
- Austroads. Guide to Pavement Technology Part 2: Pavement Structural Design; Austroads: Sydney, Australia, 2017. [Google Scholar]
- BS EN ISO 14040; Environmental Management—Life Cycle Assessment—Principles and Framework. International Organization for Standardization: Geneva, Switzerland, 2006.
- BS EN ISO 14044; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organization for Standardization: Geneva, Switzerland, 2006.
- Harvey, J.T.; Meijer, J.; Ozer, H.; Al-Qadi, I.L.; Saboori, A.; Kendall, A. FHWA-HIF-16-014: Pavement Life Cycle Assessment Framework; FHWA: Washington, DC, USA, 2016.
- PRé Sustainability. SimaPro Flow Tutorial; 2023. Available online: https://simapro.com/wp-content/uploads/2023/12/SimaPro-Flow-tutorial.pdf (accessed on 15 May 2025).
- PRé Sustainability. SimaPro Database Manual—Methods Library Table; 2020. Available online: https://simapro.com/wp-content/uploads/2020/10/DatabaseManualMethods.pdf (accessed on 15 May 2025).
- Mattinzioli, T.; Sol-Sánchez, M.; Martínez, G.; Rubio-Gámez, M. A Parametric Study on the Impact of Open-Source Inventory Variability and Uncertainty for the Life Cycle Assessment of Road Bituminous Pavements. Int. J. Life Cycle Assess. 2021, 26, 916–935. [Google Scholar] [CrossRef]
- Huang, Y.; Spray, A.; Parry, T. Sensitivity Analysis of Methodological Choices in Road Pavement LCA. Int. J. Life Cycle Assess. 2013, 18, 93–101. [Google Scholar] [CrossRef]
- Li, H.; Jiang, J.; Li, Q. Economic and Environmental Assessment of a Green Pavement Recycling Solution Using Foamed Asphalt Binder Based on LCA and LCCA. Transp. Eng. 2023, 13, 100185. [Google Scholar] [CrossRef]
- Weidema, B.P.; Bauer, C.; Hischier, R.; Mutel, C.; Nemecek, T.; Reinhard, J.; Vadenbo, C.O.; Wernet, G. Overview and Methodology—Data Quality Guideline for the Ecoinvent Database Version 3; The Ecoinvent Centre: St. Gallen, Switzerland, 2013. [Google Scholar]
- Moreno Ruiz, E.; Valsasina, L.; FitzGerald, D.; Symeonidis, A.; Turner, D.; Müller, J.; Minas, N.; Bourgault, G.; Vadenbo, C.; Ioannidou, D.; et al. Documentation of Changes Implemented in the Ecoinvent Database v3.7 & v3.7.1 (2020.12.17); Ecoinvent Association: Zürich, Switzerland, 2020. [Google Scholar]
- NREL. The U.S. Life-Cycle Inventory Database Project—Helping Us Find Answers to Environmental Impact Concerns; National Renewable Energy Laboratory: Golden, CO, USA, 2005.
- Curran, M.A.; Overly, J.G.; Hofstetter, P.; Muller, R.; Lippiatt, B.C. NISTIR 6865: BEES 2.0—Building for Environmental and Economic Sustainability; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2002; pp. 1–38.
- Gloria, T.P.; Lippiatt, B.C.; Cooper, J. Life Cycle Impact Assessment Weights to Support Environmentally Preferable Purchasing in the United States. Environ. Sci. Technol. 2007, 41, 7551–7557. [Google Scholar] [CrossRef]
- Polo-Mendoza, R.; Martinez-Arguelles, G.; Peñabaena-Niebles, R. A Multi-Objective Optimization Based on Genetic Algorithms for the Sustainable Design of Warm Mix Asphalt (WMA). Int. J. Pavement Eng. 2023, 24, 2074417. [Google Scholar] [CrossRef]
- Rayjada, S.P.; Ghosh, J.; Raghunandan, M. Assessment, Quantification and Propagation of Uncertainty in Seismic Life-Cycle Cost Analysis. Struct. Infrastruct. Eng. 2024, 1–20. Available online: https://www.tandfonline.com/doi/full/10.1080/15732479.2024.2391037?af=R (accessed on 15 May 2025). [CrossRef]
- Clemmensen, A.; Wang, H. Airfield Pavement Condition Prediction with Machine Learning Models for Life-Cycle Cost Analysis. Int. J. Pavement Eng. 2024, 25, 2322529. [Google Scholar] [CrossRef]
- Suwarto, F.; Parry, T.; Airey, G. Review of Methodology for Life Cycle Assessment and Life Cycle Cost Analysis of Asphalt Pavements. Road Mater. Pavement Des. 2024, 25, 1631–1657. [Google Scholar] [CrossRef]
- Ilyas, M.; Kassa, F.M.; Darun, M.R. Life Cycle Cost Analysis of Wastewater Treatment: A Systematic Review of Literature. J. Clean. Prod. 2021, 310, 127549. [Google Scholar] [CrossRef]
- Degieter, M.; Gellynck, X.; Goyal, S.; Ott, D.; De Steur, H. Life Cycle Cost Analysis of Agri-Food Products: A Systematic Review. Sci. Total Environ. 2022, 850, 158012. [Google Scholar] [CrossRef]
- INVIAS. Análisis de Precios Unitarios—Sector Transporte; Instituto Nacional de Vias: Bogotá, Colombia, 2024; pp. 1–7.
- Riekstins, A.; Haritonovs, V.; Straupe, V.; Izaks, R.; Merijs-Meri, R.; Zicans, J. Comparative Environmental and Economic Assessment of a Road Pavement Containing Multiple Sustainable Materials and Technologies. Constr. Build. Mater. 2024, 432, 136522. [Google Scholar] [CrossRef]
- Narayan, K.; Aryal, R.; Joshi, B.R.; Shahi, P.B. Thickness and Cost Comparison of Cement Treated and Granular Base for Flexible Pavement: A Case Study of Pathlaiya-Nijgadh Section of East-West Highway of Nepal. J. Eng. Technol. Plan. 2022, 3, 10–17. [Google Scholar] [CrossRef]
- Hashemi Sohi, F.S.; Mansour, S.; Dehghanian, A. Multi-Objective Optimization for Selecting Sustainable Materials with Simultaneous Consideration of Several Components in a Product. Int. J. Sustain. Eng. 2022, 15, 107–121. [Google Scholar] [CrossRef]
- Yao, H.; Xu, Z.; Hou, Y.; Dong, Q.; Liu, P.; Ye, Z.; Pei, X.; Oeser, M.; Wang, L.; Wang, D. Advanced Industrial Informatics towards Smart, Safe and Sustainable Roads: A State of the Art. J. Traffic Transp. Eng. 2023, 10, 143–158. [Google Scholar] [CrossRef]
- Akbari, M.; Asadi, P.; Givi, M.K.B.; Khodabandehlouie, G. Chapter 13—Artificial Neural Network and Optimization. In Advances in Friction-Stir Welding and Processing; Woodhead Publishing Series in Welding and Other Joining Technologies; Woodhead Publishing Ltd.: Sawston, UK, 2014; pp. 543–599. [Google Scholar]
- Besseris, G. Non-Linear Saturated Multi-Objective Pseudo-Screening Using Support Vector Machine Learning, Pareto Front, and Belief Functions: Improving Wastewater Recycling Quality. Appl. Sci. 2024, 14, 9971. [Google Scholar] [CrossRef]
- Kang, S.; Li, K.; Wang, R. A Survey on Pareto Front Learning for Multi-Objective Optimization. J. Membr. Comput. 2024, 1–7. Available online: https://link.springer.com/article/10.1007/s41965-024-00170-z (accessed on 15 May 2025). [CrossRef]
- Legriel, J.; Guernic, C.L.; Cotton, S.; Maler, O. Approximating the Pareto Front of Multi-Criteria Optimization Problems. In Proceedings of the International Conference on Tools and Algorithms for the Construction and Analysis of Systems, Paphos, Cyprus, 20–29 March 2010; pp. 69–83. [Google Scholar]
- Tušar, T.; Filipic, B. Visualization of Pareto Front Approximations in Evolutionary Multiobjective Optimization: A Critical Review and the Prosection Method. IEEE Trans. Evol. Comput. 2015, 19, 225–245. [Google Scholar] [CrossRef]
- Cibulski, L.; Mitterhofer, H.; May, T.; Kohlhammer, J. PAVED: Pareto Front Visualization for Engineering Design. Comput. Graph. Forum 2020, 39, 405–416. [Google Scholar] [CrossRef]
- Petchrompo, S.; Coit, D.W.; Brintrup, A.; Wannakrairot, A.; Parlikad, A.K. A Review of Pareto Pruning Methods for Multi-Objective Optimization. Comput. Ind. Eng. 2022, 167, 108022. [Google Scholar] [CrossRef]
- Bejarano, L.A.; Espitia, H.E.; Montenegro, C.E. Clustering Analysis for the Pareto Optimal Front in Multi-Objective Optimization. Computation 2022, 10, 37. [Google Scholar] [CrossRef]
Material a | Mass Fraction Regarding the Total Mixture Weight (%) | Resilient Modulus (MPa) | Bulk Density (kg/m3) | |||||
---|---|---|---|---|---|---|---|---|
Asphalt Binder | Lime Filler | Fine NA | Coarse NA | Coarse RCA | Portland Cement | |||
HMA-0 | 4.400 | 3.920 | 44.358 | 47.322 | - | - | 2884 | 2366.2 |
HMA-15 | 4.500 | 3.916 | 44.312 | 40.182 | 7.091 | - | 2606 | 2310.7 |
HMA-30 | 4.800 | 3.903 | 44.173 | 32.987 | 14.137 | - | 2066 | 2305.5 |
HMA-45 | 5.200 | 3.887 | 43.987 | 25.809 | 21.117 | - | 1688 | 2289.4 |
GB | - | - | 50.000 | 50.000 | - | - | 207 | 2080 |
GSB | - | - | 50.000 | 50.000 | - | - | 117 | 1950 |
CTB | - | - | 48.500 | 48.500 | - | 3.000 | 4482 | 2376 |
Parameter | Standard | HMA-0 | HMA-15 | HMA-30 | HMA-45 |
---|---|---|---|---|---|
VTM (%) | INV E-744/ASTM D3203 | 4.3 | 4.7 | 4.8 | 4.9 |
VMA (%) | INV E-744/ASTM D3203 | 12.7 | 14.2 | 14.6 | 15.1 |
VFA (%) | INV E-744/ASTM D3203 | 66.1 | 66.9 | 67.1 | 67.5 |
Marshall stability (kN) | INV E-748/ASTM D6927 | 20.1 | 17.2 | 17.0 | 14.8 |
Marshall flow (mm) | INV E-748/ASTM D6927 | 2.6 | 2.8 | 2.9 | 3.4 |
Stability/flow ratio (kN/mm) | INV E-748/ASTM D6927 | 7.7 | 6.1 | 5.9 | 4.4 |
OAC (%) | INV E-748/ASTM D6927 | 4.4 | 4.5 | 4.8 | 5.2 |
Stage | Process Name | SimaPro Unit Processes |
---|---|---|
Raw material extraction/production | RCA crushing (equipment efficiency: 0.4 kWh/ton) | Diesel, burned in building machine {GLO}|processing|cut-off, U |
Coarse-aggregate extraction | Gravel, crushed {RoW}|production|cut-off, U | |
Fine-aggregate extraction | Sand {RoW}| gravel and quarry operation|cut-off, U | |
Aggregates loading to the truck (equipment efficiency: 0.222 h/ton) | Loader operation, large, INW/RNA | |
Lime filler production | Lime {RoW}|production, milled, loose|cut-off, U | |
Portland cement production | Cement, Portland {RoW}|production|cut-off, U | |
Asphalt binder production | Bitumen, at refinery/kg/US | |
Transportation of raw materials to the processing plant | Aggregate transportation (one-way distance: 73 km) | Transport, freight, lorry 16–32 metric tons, EURO4 {RoW}| transport, freight, lorry 16–32 metric tons, EURO4| cut-off, U |
Asphalt binder transportation (one-way distance: 592 km) | ||
Cement transportation (one-way distance: 12 km) | ||
Composite material production | Mixing process for GB and GSB (equipment efficiency: 2.33 kWh/ton) | Diesel, burned in building machine {GLO}|processing | cut-off, U |
Mixing process for CTB (equipment efficiency: 2.54 kWh/ton) | ||
Mixing process for HMA; required thermal energy: 245.7, 231.4, 217.8, and 205.3 MJ/ton for HMA-0, HMA-15, HMA-30, and HMA-45, respectively. | Heat, district, or industrial, other than natural gas {RoW}| heat production, heavy fuel oil, at industrial furnace 1MW|cut-off, U | |
Transportation of materials to the construction site | GB and GSB transportation (one-way distance: 29 km) | Transport, freight, lorry 16–32 metric tons, EURO4 {RoW}| transport, freight, lorry 16–32 metric tons, EURO4| cut-off, U |
CTB transportation (one-way distance: 29 km) | ||
HMA transportation (one-way distance: 29 km) | ||
Pavement construction activities | Initial compaction for GB, GSB, and CTB using a pneumatic roller (production rate: 65 m3/h) | Machine operation, diesel, ≥74.57 kW, high load factor {GLO}| market for|cut-off, U |
Final compaction for GB, GSB, and CTB using a vibratory roller (production rate: 65 m3/h) | ||
Finisher operation for laying and compaction of HMA (production rate: 60 m3/h) |
Impact Categories (Unit) | Weights |
---|---|
GW (g CO2 eq) | 16.0 |
HA (T&E count) | 16.0 |
EC (g 2.4-D eq) | 11.0 |
IAQ (g TVOC eq) | 11.0 |
HHCAP (microDALYs) | 6.0 |
SM (g NOx eq) | 6.0 |
HHC (g C6H6 eq) | 5.5 |
HHNC (g C7H7 eq) | 5.5 |
AC (H+ mmole eq) | 5.0 |
EU (g N eq) | 5.0 |
NRD (MJ surplus) | 5.0 |
OD (g CFC-11 eq) | 5.0 |
WI (L) | 3.0 |
Total | 100.0 |
Design | AC | EC | EU | GW | HA | HHC | HHCAP | HHNC | IAQ | NRD | OD | SM | WI |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CFP-0 | 2.241E+8 | 2.788E+6 | 6.054E+5 | 4.916E+8 | 4.762E-9 | 1.127E+6 | 6.890E+4 | 3.062E+9 | 0 | 1.729E+6 | 3.862E+1 | 4.481E+6 | 7.860E+6 |
CFP-15 | 2.156E+8 | 2.683E+6 | 5.544E+5 | 4.697E+8 | 4.383E-9 | 1.085E+6 | 6.638E+4 | 2.870E+9 | 0 | 1.804E+6 | 3.666E+1 | 4.140E+6 | 7.041E+6 |
CFP-30 | 2.147E+8 | 2.680E+6 | 5.421E+5 | 4.654E+8 | 4.358E-9 | 1.082E+6 | 6.614E+4 | 2.829E+9 | 0 | 1.858E+6 | 3.607E+1 | 4.090E+6 | 6.934E+6 |
CFP-45 | 2.337E+8 | 2.929E+6 | 5.961E+5 | 5.058E+8 | 4.884E-9 | 1.180E+6 | 7.203E+4 | 3.094E+9 | 0 | 2.011E+6 | 3.906E+1 | 4.532E+6 | 7.822E+6 |
SRP-0 | 2.106E+8 | 3.022E+6 | 6.767E+5 | 5.324E+8 | 5.410E-9 | 1.253E+6 | 6.732E+4 | 3.638E+9 | 0 | 1.327E+6 | 3.721E+1 | 4.586E+6 | 8.396E+6 |
SRP-15 | 2.097E+8 | 2.918E+6 | 6.625E+5 | 5.142E+8 | 5.359E-9 | 1.201E+6 | 6.649E+4 | 3.484E+9 | 0 | 1.326E+6 | 3.709E+1 | 4.597E+6 | 8.546E+6 |
SRP-30 | 2.161E+8 | 3.003E+6 | 6.801E+5 | 5.277E+8 | 5.545E-9 | 1.234E+6 | 6.851E+4 | 3.574E+9 | 0 | 1.382E+6 | 3.808E+1 | 4.747E+6 | 8.856E+6 |
SRP-45 | 2.268E+8 | 3.234E+6 | 6.713E+5 | 5.602E+8 | 5.460E-9 | 1.338E+6 | 7.237E+4 | 3.716E+9 | 0 | 1.713E+6 | 3.868E+1 | 4.643E+6 | 8.149E+6 |
IBP-0 | 2.061E+8 | 2.807E+6 | 5.966E+5 | 4.929E+8 | 4.683E-9 | 1.156E+6 | 6.489E+4 | 3.208E+9 | 0 | 1.532E+6 | 3.557E+1 | 4.160E+6 | 7.213E+6 |
IBP-15 | 2.032E+8 | 2.825E+6 | 5.937E+5 | 4.943E+8 | 4.717E-9 | 1.167E+6 | 6.442E+4 | 3.244E+9 | 0 | 1.519E+6 | 3.506E+1 | 4.109E+6 | 7.143E+6 |
IBP-30 | 2.160E+8 | 2.994E+6 | 6.311E+5 | 5.218E+8 | 5.089E-9 | 1.233E+6 | 6.843E+4 | 3.428E+9 | 0 | 1.616E+6 | 3.713E+1 | 4.415E+6 | 7.776E+6 |
IBP-45 | 2.268E+8 | 3.234E+6 | 6.713E+5 | 5.602E+8 | 5.460E-9 | 1.338E+6 | 7.237E+4 | 3.716E+9 | 0 | 1.713E+6 | 3.868E+1 | 4.643E+6 | 8.149E+6 |
SCP-0 | 1.971E+8 | 2.729E+6 | 5.238E+5 | 4.752E+8 | 3.972E-9 | 1.134E+6 | 6.231E+4 | 2.993E+9 | 0 | 1.717E+6 | 3.304E+1 | 3.586E+6 | 5.558E+6 |
SCP-15 | 1.996E+8 | 2.819E+6 | 5.399E+5 | 4.890E+8 | 4.188E-9 | 1.173E+6 | 6.353E+4 | 3.119E+9 | 0 | 1.727E+6 | 3.352E+1 | 3.680E+6 | 5.812E+6 |
SCP-30 | 2.164E+8 | 3.137E+6 | 6.006E+5 | 5.411E+8 | 4.754E-9 | 1.308E+6 | 6.941E+4 | 3.506E+9 | 0 | 1.854E+6 | 3.620E+1 | 4.065E+6 | 6.532E+6 |
SCP-45 | 2.337E+8 | 3.460E+6 | 6.601E+5 | 5.933E+8 | 5.306E-9 | 1.445E+6 | 7.536E+4 | 3.885E+9 | 0 | 1.996E+6 | 3.882E+1 | 4.448E+6 | 7.222E+6 |
Material | Unit | Prices (USD) | |||||
---|---|---|---|---|---|---|---|
Raw Materials | Transportation to the Processing Plant | Composite Material Production | Transportation to the Construction Site | Pavement Activities | Total Unit Price | ||
GB | m3 | 22.08 | 0.00 | 0.00 | 29.01 | 1.01 | 52.10 |
GSB | m3 | 16.11 | 0.00 | 0.00 | 29.01 | 1.01 | 46.13 |
CTB | m3 | 29.37 | 24.70 | 2.98 | 11.59 | 0.99 | 69.63 |
HMA-0 | m3 | 80.47 | 51.53 | 24.88 | 11.05 | 3.30 | 171.22 |
HMA-15 | m3 | 76.51 | 48.47 | 23.07 | 11.05 | 3.30 | 162.40 |
HMA-30 | m3 | 72.55 | 46.65 | 21.26 | 11.05 | 3.30 | 154.81 |
HMA-45 | m3 | 68.60 | 45.44 | 19.46 | 11.05 | 3.30 | 147.84 |
Design | Partial Cost (USD) | Total Cost (USD) | ||||
---|---|---|---|---|---|---|
Raw Materials | Transportation to the Processing Plant | Composite Material Production | Transportation to the Construction Site | Pavement Activities | ||
CFP-0 | 156.991 | 66.877 | 32.292 | 95.023 | 7.100 | 358.283 |
CFP-15 | 155.974 | 71.899 | 34.223 | 80.934 | 7.151 | 350.181 |
CFP-30 | 150.103 | 69.192 | 31.542 | 80.934 | 7.151 | 338.921 |
CFP-45 | 153.191 | 67.396 | 28.860 | 97.071 | 7.713 | 354.232 |
SRP-0 | 144.183 | 74.859 | 22.873 | 79.175 | 5.792 | 326.881 |
SRP-15 | 142.637 | 63.432 | 20.427 | 91.015 | 5.987 | 323.498 |
SRP-30 | 143.795 | 62.078 | 19.086 | 96.394 | 6.175 | 327.529 |
SRP-45 | 152.627 | 87.191 | 26.066 | 72.513 | 6.642 | 345.039 |
IBP-0 | 149.500 | 80.225 | 30.441 | 66.066 | 6.092 | 332.325 |
IBP-15 | 146.449 | 81.407 | 28.983 | 62.836 | 6.088 | 325.763 |
IBP-30 | 150.233 | 79.376 | 26.972 | 73.594 | 6.463 | 336.638 |
IBP-45 | 152.627 | 87.191 | 26.066 | 72.513 | 6.642 | 345.039 |
SCP-0 | 152.037 | 103.914 | 40.220 | 29.278 | 6.002 | 331.451 |
SCP-15 | 151.612 | 103.962 | 38.091 | 31.427 | 6.185 | 331.278 |
SCP-30 | 156.632 | 110.415 | 36.515 | 35.725 | 6.552 | 345.839 |
SCP-45 | 161.652 | 117.781 | 34.939 | 40.023 | 6.919 | 361.313 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerrero-Bustamante, O.; Camargo, R.; Duque, J.; Martinez-Arguelles, G.; Polo-Mendoza, R.; Acosta, C.; Murillo, M. Designing Sustainable Asphalt Pavement Structures with a Cement-Treated Base (CTB) and Recycled Concrete Aggregate (RCA): A Case Study from a Developing Country. Designs 2025, 9, 65. https://doi.org/10.3390/designs9030065
Guerrero-Bustamante O, Camargo R, Duque J, Martinez-Arguelles G, Polo-Mendoza R, Acosta C, Murillo M. Designing Sustainable Asphalt Pavement Structures with a Cement-Treated Base (CTB) and Recycled Concrete Aggregate (RCA): A Case Study from a Developing Country. Designs. 2025; 9(3):65. https://doi.org/10.3390/designs9030065
Chicago/Turabian StyleGuerrero-Bustamante, Oswaldo, Rafael Camargo, Jose Duque, Gilberto Martinez-Arguelles, Rodrigo Polo-Mendoza, Carlos Acosta, and Michel Murillo. 2025. "Designing Sustainable Asphalt Pavement Structures with a Cement-Treated Base (CTB) and Recycled Concrete Aggregate (RCA): A Case Study from a Developing Country" Designs 9, no. 3: 65. https://doi.org/10.3390/designs9030065
APA StyleGuerrero-Bustamante, O., Camargo, R., Duque, J., Martinez-Arguelles, G., Polo-Mendoza, R., Acosta, C., & Murillo, M. (2025). Designing Sustainable Asphalt Pavement Structures with a Cement-Treated Base (CTB) and Recycled Concrete Aggregate (RCA): A Case Study from a Developing Country. Designs, 9(3), 65. https://doi.org/10.3390/designs9030065