EMM Project—LD GRIDS: Design of a Charged Dust Analyser for Moon Exploration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electrostatic Modelling Validation
2.2. FE Models Description and Numerical Analyses
2.2.1. Electrostatic Performance
2.2.2. Modal Analysis
2.2.3. Quasi-Static Analysis
3. Results and Discussion
3.1. Pattern Influence
3.1.1. Electrostatic Performance
3.1.2. Modal Analysis
3.1.3. Quasi-Static Analysis
3.2. Thickness Influence with Fixed Pattern and Geometry
3.2.1. Electrostatic Performance
3.2.2. Modal Analysis
3.2.3. Quasi-Static Analysis
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Creech, S.; Guidi, J.; Elburn, D. Artemis: An Overview of NASA’s Activities to Return Humans to the Moon. In Proceedings of the 2022 IEEE Aerospace Conference (AERO), Big Sky, MT, USA, 5–12 March 2022; pp. 1–7. [Google Scholar] [CrossRef]
- Smith, M.; Craig, D.; Herrmann, N.; Mahoney, E.; Krezel, J.; McIntyr, N.; Goodliff, K. The Artemis Program: An Overview of NASA’s Activities to Return Humans to the Moon. In Proceedings of the 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020; pp. 1–10. [Google Scholar] [CrossRef]
- Auer, S.; Grün, E.; Kempf, S.; Srama, R.; Srowig, A.; Sternovsky, Z.; Tschernjawski, V. Characteristics of a dust trajectory sensor. Rev. Sci. Instrum. 2008, 79, 084501. [Google Scholar] [CrossRef] [PubMed]
- Grün, E.; Srama, R.; Altobelli, N.; Altwegg, K.; Carpenter, J.; Colangeli, L.; Glassmeier, K.-H.; Helfert, S.; Henkel, H.; Horanyi, M. DuneXpress. Exp. Astron. 2009, 23, 981–999. [Google Scholar] [CrossRef]
- Xie, J.; Sternovsky, Z.; Grün, E.; Auer, S.; Duncan, N.; Drake, K.; Le, H.; Horanyi, M.; Srama, R. Dust trajectory sensor: Accuracy and data analysis. Rev. Sci. Instrum. 2011, 82, 105104. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Sternovsky, Z.; Auer, S.; Drake, K.; Grün, E.; Horanyi, M.; Le, H.; Srama, R. Laboratory testing and data analysis of the Electrostatic Lunar Dust Analyzer (ELDA) instrument. Planet. Space Sci. 2013, 89, 63–70. [Google Scholar] [CrossRef]
- Srama, R.; Ahrens, T.J.; Altobelli, N.; Auer, S.; Bradley, J.G.; Burton, M.; Dikarev, V.V.; Economou, T.; Fechtig, H.; Görlich, M.; et al. The Cassini Cosmic Dust Analyzer. Space Sci. Rev. 2014, 114, 465–518. [Google Scholar] [CrossRef]
- Auer, S.; Grün, E.; Srama, R.; Kempf, S.; Auer, R. The charge and velocity detector of the cosmic dust analyzer on Cassini. Planet. Space Sci. 2002, 50, 773–779. [Google Scholar] [CrossRef]
- Horanyi, M.; Sternovsky, Z.; Lankton, M.; Dumont, C.; Gagnard, S.; Gathright, D.; Wright, G. The lunar dust experiment (LDEX) onboard the lunar atmosphere and dust environment explorer (LADEE) mission. In The Lunar Atmosphere and Dust Environment Explorer Mission (LADEE); Springer: Cham, Switzerland, 2015; pp. 93–113. [Google Scholar]
- Sommer, M.; Li, Y.; Srama, R.; Simolka, J.; Strack, H.; Gläser, J.; Arai, T. Measuring micro-debris In-Situ with the DESTINY+ dust analyzer. In Proceedings of the 2nd NEO and Debris Detection Conference, Darmstadt, Germany, 24–26 January 2023; p. 37. [Google Scholar]
- Scaccabarozzi, D.; Ahmed, A.M.R.; Saggin, B.; Esposito, F.; Porto, C.; Mongelluzzo, G. Feasibility Design of LD GRIDS, a Dust Analyzer for the Moon. In Proceedings of the 2024 11th International Workshop on Metrology for AeroSpace (MetroAeroSpace), Lublin, Poland, 3–5 June 2024; pp. 427–431. [Google Scholar] [CrossRef]
- Rezinkina, M.; Braxmaier, C. Designs of Miniature Optomechanical Sensors for Measurements of Acceleration with Frequencies of Hundreds of Hertz. Designs 2024, 8, 67. [Google Scholar] [CrossRef]
- Mejía Rodríguez, M.; González-Estrada, O.A.; Villegas-Bermúdez, D.F. Finite Element Analysis of Patient-Specific Cranial Implants under Different Design Parameters for Material Selection. Designs 2024, 8, 31. [Google Scholar] [CrossRef]
- Al-Haddad, L.A.; Jaber, A.A.; Giernacki, W.; Khan, Z.H.; Ali, K.M.; Tawafik, M.A.; Humaidi, A.J. Quadcopter unmanned aerial vehicle structural design using an integrated approach of topology optimization and additive manufacturing. Designs 2024, 8, 58. [Google Scholar] [CrossRef]
- Cecere, G.; Irimescu, A.; Merola, S.S. System Design and Stress–Strain Analysis for Cranking and Motoring Small-Size Engines. Designs 2024, 8, 14. [Google Scholar] [CrossRef]
- Scaccabarozzi, D.; Martina, C.; Saggin, B.; Vieira Vaz, E.; Palomba, E.; Longobardo, A.; Gisellu, C.; Dirri, F.; Zampetti, E.; Pedone, M. Feasibility Design of DIANA, a Dust Analyzer developed for the Tianwen-2 Mission. In Proceedings of the 2024 11th International Workshop on Metrology for AeroSpace (MetroAeroSpace), Lublin, Poland, 3–5 June 2024; pp. 422–426. [Google Scholar] [CrossRef]
- Scaccabarozzi, D.; Saggin, B.; Magni, M.; Valnegri, P.; Corti, M.G.; Palomba, E.; Longobardo, A.; Dirri, F.; Zampetti, E. Design of 3D printed holder for quartz crystal microbalances. In Proceedings of the 2021 IEEE 8th International Workshop on Metrology for AeroSpace (MetroAeroSpace), Naples, Italy, 23–25 June 2021; pp. 715–719. [Google Scholar] [CrossRef]
Mode | 50 mm Size (Square Pattern) | 50 mm Size (Round Pattern) | 100 mm Size (Square Pattern) | 100 mm Size (Round Pattern) |
---|---|---|---|---|
1 | 245.3 | 250.7 | 63.1 | 63.8 |
2 | 501.7 | 511.4 | 129.1 | 130.2 |
3 | 501.7 | 511.8 | 186.9 | 130.2 |
4 | 726.5 | 751.7 | 233.3 | 191.0 |
5 | 906.5 | 918.7 | 234.3 | 233.9 |
50 mm Size (Square Pattern) | 50 mm Size (Round Pattern) | 100 mm Size (Square Pattern) | 100 mm Size (Round Pattern) | |
---|---|---|---|---|
Maximum Stress (MPa) | 40 | 70 | 157 | 295 |
MOS | 4.52 | 2.15 | 0.4 | −0.25 |
Mode | t = 0.1 mm | t = 0.2 mm | t = 0.3 mm | t = 0.35 mm |
---|---|---|---|---|
1 | 63.1 | 119.1 | 174.6 | 202.3 |
2 | 129.1 | 245.3 | 360.5 | 418.1 |
3 | 186.9 | 245.3 | 360.6 | 418.1 |
4 | 233.3 | 341.1 | 492.9 | 568.9 |
5 | 234.3 | 451.4 | 668.1 | 776.2 |
t = 0.1 mm | t = 0.2 mm | t = 0.3 mm | t = 0.35 mm | |
---|---|---|---|---|
Maximum Stress (MPa) | 157 | 86.8 | 57.7 | 50.6 |
MOS | 0.4 | 1.54 | 2.83 | 3.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scaccabarozzi, D.; Ahmed, A.M.R.M.; Appiani, A.; Saggin, B.; Porto, C.; Esposito, F. EMM Project—LD GRIDS: Design of a Charged Dust Analyser for Moon Exploration. Designs 2025, 9, 70. https://doi.org/10.3390/designs9030070
Scaccabarozzi D, Ahmed AMRM, Appiani A, Saggin B, Porto C, Esposito F. EMM Project—LD GRIDS: Design of a Charged Dust Analyser for Moon Exploration. Designs. 2025; 9(3):70. https://doi.org/10.3390/designs9030070
Chicago/Turabian StyleScaccabarozzi, Diego, Abdelrahman Mohamed Ragab M. Ahmed, Andrea Appiani, Bortolino Saggin, Carmen Porto, and Francesca Esposito. 2025. "EMM Project—LD GRIDS: Design of a Charged Dust Analyser for Moon Exploration" Designs 9, no. 3: 70. https://doi.org/10.3390/designs9030070
APA StyleScaccabarozzi, D., Ahmed, A. M. R. M., Appiani, A., Saggin, B., Porto, C., & Esposito, F. (2025). EMM Project—LD GRIDS: Design of a Charged Dust Analyser for Moon Exploration. Designs, 9(3), 70. https://doi.org/10.3390/designs9030070