Next Issue
Volume 13, May
Previous Issue
Volume 13, March
 
 

Inorganics, Volume 13, Issue 4 (April 2025) – 31 articles

Cover Story (view full-size image): In this work, we present a comprehensive review of TiO2-based photocatalysts modified with metals and porphyrins for enhanced hydrogen evolution via solar-driven water splitting. The incorporation of noble and Earth-abundant metals improves charge separation and shifts the absorption edge toward the visible region, while porphyrin sensitizers extend visible light activity through their strong π-conjugated systems. Herein, we highlight key photocatalytic mechanisms and challenges and propose promising strategies for developing efficient, low-cost, and sustainable photocatalysts for clean energy generation. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
13 pages, 6465 KiB  
Article
Prediction of Thermal Transport Properties of Pristine and BN-Substituted Holey Graphynes
by Qingchen Li, Yujie Zhang, Yanlong Liu, Yan Gao and Baoxia Deng
Inorganics 2025, 13(4), 128; https://doi.org/10.3390/inorganics13040128 - 21 Apr 2025
Viewed by 75
Abstract
The merging of pore designs is a potential strategy for achieving ultra-low lattice thermal conductivity (κ), for which phonon anharmonicity and size effect are indispensable for discovering novel functional materials in thermal applications. In this study, monolayer holey graphyne (HGY) and [...] Read more.
The merging of pore designs is a potential strategy for achieving ultra-low lattice thermal conductivity (κ), for which phonon anharmonicity and size effect are indispensable for discovering novel functional materials in thermal applications. In this study, monolayer holey graphyne (HGY) and boron nitride holey graphyne (BN-HGY) were examined for their phonon thermal transport properties through first-principles calculation and phonon Boltzmann function. HGY exhibits an intrinsic lattice thermal conductivity (κ) of 38.01 W/mK at room temperature, which exceeds BN-HGY’s 24.30 W/mK but is much lower than 3550 W/mK for BTE graphene. The phonon–phonon scattering behavior of BN-HGY is obviously increased compared to HGY due to the enhancement of anharmonicity, which leads to a shorter phonon lifetime and lower κ. Additionally, at room temperature, the representative mean free path (rMFP) of BN-HGY is substantially higher than that of HGY, and the κ of BN-HGY decreases faster at a larger rMFP (within a unit nm). This work will be constructive to further the application of HGY and BN-HGY as thermal management materials. Full article
(This article belongs to the Special Issue Boron-Based Low-Dimensional Nanoclusters and Nanomaterials)
Show Figures

Figure 1

11 pages, 1801 KiB  
Article
Lanthanide Exposure In Vitro Differentially Diminishes MTT Cell Viability in Axenic Neuronal or Glial Cell Model Systems
by David C. Platt, Linda M. Ferrence, Faith Breausche, Katelyn Terry, Gregory M. Ferrence and Marjorie A. Jones
Inorganics 2025, 13(4), 127; https://doi.org/10.3390/inorganics13040127 - 20 Apr 2025
Viewed by 66
Abstract
Applications of lanthanide chemistry have been successful in metallics and the petroleum industry. In the medical realm, lanthanides have shown utility in radiotherapy agents, photodynamic therapy agents, and magnetic resonance imaging (MRI) contrast agents. The lanthanide group elements have a few known biological [...] Read more.
Applications of lanthanide chemistry have been successful in metallics and the petroleum industry. In the medical realm, lanthanides have shown utility in radiotherapy agents, photodynamic therapy agents, and magnetic resonance imaging (MRI) contrast agents. The lanthanide group elements have a few known biological roles, notably among some bacteria and the yeast Saccharomyces cerevisiae, which have been used as models for changes in gene expression. However, the systematic effects of lanthanide nitrates on eukaryotic cell model systems have not yet been reported. This study presents the first documented effects on cell viability, after acute incubations of various lanthanide nitrate salts, using axenic C6 glial or PC12 neuronal cells in vitro. Cultures were exposed to a 1 mM concentration of lanthanide nitrate salts for 24 h. In comparison to the saline control, several cultures demonstrated significantly lower cell viability, as measured by the MTT viability assay. Data were analyzed as an average absorbance of n = 4 replicate samples, corrected for the average absorbance of cell-free blanks. The reported results were normalized to the average of the saline control cells. Among the 13 lanthanides tested, Praseodymium, Holmium, Erbium, Thulium, and Ytterbium nitrates exhibited the most pronounced inhibitory effects, resulting in over 40% reduction in cell viability at 1 mM for either or both cell types. Recovery after lanthanide exposure also was cell-type-dependent as well as lanthanide-type-dependent, with Lutetium having the greatest effect on both cell types. PC12 cells displayed greater sensitivity for inhibition than the C6 cells with some of the lanthanides but not all. Furthermore, the controls of sodium nitrate and calcium nitrate showed only modest discernible impacts on cell viability for PC12 and C6 cells, highlighting the role of the lanthanides in influencing cell viability. Full article
(This article belongs to the Section Bioinorganic Chemistry)
Show Figures

Figure 1

13 pages, 4135 KiB  
Article
Uncooled Microbolometers Based on Nitrogen-Doped Hydrogenated Amorphous Silicon-Germanium (a-SiGe:H,N)
by Oscar Velandia, Alfonso Torres, Alfredo Morales, Luis Hernández, Alberto Luna, Karim Monfil, Javier Flores, Gustavo M. Minquiz, Ricardo Jiménez and Mario Moreno
Inorganics 2025, 13(4), 126; https://doi.org/10.3390/inorganics13040126 - 20 Apr 2025
Viewed by 172
Abstract
An uncooled microbolometer is a thermal sensor consisting of a membrane suspended from the substrate to provide thermal insulation. Typically, the membrane is composed of a stack of three films integrated by a supporting film, an IR sensing film, and an IR absorbing [...] Read more.
An uncooled microbolometer is a thermal sensor consisting of a membrane suspended from the substrate to provide thermal insulation. Typically, the membrane is composed of a stack of three films integrated by a supporting film, an IR sensing film, and an IR absorbing film. However, the above increases the thickness of the device and affects its mechanical stability and thermal mass, thereby reducing its performance. One solution is to use a single film as a membrane with both IR sensing and IR absorbing properties. In this regard, this work presents the fabrication and evaluation of uncooled microbolometers using nitrogen-doped hydrogenated amorphous silicon-germanium (a-SiGe:H,N) as a single IR-absorber/IR sensing membrane. The films were deposited via low frequency Plasma Enhanced Chemical Vapor Deposition (PECVD) at 200 °C. Three microbolometer configurations were fabricated using a-SiGe:H,N films deposited from a SiH4, GeH4, N2, and H2 gas mixture with different SiH4 and GeH4 flow rates and, consequently, with different properties, such as temperature coefficient of resistance (TCR) and conductivity at room temperature. The microbolometer that exhibited the best performance achieved a voltage responsivity of 7.26 × 105 V/W and a NETD of 22.35 mK at 140 Hz, which is comparable to state-of-the-art uncooled infrared (IR) sensors. These results confirm that the optimization of the deposition parameters of the a-SiGe:H,N films significantly affects the microbolometers final performance, enabling an optimal balance between thermal sensitivity (TCR) and conductivity. Full article
(This article belongs to the Special Issue Recent Research and Application of Amorphous Materials)
Show Figures

Figure 1

29 pages, 6083 KiB  
Review
Carbon Nanomaterials for Electrochemical Hydrogen Storage: Mechanisms and Advancements
by Amir Reza Mashtizadeh, Shahab Khameneh Asl, Hossein Aghajani, Seyed Morteza Masoudpanah and Marek Wojnicki
Inorganics 2025, 13(4), 125; https://doi.org/10.3390/inorganics13040125 - 17 Apr 2025
Viewed by 218
Abstract
This review article investigates the rising global energy demand, which is primarily driven by population growth and industrialization, raising significant environmental concerns due to the extensive reliance on fossil fuels. In response, hydrogen is being explored as a potential eco-friendly energy solution to [...] Read more.
This review article investigates the rising global energy demand, which is primarily driven by population growth and industrialization, raising significant environmental concerns due to the extensive reliance on fossil fuels. In response, hydrogen is being explored as a potential eco-friendly energy solution to meet the urgent need for sustainable energy. This review covers various hydrogen storage methods, including compressed gas, cryogenic liquids, solid materials, and electrochemical techniques. Among these, electrochemical technology is highly regarded as a leading experimental approach for hydrogen storage, and it is noted for its outstanding performance under normal conditions. The characteristics of a material’s surface play a crucial role in determining its electrochemical hydrogen storage capacity. Innovative materials, such as graphene oxide and 3D graphene oxide, are particularly significant in this regard, as they can significantly enhance hydrogen storage capacity; electrochemical hydrogen storage functions by incorporating atomic hydrogen into carbon materials following the reduction of water. This article underscores the significance of green energy and the need to ensure safety and precision at room temperature and ambient pressure using electrochemical hydrogen storage techniques and mechanisms. Furthermore, it offers a comprehensive review of developments in electrochemical hydrogen storage and its mechanisms, focusing on carbon, graphene oxide, and the contributions of 3D graphene foam. Full article
Show Figures

Figure 1

17 pages, 3075 KiB  
Review
Application of Fluorescent Probes for the Detection of Zinc Ions in Cells and Oil Paintings
by Zhankun Wang, Zhixin Ren, Yanan Niu, Xi Cao and Yuguang Lv
Inorganics 2025, 13(4), 124; https://doi.org/10.3390/inorganics13040124 - 17 Apr 2025
Viewed by 204
Abstract
Zinc is an essential trace metal element in the human body, but it also constitutes a variety of proteins in the body of the important elements necessary; this element plays an important role in physiological metabolism. Disturbances in the metabolism of zinc ions [...] Read more.
Zinc is an essential trace metal element in the human body, but it also constitutes a variety of proteins in the body of the important elements necessary; this element plays an important role in physiological metabolism. Disturbances in the metabolism of zinc ions in the body can significantly threaten human health, especially neurological diseases. Therefore, developing a rapid and straightforward method for determining zinc ions is important. Fluorescent probe technology has been widely used for detecting and labeling zinc ions. Among many fluorescent probes, the rhodamine derivative LPDQ fluorescent probe has unique application scenarios, for example, it plays an important role in the detection of zinc white in oil colors, and its advantages are simplicity, rapidity, and real-time operation. This paper introduces the types of fluorescent probes for zinc ions and the three main mechanisms of fluorescent probe detection. The characteristics, design strategies, and application effects of the three fluorescent probes for zinc ions, as well as their advantages and limitations, are reviewed and summarized, which are intended to provide valuable references for the development of new probes for zinc ions detection in the future and for the future direction of research in this field. Full article
Show Figures

Graphical abstract

21 pages, 11004 KiB  
Review
Mitigating Lead Toxicity in Halide Perovskite Solar Cells: Strategies for Sustainable Development
by Wenguang Li, Tianci Mi, Tian Tian, Meifang Yang and Huan Pang
Inorganics 2025, 13(4), 123; https://doi.org/10.3390/inorganics13040123 - 13 Apr 2025
Viewed by 368
Abstract
Halide perovskite solar cells (PSCs) exhibit remarkable potential for addressing global energy challenges due to their exceptional photovoltaic properties and cost-effectiveness. However, their widespread adoption is hindered by the presence of toxic lead in the perovskite materials, posing risks to both human health [...] Read more.
Halide perovskite solar cells (PSCs) exhibit remarkable potential for addressing global energy challenges due to their exceptional photovoltaic properties and cost-effectiveness. However, their widespread adoption is hindered by the presence of toxic lead in the perovskite materials, posing risks to both human health and the environment. This review comprehensively examines the environmental safety concerns associated with PSCs, focusing on the toxicity of lead and its potential for leakage during device operation and end-of-life disposal. Strategies to mitigate lead leakage are explored, including advanced external encapsulation methods, internal lead immobilization techniques, and innovative recycling approaches. These strategies are evaluated based on their effectiveness, feasibility, and potential challenges, highlighting the need for a multi-pronged approach to ensure the responsible and sustainable development of PSC technology. By addressing the toxicity issue and implementing robust prevention and recycling strategies, PSCs can become a driving force for the global transition towards clean and renewable energy while minimizing environmental and health risks. Full article
(This article belongs to the Special Issue Recent Progress in Perovskites)
Show Figures

Figure 1

25 pages, 8071 KiB  
Article
The Interface Interaction of C3N4/Bi2S3 Promoted the Separation of Excitons and the Extraction of Free Photogenerated Carriers in the Broadband Light Spectrum Range
by Xingfa Ma, Xintao Zhang, Mingjun Gao, Ruifen Hu, You Wang and Guang Li
Inorganics 2025, 13(4), 122; https://doi.org/10.3390/inorganics13040122 - 12 Apr 2025
Viewed by 190
Abstract
Exciton generation and separation play an important role in the photoelectric properties and the luminescence performance of materials. In order to tailor the defects and grain boundaries and improve the exciton separation and light harvesting of the graphitic carbon nitride (g-C3N [...] Read more.
Exciton generation and separation play an important role in the photoelectric properties and the luminescence performance of materials. In order to tailor the defects and grain boundaries and improve the exciton separation and light harvesting of the graphitic carbon nitride (g-C3N4) nanosheets, a C3N4/bismuth sulfide (Bi2S3) nanocomposite was synthesized. The photoelectric properties of the 405, 532, 650, 780, 808, 980 and 1064 nm light sources were studied using Au electrodes and graphite electrodes with 4B and 5B pencil drawings. The results indicate that the C3N4/Bi2S3 nanocomposite exhibited photocurrent switching behavior in the broadband light spectrum range. It is noted that even with zero bias applied, a good photoelectric signal was still measured. The resulting nanocomposite exhibited good photophysical stability. Physical mechanisms are discussed herein. It is suggested that the interfacial interaction of C3N4 and Bi2S3 in the nanocomposite creates a strong built-in electric field, which accelerates the separation of excitons. Therefore, as a dynamic process of photoexcitation, fluorescence, the photoelectric effect, and scattering are three main competing processes; the separation of excitons and the extraction of free photogenerated charge can be used as a reference for the fluorescent materials or other photoelectric materials studies as photophysical properties. This study also serves as an important reference for the design, defect and grain boundary modulation or interdisciplinary application of functional nanocomposites, especially for the bandgap modulation and suppression of photogenerated carrier recombination. Full article
(This article belongs to the Special Issue Synthesis and Application of Luminescent Materials, 2nd Edition)
Show Figures

Figure 1

21 pages, 2681 KiB  
Review
Exploring Metal- and Porphyrin-Modified TiO2-Based Photocatalysts for Efficient and Sustainable Hydrogen Production
by Dimitrios Rafail Bitsos, Apostolos Salepis, Emmanouil Orfanos, Athanassios G. Coutsolelos, Ramonna I. Kosheleva, Athanassios C. Mitropoulos and Kalliopi Ladomenou
Inorganics 2025, 13(4), 121; https://doi.org/10.3390/inorganics13040121 - 11 Apr 2025
Viewed by 888
Abstract
Photocatalytic H2 production is one of the most promising approaches for sustainable energy. The literature presents a plethora of carefully designed systems aimed at harnessing solar energy and converting it into chemical energy. However, the main drawback of the reported photocatalysts is [...] Read more.
Photocatalytic H2 production is one of the most promising approaches for sustainable energy. The literature presents a plethora of carefully designed systems aimed at harnessing solar energy and converting it into chemical energy. However, the main drawback of the reported photocatalysts is their stability. Thus, the development of a cost-effective and stable photocatalyst, suitable for real-world applications remains a challenge. An ideal photocatalyst for H2 production must possess appropriate band-edge energy positions, an effective sacrificial agent, and a suitable cocatalyst. Among the various photocatalysts studied, TiO2 stands out due to its stability, abundance, and non-toxicity. However, its efficiency in the visible spectrum is limited by its wide bandgap. Metal doping is an effective strategy to enhance electron–hole separation and improve light absorption efficiency, thereby boosting H2 synthesis. Common metal cocatalysts used as TiO2 dopants include platinum (Pt), gold (Au), copper (Cu), nickel (Ni), cobalt (Co), ruthenium (Ru), iron (Fe), and silver (Ag), as well as bimetallic combinations such as Ni-Fe, Ni-Cu, Nb-Ta, and Ni-Pt. In all cases, doped TiO2 exhibits higher H2 production performance compared to undoped TiO2, as metals provide additional reaction sites and enhance charge separation. The use of bimetallic dopants further optimizes the hydrogen evolution reaction. Additionally, porphyrins, with their strong visible light absorption and efficient electron transfer properties, have demonstrated potential in TiO2 photocatalysis. Their incorporation expands the photocatalyst’s light absorption range into the visible spectrum, enhancing H2 production efficiency. This review paper explores the principles and advancements in metal- and porphyrin-doped TiO2 photocatalysts, highlighting their potential for sustainable hydrogen production. Full article
(This article belongs to the Special Issue Featured Papers in Inorganic Materials 2025)
Show Figures

Graphical abstract

26 pages, 7099 KiB  
Article
Straightforward Synthesis and Characterization of Analcime@Nickel Orthosilicate Novel Nanocomposite for Efficient Removal of Rhodamine B Dye from Aqueous Media
by Ehab A. Abdelrahman, Fawaz A. Saad, Mortaga M. Abou-Krisha, Abdalla M. Khedr and Zahrah Alqahtani
Inorganics 2025, 13(4), 120; https://doi.org/10.3390/inorganics13040120 - 10 Apr 2025
Viewed by 161
Abstract
Rhodamine B dye is a hazardous pollutant that poses significant risks to human health and aquatic ecosystems due to its toxic, carcinogenic nature and high chemical stability. To address this issue, analcime@nickel orthosilicate nanocomposites were synthesized via the hydrothermal method for efficient rhodamine [...] Read more.
Rhodamine B dye is a hazardous pollutant that poses significant risks to human health and aquatic ecosystems due to its toxic, carcinogenic nature and high chemical stability. To address this issue, analcime@nickel orthosilicate nanocomposites were synthesized via the hydrothermal method for efficient rhodamine B dye removal. Two nanocomposites were synthesized: EW (without a template) and ET (with polyethylene glycol 400 as a template, followed by calcination at 600 °C for 5 h). X-ray diffraction (XRD) confirmed the formation of analcime (NaAlSi2O6) and nickel orthosilicate (Ni2SiO4), with crystallite sizes of 72.93 nm (EW) and 63.60 nm (ET). Energy-dispersive X-ray spectroscopy (EDX) showed distinct distributions of oxygen, sodium, aluminum, silicon, and nickel. Field-emission scanning electron microscopy (FE-SEM) revealed irregular morphology for EW and uniform spherical nanoparticles for ET. The maximum adsorption capacities (Qmax) were 174.83 mg/g for EW and 210.53 mg/g for ET. Adsorption followed the pseudo-second-order kinetic model and was best described by the Langmuir isotherm, indicating monolayer chemisorption. Thermodynamic studies showed that adsorption was exothermic (ΔH = −45.62 to −50.92 kJ/mol) and spontaneous (ΔG < 0) and involved an entropy increase (ΔS = +0.1441 to +0.1569 kJ/mol·K). These findings demonstrate the superior adsorption efficiency of the ET composite and its potential application in dye-contaminated wastewater treatment. Full article
Show Figures

Figure 1

18 pages, 5879 KiB  
Article
Experimental Study on Van der Waals Interactions Between Organic Groups of Quaternary Ammonium Salt Surfactants and Montmorillonite in Aqueous Solutions
by Yongzheng Fu, Ming Chang, Yuhao Pan, Wennan Xu, Rui Li, Wenzhao Zhu and Hongliang Li
Inorganics 2025, 13(4), 119; https://doi.org/10.3390/inorganics13040119 - 8 Apr 2025
Viewed by 141
Abstract
Obtaining the dielectric constant and refractive index of the siloxane surface of montmorillonite (Mnt) and organic groups is difficult, limiting the study of Van der Waals (VDW) interactions between the hydrophilic end of quaternary ammonium surfactants (QASs) and Mnt. In this study, the [...] Read more.
Obtaining the dielectric constant and refractive index of the siloxane surface of montmorillonite (Mnt) and organic groups is difficult, limiting the study of Van der Waals (VDW) interactions between the hydrophilic end of quaternary ammonium surfactants (QASs) and Mnt. In this study, the average adsorption distance, VDW adsorption energy, and VDW constant of QASs and their groups adsorbed on the montmorillonite surface are obtained by microcalorimeter. Herein, the VDW interactions between five QASs and a Mnt surface are compared. Interactions between QASs with different hydrophilic ends and Mnt in aqueous solution were positively correlated with the dipole moment of the hydrophilic end groups, and the VDW interaction energies differed depending on the superposition of CH2 adsorption at the hydrophobic ends. The electrostatic and VDW adsorption capacities were studied through zeta potential and adsorption capacity experiments. Physical adsorption was determined using Fourier-transform infrared spectroscopy, and the hydrophobic floc morphology was characterized using environmental scanning electron microscopy. Focused beam reflectance measurements, thermogravimetric-differential scanning calorimetry, and light transmittance were used to quantitatively analyze the hydrophobic effect of the QASs. Full article
Show Figures

Graphical abstract

15 pages, 2766 KiB  
Article
Microwave-Assisted Synthesis of Pd/g-C3N4 for Enhanced Photocatalytic Degradation of Sulfamethoxazole
by Lan-Anh T. Hoang, Trinh Duy Nguyen and Taeyoon Lee
Inorganics 2025, 13(4), 118; https://doi.org/10.3390/inorganics13040118 - 8 Apr 2025
Viewed by 199
Abstract
Sulfamethoxazole (SMX) is a widely used antibiotic for bacterial infections and is frequently found in surface waters and wastewater treatment plant effluents, where it is commonly co-administered with trimethoprim. Because of its emerging ecological and health risks, the development of effective elimination strategies [...] Read more.
Sulfamethoxazole (SMX) is a widely used antibiotic for bacterial infections and is frequently found in surface waters and wastewater treatment plant effluents, where it is commonly co-administered with trimethoprim. Because of its emerging ecological and health risks, the development of effective elimination strategies is urgently required. In this study, a rapid microwave-assisted technique was employed to synthesize a Pd/g-C3N4 photocatalyst for the elimination of SMX in aqueous solution. The structure and optical properties of all samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), photoluminescence (PL), and UV–visible diffuse reflectance spectroscopy. The photocatalytic performance of Pd/g-C3N4 was systematically evaluated under visible-light irradiation. The results demonstrated that Pd/g-C3N4 achieved a 97% removal efficiency, significantly outperforming pure g-C3N4, which reached only 57% removal. The degradation rate constant for Pd/g-C3N4 was calculated to be 0.0139 min−1, approximately 6.6 times higher than that of bare g-C3N4. This enhanced performance is attributed to the incorporation of Pd nanoparticles, which effectively suppressed the recombination of photogenerated electron–hole pairs and promoted charge separation. The influence of key operational parameters, including pH, SMX concentration, and catalyst dose, were systematically examined. Furthermore, the photocatalytic mechanism of the Pd/g-C3N4 photocatalyst was explored to elucidate its degradation pathways. Full article
Show Figures

Figure 1

12 pages, 3371 KiB  
Article
The Effect of Localized Magnetic Fields on the Spatially Controlled Crystallization of Transition Metal Complexes
by Ian R. Butler, Rhodri M. Williams, Alice Heeroma, Peter N. Horton, Simon J. Coles and Leigh F. Jones
Inorganics 2025, 13(4), 117; https://doi.org/10.3390/inorganics13040117 - 7 Apr 2025
Viewed by 232
Abstract
A series of nickel (II) bis-phosphine organometallic complexes along with two pseudo [M7] (M = Ni(II), Zn(II)) metallocalix[6]arene complexes and a dysprosium acetate coordination polymer have each been crystallised in the presence of localized magnetic fields set up using neodymium magnets, [...] Read more.
A series of nickel (II) bis-phosphine organometallic complexes along with two pseudo [M7] (M = Ni(II), Zn(II)) metallocalix[6]arene complexes and a dysprosium acetate coordination polymer have each been crystallised in the presence of localized magnetic fields set up using neodymium magnets, using custom made Magnetic Crystallization Towers (MCTs). In all cases, whether the product complex is diamagnetic or paramagnetic, a complex spatial patterning of the crystals occurs based on the orientation of the magnetic field lines. When using magnetic block towers, the crystallization generally occurs adjacent to the magnet face. The effects of nucleation and solution concentration gradients on the crystallization process are also explored. These observations show how the crystallization process is affected by magnetic fields and thus these results have far-reaching effects which most certainly will include crystallization and ion migrations in biology. Full article
(This article belongs to the Section Inorganic Solid-State Chemistry)
Show Figures

Graphical abstract

24 pages, 10005 KiB  
Article
Cyanoguanidine-Modified Chitosan as an Efficacious Adsorbent for Removing Cupric Ions from Aquatic Solutions: Kinetics, Isotherms, and Mechanisms
by Ard elshifa M. E. Mohammed, Nouf F. Al-Harby, Muneera Alrasheedi, Shaimaa M. Ibrahim and Nadia A. Mohamed
Inorganics 2025, 13(4), 116; https://doi.org/10.3390/inorganics13040116 - 6 Apr 2025
Viewed by 277
Abstract
One of the most critical environmental needs is to remove metal ions from industrial wastewater. In this investigation, chitosan modified by cyanoguanidine (CCs) was employed for the first time to adsorb cupric ions. The optimal conditions for eliminating cupric ions were adsorbent dose [...] Read more.
One of the most critical environmental needs is to remove metal ions from industrial wastewater. In this investigation, chitosan modified by cyanoguanidine (CCs) was employed for the first time to adsorb cupric ions. The optimal conditions for eliminating cupric ions were adsorbent dose = 0.015 g, cupric ion concentration = 0.2 g L−1, pH = 6, and temperature = 25 °C. The adsorption kinetics fit the pseudo-second-order model, showing a value of correlation coefficient (R2) of 1.00, which is the highest. The experimental qe value was determined to be 99.05 mg g−1, which is comparable to 100 mg g−1 (the theoretical one). The adsorbent’s removal efficacy was 96.05%, and the adsorption isotherms, which conform to the Freundlich model, show that adsorption is multi-layered and homogeneous. The chemosorption and physisorption processes are major factors in the elimination of copper ions. Therefore, a good approach to generate an appropriate efficient adsorbent, which is a good alternative approach in cupric ion elimination, is to incorporate cyanoguanidine, which possesses additional binding sites for cupric ions between chitosan chains. Further, the mechanism of Cu2+ adsorption onto CCs was proposed on the basis of FTIR analysis and computational studies. Full article
Show Figures

Figure 1

16 pages, 4035 KiB  
Article
Realizing Environmentally Scalable Pre-Lithiation via Protective Coating of LiSi Alloys to Promote High-Energy-Density Lithium-Ion Batteries
by Yinan Liu, Wei Jiang, Congcong Zhang, Pingshan Jia, Zhiyuan Zhang, Yun Zheng, Kunye Yan, Jun Wang, Yunxian Qian, Junpo Guo, Rong Chen, Yike Huang, Yingying Shen, Lifen Long, Bang Zheng and Huaiyu Shao
Inorganics 2025, 13(4), 115; https://doi.org/10.3390/inorganics13040115 - 6 Apr 2025
Viewed by 339
Abstract
Pre-lithiation using Li–Si alloy-type additives is a promising technical approach to address the drawbacks of Si-based anodes, such as a low initial Coulombic efficiency (ICE) and inevitable capacity decay during cycling. However, its commercial application is limited by the air sensitivity of the [...] Read more.
Pre-lithiation using Li–Si alloy-type additives is a promising technical approach to address the drawbacks of Si-based anodes, such as a low initial Coulombic efficiency (ICE) and inevitable capacity decay during cycling. However, its commercial application is limited by the air sensitivity of the highly reactive Li–Si alloys, which demands improved environmental stability. In this work, a protective membrane is constructed on Li13Si4 alloys using low-surface-energy paraffin and highly conductive carbon nanotubes through liquid-phase deposition, exhibiting enhanced hydrophobicity and improved Li+/e conductivity. The Li13Si4@Paraffin/carbon nanotubes (Li13Si4@P-CNTs) composite achieves a high pre-lithiation capacity of 970 mAh g−1 and superb environmental stability, retaining 92.2% capacity after exposure to ambient air with 45% relative humidity. DFT calculations and in situ XRD measurements reveal that the paraffin-dominated coating membrane, featuring weak dipole–dipole interactions with water molecules, effectively reduces the moisture-induced oxidation kinetics of Li13Si4@P-CNTs in air. Electrochemical kinetic analysis and XPS depth profiling reveal the enhancement in charge transfer dynamics and surface Li+ transport kinetics (SEI rich in inorganic lithium salts) in P-SiO@C pre-lithiated by Li13Si4@P-CNTs pre-lithiation additives. Benefitting from pre-lithiation via Li13Si4@P-CNTs, the pre-lithiated SiO@C(P-SiO@C) delivers high ICE (103.7%), stable cycling performance (981 mAh g−1 at 200 cycles) and superior rate performance (474.5 mAh g−1 at 3C) in a half-cell system. The LFP||P-Gr pouch-type full cell exhibits a capacity retention of 83.2% (2500 cycles) and an energy density of 381 Wh kg−1 after 2500 cycles. The Li13Si4@P-CNTs additives provide valuable design concepts for the development of pre-lithiation materials. Full article
(This article belongs to the Special Issue Advanced Electrode Materials for Energy Storage Devices)
Show Figures

Graphical abstract

17 pages, 5778 KiB  
Article
Adsorption of CuSO4 on Anatase TiO2 (101) Surface: A DFT Study
by Frank Maldonado, Darwin Castillo, Silvio Aguilar, Javier Carrión and Aramis Sánchez
Inorganics 2025, 13(4), 114; https://doi.org/10.3390/inorganics13040114 - 5 Apr 2025
Viewed by 225
Abstract
The rapid growth of industrial activities has increased environmental pollution, and solar-driven heterogeneous photocatalysis using TiO2 has emerged as a promising solution. However, its wide band gap limits its efficiency, prompting research into various optimization strategies. One of these approaches is surface [...] Read more.
The rapid growth of industrial activities has increased environmental pollution, and solar-driven heterogeneous photocatalysis using TiO2 has emerged as a promising solution. However, its wide band gap limits its efficiency, prompting research into various optimization strategies. One of these approaches is surface functionalization. Thus, this study investigates the adsorption of CuSO4 on the anatase TiO2 (101) surface using density functional theory calculations. The adsorption process induced a magnetic moment of 0.97 µB and a slight reduction in overall bandwidth. A preferential adsorption geometry pattern with an energy of −4.31 eV was identified. Charge transfer analysis revealed a net transfer from the TiO2 surface to the CuSO4 molecule, with increased net atomic charges for atoms involved in new chemical bond formation, indicating a chemisorption process. These electronic structure modifications are expected to influence the electronic and catalytic properties of the material. The findings provide insights into the CuSO4 adsorption mechanism on an anatase TiO2 (101) surface and its impact on the properties of the material, contributing to a deeper understanding of this system. Full article
Show Figures

Graphical abstract

17 pages, 10207 KiB  
Article
Synthesis of Multiwalled Carbon Nanotubes on Different Cobalt Nanoparticle-Based Substrates
by Nicolas Moreau, Antonio Fonseca, Danilo Vuono, Joseph Delhalle, Zineb Mekhalif, Pierantonio De Luca and Janos B.Nagy
Inorganics 2025, 13(4), 113; https://doi.org/10.3390/inorganics13040113 - 3 Apr 2025
Viewed by 207
Abstract
The primary aim of this research was to identify the optimal experimental conditions for obtaining aligned carbon nanotubes, temporarily leaving aside aspects such as the purity of carbon nanotubes, which is nonetheless crucial for potential applications in the field of nanoelectronics. The predefined [...] Read more.
The primary aim of this research was to identify the optimal experimental conditions for obtaining aligned carbon nanotubes, temporarily leaving aside aspects such as the purity of carbon nanotubes, which is nonetheless crucial for potential applications in the field of nanoelectronics. The predefined alignment of CNTs can significantly influence the performance and efficiency of electronic components. In this study, two different catalytic supports based on cobalt nanoparticles, Co/SiO2/Si and Co/C, have been utilized and compared in the catalytic chemical vapor deposition (CCVD) synthesis of CNTs. Various parameters have been examined, including the nature and thickness of the catalyst, the reaction temperature, and the pressure of the acetylene mixture entering the reactor. The results indicate that the optimal temperature for the Co/SiO2/Si catalyst is 800 °C, while for the Co/C catalyst, it is 450 °C. The optimal Co layer thickness should be between 20 and 30 Å. CNT growth occurs from the top in the Co/C system, whereas bottom-up growth is characteristic of the Co/SiO2/Si catalyst, making the latter more suitable for the synthesis of CNTs intended for nanoelectronic devices. Full article
Show Figures

Figure 1

24 pages, 7829 KiB  
Article
Facile Synthesis and Characterization of SrCO3/MgO/CaO/CaCO3 Novel Nanocomposite for Efficient Removal of Crystal Violet Dye from Aqueous Media
by Ehab A. Abdelrahman and Maram T. Basha
Inorganics 2025, 13(4), 112; https://doi.org/10.3390/inorganics13040112 - 3 Apr 2025
Viewed by 264
Abstract
Crystal violet dye poses significant environmental and human health risks due to its toxicity, persistence, and bioaccumulative nature. It contributes to potential carcinogenicity, cytotoxicity, and systemic toxicity upon human exposure. To address this issue, a novel SrCO3/MgO/CaO/CaCO3 nanocomposite was synthesized [...] Read more.
Crystal violet dye poses significant environmental and human health risks due to its toxicity, persistence, and bioaccumulative nature. It contributes to potential carcinogenicity, cytotoxicity, and systemic toxicity upon human exposure. To address this issue, a novel SrCO3/MgO/CaO/CaCO3 nanocomposite was synthesized using the Pechini sol-gel method, producing AE500 and AE700 at 500 and 700 °C, respectively, for the efficient removal of crystal violet dye from aqueous media. X-ray diffraction (XRD) analysis confirmed the formation of crystalline phases, with average crystallite sizes of 64.53 nm for AE500 and 75.34 nm for AE700. Energy-dispersive X-ray spectroscopy (EDX) revealed elemental compositions with variations in carbon, oxygen, magnesium, calcium, and strontium percentages influenced by synthesis temperature. Field-emission scanning electron microscopy (FE-SEM) showed morphological differences, where AE500 had irregular polyhedral structures, while AE700 exhibited more compact spherical formations, with average grain sizes of 99.98 and 132.23 nm, respectively. High-resolution transmission electron microscopy (HR-TEM) confirmed the structural integrity and nano-scale morphology, showing aggregated irregularly shaped particles in AE500, while AE700 displayed well-defined polyhedral and nearly spherical nanoparticles. The calculated average particle diameters were 21.67 nm for AE500 and 41.19 nm for AE700, demonstrating an increase in particle size with temperature. Adsorption studies demonstrated maximum capacities of 230.41 mg/g for AE500 and 189.39 mg/g for AE700. The adsorption process was exothermic, spontaneous, and physical, following the pseudo-first-order kinetic model and Langmuir isotherm, indicating monolayer adsorption onto a homogenous surface. Full article
Show Figures

Figure 1

15 pages, 2726 KiB  
Article
Electrochemical Quartz Microbalance for Studying Electrodeposited Pt Catalysts for Methanol Oxidation Reaction
by Bangfeng Zong, Xiaojun Pan, Bo Wei, Lifang Zhang, Xiangxiong Feng, Chenggong Hou, Hai Yan, Wenju Xie, Guicheng Liu and Feng Ye
Inorganics 2025, 13(4), 111; https://doi.org/10.3390/inorganics13040111 - 3 Apr 2025
Viewed by 212
Abstract
Pt catalysts are investigated for methanol oxidation in direct methanol fuel cells, utilizing the electrochemical quartz microbalance method (EQCM) with exceptional resolution and sensitivity. Pt catalysts were deposited onto the gas-diffusion layer of carbon using stationary potential electrodeposition. Physical characterization and electrochemical tests [...] Read more.
Pt catalysts are investigated for methanol oxidation in direct methanol fuel cells, utilizing the electrochemical quartz microbalance method (EQCM) with exceptional resolution and sensitivity. Pt catalysts were deposited onto the gas-diffusion layer of carbon using stationary potential electrodeposition. Physical characterization and electrochemical tests were performed. SEM results showed that Pt presented dendrite crystals with nanoscale facets. Cyclic voltammetry (CV) demonstrated that the current density for the methanol oxidation reaction highly reached 1020 mA·cm−2 for the deposited Pt catalyst by EQCM. The dendrite crystal structures of deposited Pt provide much area for high catalytic activity. It found that the peak density of the Pt catalysts for the methanol oxidation reaction decreased after five cycles. Furthermore, the response frequency for the adsorption of the deposited Pt catalysts was investigated using EQCM and compared with commercial PtRu catalysts. The results showed that the response frequency of the Pt catalysts decreased more rapidly than that of the PtRu catalysts. It is possible for the adsorption of small organic molecules on Pt catalysts to occur during the methanol electro-oxidation with COad intermediates. The reaction mechanism is preliminarily discussed by the electrochemical measurement combined with EQCM. Full article
Show Figures

Figure 1

6 pages, 205 KiB  
Editorial
Featured Papers in Inorganic Materials 2024
by Roberto Nisticò and Torben R. Jensen
Inorganics 2025, 13(4), 110; https://doi.org/10.3390/inorganics13040110 - 2 Apr 2025
Viewed by 138
Abstract
After the impressive success of the Special Issue “10th Anniversary of Inorganics: Inorganic Materials”, published in 2023 [...] Full article
(This article belongs to the Special Issue Featured Papers in Inorganic Materials 2024)
20 pages, 6163 KiB  
Article
Copper Methacrylate Complexes with Benzimidazole Derivatives: Structural Characterization and Antimicrobial Assays
by Andra-Georgeta Andrei, Rodica Olar, Cătălin Maxim, Gina Vasile Scăețeanu, Ioana-Cristina Marinas, Madalina-Diana Gaboreanu and Mihaela Badea
Inorganics 2025, 13(4), 109; https://doi.org/10.3390/inorganics13040109 - 1 Apr 2025
Viewed by 230
Abstract
In order to design antimicrobial species, a series of methacrylate (Macr) complexes, [Cu(HBzIm)2(Macr)2] (1), [Cu2(HBzIm)2(Macr)4] (2), [Cu(2-MeBzIm)2(Macr)2] (3), [Cu2(2-MeBzIm)2(Macr) [...] Read more.
In order to design antimicrobial species, a series of methacrylate (Macr) complexes, [Cu(HBzIm)2(Macr)2] (1), [Cu2(HBzIm)2(Macr)4] (2), [Cu(2-MeBzIm)2(Macr)2] (3), [Cu2(2-MeBzIm)2(Macr)4] (4), and [Cu(5,6-Me2BzIm)2(Macr)2] (5) (HBzIm = benzimidazole, 2-MeBzIm = 2-methylbenzimidazole, and 5,6-Me2BzIm = 5,6-dimethylbenzimidazole) were synthesized and characterized by several spectral techniques, as well as by single crystal X-ray diffraction. The mononuclear species exhibit a distorted octahedral stereochemistry, while the binuclear types, with a paddle-wheel structure, adopt a square pyramidal surrounding. The methacrylate acts either as a chelate or a bridge, while all benzimidazole derivatives are coordinated as unidentate. The supramolecular networks are developed by both intermolecular π–π stacking interactions and hydrogen bonds. The antimicrobial assays provided both complexes the ability to inhibit planktonic strain proliferation, as well as to adhere on inert substratum. All complexes exhibit a moderate antimicrobial activity, both in regards to standard and clinical isolate strains, the most active being compound 5 against Candida albicans, with a minimum inhibitory concentration (MIC) of 0.156 mg/mL. It is worth mentioning that complex 1 inhibited the microbial adhesion of the clinical Escherichia coli strain and complex 2 constrained that of the clinical C. albicans strain. Full article
(This article belongs to the Special Issue Metal Complexes with N-donor Ligands, 2nd Edition)
Show Figures

Graphical abstract

18 pages, 4833 KiB  
Article
Achieving Ultralong Room-Temperature Phosphorescence in Two-Dimensional Metal-Halide Perovskites by Tuning Alkyl Chain Length
by Suqin Wang, Hui Zhu, Ming Sheng, Bo Shao, Yu He, Zhuang Liu, Min Li and Guangtao Zhou
Inorganics 2025, 13(4), 108; https://doi.org/10.3390/inorganics13040108 - 1 Apr 2025
Viewed by 208
Abstract
Two-dimensional (2D) metal-halide perovskites with highly efficient room-temperature phosphorescence (RTP) are rare due to their complex structures and intricate intermolecular interactions. In this study, by varying the alkyl chain length in organic amines, we synthesized two 2D metal-halide perovskites, namely 4-POMACC and 4-POEACC, [...] Read more.
Two-dimensional (2D) metal-halide perovskites with highly efficient room-temperature phosphorescence (RTP) are rare due to their complex structures and intricate intermolecular interactions. In this study, by varying the alkyl chain length in organic amines, we synthesized two 2D metal-halide perovskites, namely 4-POMACC and 4-POEACC, both of which exhibit significant RTP emission. Notably, 4-POMACC demonstrates a stronger green RTP emission with a significantly longer lifetime (254 ms) and a higher photoluminescence quantum yield (9.5%) compared to 4-POEACC. A thorough investigation of structural and optical properties reveals that shorter alkyl chains can enhance the optical performance due to reduced molecular vibrations and more effective exciton recombination. Computational calculations further show that the smaller energy gap between S1 and Tn in 4-POMA facilitates intersystem crossing, thereby improving RTP performance. Based on their remarkable phosphorescence properties, we demonstrated their applications in information encryption. This work offers a novel design strategy that could inspire the development of next-generation RTP materials. Full article
(This article belongs to the Special Issue Advanced Inorganic Semiconductor Materials, 2nd Edition)
Show Figures

Figure 1

9 pages, 1114 KiB  
Article
Electrical Features of Liquid Crystal Composition Doped with Cobalt Ferrite: Possible Sensing Applications
by Yaroslav Barnash, Sonja Jovanović, Zoran Jovanović and Natalia Kamanina
Inorganics 2025, 13(4), 107; https://doi.org/10.3390/inorganics13040107 - 28 Mar 2025
Viewed by 210
Abstract
The effects of CoFe2O4 nanoparticles on the properties of an electro-optical liquid crystal cell based on the nematic composition of 4-Cyano-4′-pentylbiphenyl (5CB) under the influence of different forms of bias voltage were studied. Detailed results were established for the application [...] Read more.
The effects of CoFe2O4 nanoparticles on the properties of an electro-optical liquid crystal cell based on the nematic composition of 4-Cyano-4′-pentylbiphenyl (5CB) under the influence of different forms of bias voltage were studied. Detailed results were established for the application of sinusoidal voltages with various frequencies and amplitudes. At the input signal, with a frequency of 500 kHz, a resonant current increase was obtained in the electrical circuit, followed by a decrease in the current with an increase in the frequency. This indicates the formation of a consistent oscillatory circuit. The quality factor of the nanoparticle system does not depend on the amplitude of the controlled voltage. Liquid crystal cells with constant quality can be used in a number of devices and technologies, including extended sensing devices, where stable electrical properties are required. Full article
Show Figures

Figure 1

25 pages, 5688 KiB  
Article
Correlating the Characteristics and Catalytic Performance of Mn-Na-W-Ox/SiO2 for Oxidative Coupling of Methane
by Hamid Reza Godini, Stefan Berendts, Rafael Kleba-Ehrhardt, Asma Tufail Shah and Oliver Görke
Inorganics 2025, 13(4), 106; https://doi.org/10.3390/inorganics13040106 - 28 Mar 2025
Viewed by 258
Abstract
Chemical–structural characteristics of three differently synthesized research-benchmark Mn-Na-W-Ox/SiO2 catalysts for the Oxidative Coupling of Methane (OCM) were systematically studied in this research. XRD, EDX, ICP-OES, and SEM/FIB-SEM techniques, as well as Carrier Gas Hot Extraction (CGHE) and high-temperature XRD analyses, [...] Read more.
Chemical–structural characteristics of three differently synthesized research-benchmark Mn-Na-W-Ox/SiO2 catalysts for the Oxidative Coupling of Methane (OCM) were systematically studied in this research. XRD, EDX, ICP-OES, and SEM/FIB-SEM techniques, as well as Carrier Gas Hot Extraction (CGHE) and high-temperature XRD analyses, were performed to explain the functional features of the studied catalysts, in particular, the features affecting the quantity and quality of the interactions of oxygen and methane with the catalyst surface and with other molecular and radical species. These enable tracking the potential for the oxygen activation and dynamic transformation of the solid-state chemistry on the surface and sub-surface of these Mn-Na-W-Ox/SiO2 catalysts. These catalysts were synthesized, respectively, via the sol–gel synthesis method (Cat1) and the incipient wetness impregnation of the non-structured silica support (Cat2) and structured SBA-15 silica support (Cat3), under different sets of temperatures and gas compositions. The catalysts with the homogenous distribution of active components, namely Cat1 and Cat3, showed similar trends in terms of their dynamic interaction with oxygen species. They also showed higher levels of crystallinity of the active materials and higher catalytic selectivity towards ethane and ethylene. An explanation is given as to how the structural characteristics of the catalysts on the nanometer–micrometer scale contribute to these. The gained knowledge will be crucial in the selection and treatment of the support and developing a proper synthesis approach for the ultimate goal of designing a selective OCM catalyst. Full article
Show Figures

Figure 1

17 pages, 6481 KiB  
Article
Enhanced Antimicrobial and Biomedical Properties of Fe-Based Bulk Metallic Glasses Through Ag Addition
by Long Jiang, Xueru Fan, Qiang Li, Xin Li, Tao Jiang and Qin Wei
Inorganics 2025, 13(4), 105; https://doi.org/10.3390/inorganics13040105 - 28 Mar 2025
Viewed by 228
Abstract
This study explores the enhancement of antimicrobial and biomedical properties in Fe-based bulk metallic glasses (BMGs) through the addition of Ag. Fe55-xCr20Mo5P13C7Agx (x = 0, 1, 2, 3 at.%) master alloy ingots [...] Read more.
This study explores the enhancement of antimicrobial and biomedical properties in Fe-based bulk metallic glasses (BMGs) through the addition of Ag. Fe55-xCr20Mo5P13C7Agx (x = 0, 1, 2, 3 at.%) master alloy ingots were synthesized by the induction melting technique and industrial-grade raw materials, the master alloy ingots were prepared as bulk metallic glasses (referred to as Ag0, Ag1, Ag2, and Ag3) by the water-cooled copper-mold suction casting technique, and their glass-forming ability, corrosion resistance, biocompatibility, and antimicrobial properties were systematically investigated. The results indicate that the glass forming ability (GFA) decreased with increasing Ag content, reducing the critical diameter for fully amorphous formation from 2.0 mm for Ag0 to 1.0 mm for Ag3. Electrochemical tests in Hank’s solution revealed the superior corrosion resistance of the Fe-based BMGs as compared with conventional 316 L stainless steel (316L SS) and Ti6Al4V alloy (TC4), with Ag3 demonstrating the lowest corrosion current density and the most stable passivation. Biocompatibility assessments, including fibroblast cell viability and adhesion tests, showed enhanced cellular activity and morphology on Fe-based BMG surfaces as compared with 316L SS and TC4, with minimal harmful ion release. Antimicrobial tests against E. coli and S. aureus revealed significantly improved performance with the Ag addition, achieving bacterial inhibition rates of up to 87.5% and 86.7%, respectively, attributed to Ag+-induced reactive oxygen species (ROS) production. With their excellent corrosion resistance, biocompatibility, and antimicrobial activity, the present Ag-containing Fe-based BMGs, particularly Ag3, are promising candidates for next-generation biomedical implants. Full article
(This article belongs to the Special Issue Recent Research and Application of Amorphous Materials)
Show Figures

Figure 1

13 pages, 4848 KiB  
Article
Synthesis, Characterization, and Structural Studies of Some Homo- and Heteroleptic Cu(I) Complexes Bearing 6,6′-Bis(phenylethynyl)-2,2′-Bipyridine Ligand
by Rayya A. Al-Balushi, Md. Serajul Haque Faizi, Md. Mushtaque, Idris J. Al-Busaidi and Muhammad S. Khan
Inorganics 2025, 13(4), 104; https://doi.org/10.3390/inorganics13040104 - 28 Mar 2025
Viewed by 253
Abstract
Coordination-driven Cu(I) complexes constitute an interesting class of materials with rich opto-electronic properties and diverse applications. Various homo- and heteroleptic Cu(I) complexes have been reported in the literature. In continuation with our quest for new materials, we report herein two novel coordination-driven self-assembled [...] Read more.
Coordination-driven Cu(I) complexes constitute an interesting class of materials with rich opto-electronic properties and diverse applications. Various homo- and heteroleptic Cu(I) complexes have been reported in the literature. In continuation with our quest for new materials, we report herein two novel coordination-driven self-assembled Cu(I) complexes: the homoleptic (1) and the heteroleptic (2) complexes based on the 6,6′-bis(phenylethynyl)-2,2′-bipyridine (L1) and 2,9-dimethyl-1,10-phenanthroline (dmph) ligands. L1 was prepared by a Pd(II)-catalyzed Sonogashira cross-coupling reaction between phenylactylene and 6,6′-dibromo-2,2′-bipyridine. Homo- and heteroleptic Cu(I) complexes were obtained by the self-assembly of L1 and dmph ligands. Complexes (1) and (2) were obtained in high yields, and are soluble in common organic solvents and stable at room temperature over a long period of time. The optical (absorption and emission) properties of both complexes were evaluated. The optical properties in solution are a function of the ligands and varied for the complexes. Complex (2) was also characterized by single-crystal X-ray diffraction and the intermolecular interaction was studied using Hirschfeld surface analysis. In the solid state, complex (2) exhibited four-coordinate distorted tetrahedral geometry around Cu(I). Density functional theory (B3LYP/6-311++G(d,p) was utilised to determine various molecular descriptors. Full article
Show Figures

Figure 1

18 pages, 6689 KiB  
Review
Classification, Functions, Development and Outlook of Photoanode Block Layer for Dye-Sensitized Solar Cells
by Youqing Wang, Wenxuan Wu and Peiling Ren
Inorganics 2025, 13(4), 103; https://doi.org/10.3390/inorganics13040103 - 27 Mar 2025
Viewed by 248
Abstract
The block layer situated between the active material and electrode in photoelectrochemical devices serves as a critical component for performance enhancement. Using dye-sensitized solar cells as a representative model, this review systematically examines the strategic positioning and material selection criteria of block layers [...] Read more.
The block layer situated between the active material and electrode in photoelectrochemical devices serves as a critical component for performance enhancement. Using dye-sensitized solar cells as a representative model, this review systematically examines the strategic positioning and material selection criteria of block layers following a concise discussion of their fundamental mechanisms. We categorize block layer architectures into three distinct configurations: single layer, doped layer, and multilayer structures. The electron generation and transport mechanisms to photoelectrodes are analyzed through structural design variations across these configurations. Through representative literature examples, we demonstrate the correlation between material properties and photoconversion efficiency, accompanied by comprehensive performance comparisons. In the single-layer section, we comparatively evaluate the merits and limitations of TiO2- and ZnO-based block layers. The doped layer discussion traces the evolutionary trajectory from single-dopant systems to co-doping strategies. For multilayer architectures, we elaborate on the flexibility of its functional regulation. Finally, we present a forward-looking perspective on the hot issues that need to be urgently addressed in photoelectrochemical device block layers. Full article
Show Figures

Figure 1

13 pages, 4020 KiB  
Article
Investigation on the Electron Emission Regularity of Sputtered Boron Nitride Thin Films and Microstructured Array Surfaces
by Yuqing Gu, Juannan Li and Dan Wang
Inorganics 2025, 13(4), 102; https://doi.org/10.3390/inorganics13040102 - 26 Mar 2025
Viewed by 216
Abstract
Boron nitride (BN) ceramic is an important support material in aerospace, arc discharge devices, and vacuum electronics. The electron emission properties of BN surfaces are of significance among various space applications. In this work, by preparing BN thin films and microstructured BN bulks, [...] Read more.
Boron nitride (BN) ceramic is an important support material in aerospace, arc discharge devices, and vacuum electronics. The electron emission properties of BN surfaces are of significance among various space applications. In this work, by preparing BN thin films and microstructured BN bulks, we have investigated the influence of the surface physical properties on the electron emission coefficient (EEC). The results showed that the surfaces of BN films, which were prepared by magnetron sputtering, produced serious gas adsorption and organic contamination when they were left for 10 days, and these surface modifications made the EEC of BN film surface decrease to a certain extent. The argon ion cleaning experiments indicated that the process of ion cleaning was able to partly eliminate the surface adsorption and contamination for the BN film. The EEC of the cleaned BN film surface was significantly improved compared to that of the original polluted BN film surface, with an EEC peak value of about 3.2 instead of 3.0 for the original polluted surfaces. By contrast, the EEC curves of the BN bulk show some difference, with the peak values of the EEC curves being 2.62 for the untreated BN bulk. The results of laser etching on the BN bulk surface to form microarray structures show that the EEC of BN bulk decreases significantly with the increase of the average aspect ratio of the microstructures. The EEC peak values of the BN bulks decrease from 2.62 to 1.16 when the porosity of the BN bulk reaches 49.11% and the aspect ratio reaches 1.36, indicating that constructing a surface microstructure is an effective method to achieve EEC reduction. By employing the electron trajectory tracking algorithm and the phenomenological model of electron emission, the effect of microstructure on EEC for BN bulk was quantitatively explained. The results of the study are of engineering application significance for vacuum devices involving the electron emission process of BN ceramic. Full article
(This article belongs to the Special Issue Boron-Based Low-Dimensional Nanoclusters and Nanomaterials)
Show Figures

Figure 1

23 pages, 7246 KiB  
Article
Facile Synthesis and Characterization of Novel CoFe2O4@MgO@(Mg0.23Co0.77)(Mg0.35Co1.65)O4@C and CoFe2O4@MgO@C Nanocomposites for Efficient Removal of Zn(II) Ions from Aqueous Media
by Ehab A. Abdelrahman, Reem K. Shah, Mortaga M. Abou-Krisha, Fawaz A. Saad and Abdalla M. Khedr
Inorganics 2025, 13(4), 101; https://doi.org/10.3390/inorganics13040101 - 23 Mar 2025
Viewed by 224
Abstract
Excessive levels of Zn(II) ions in aquatic environments pose significant risks to both ecosystems and human health. In aquatic systems, Zn(II) ions disrupt metabolic functions in organisms, leading to toxicity and bioaccumulation. For humans, prolonged exposure can result in gastrointestinal distress, immune system [...] Read more.
Excessive levels of Zn(II) ions in aquatic environments pose significant risks to both ecosystems and human health. In aquatic systems, Zn(II) ions disrupt metabolic functions in organisms, leading to toxicity and bioaccumulation. For humans, prolonged exposure can result in gastrointestinal distress, immune system dysfunction, and neurological complications, necessitating effective removal strategies. This study reports the synthesis and characterization of CoFe-MgO-C-M600 (CoFe2O4@MgO@(Mg0.23Co0.77)(Mg0.35Co1.65)O4@C) and CoFe-MgO-C-M800 (CoFe2O4@MgO@C) nanocomposites for the efficient removal of Zn(II) ions from aqueous media. The nanocomposites were synthesized using the Pechini sol-gel method and characterized through X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), field emission scanning electron microscopy (FE-SEM), and high-resolution transmission electron microscopy (HR-TEM). XRD analysis confirmed the crystalline structure of both nanocomposites, with CoFe-MgO-C-M600 exhibiting a smaller average crystallite size (38.67 nm) than CoFe-MgO-C-M800 (75.48 nm). EDX results verified the elemental composition of the nanocomposites, ensuring the successful incorporation of key elements. FE-SEM analysis revealed significant morphological differences, with CoFe-MgO-C-M600 displaying smaller and more uniform grains compared to CoFe-MgO-C-M800. The results show that CoFe-MgO-C-M600 possesses a highly porous and interconnected structure, enhancing its surface area and adsorption potential. In contrast, CoFe-MgO-C-M800 demonstrates larger and more compact grains, which may affect its adsorption performance. HR-TEM further confirmed these findings, demonstrating that CoFe-MgO-C-M600 had a smaller average particle diameter (35.45 nm) than CoFe-MgO-C-M800 (321.14 nm). Adsorption studies indicated that CoFe-MgO-C-M600 and CoFe-MgO-C-M800 achieved maximum adsorption capacities of 276.24 and 200.00 mg/g, respectively. The adsorption process was determined to be exothermic, spontaneous, and physical in nature, following the pseudo-second-order kinetic model and the Langmuir isotherm. Full article
(This article belongs to the Special Issue Organic–Inorganic Nanocomposites for Water Treatment)
Show Figures

Figure 1

29 pages, 4913 KiB  
Review
Comparative B3PW and B3LYP Calculations of ABO3 (A = Ba, Sr, Pb, Ca; B = Sn, Ti, Zr) Neutral (001) and Polar (111) Surfaces
by Roberts I. Eglitis, Juris Purans, Ran Jia, Sergei P. Kruchinin and Steffen Wirth
Inorganics 2025, 13(4), 100; https://doi.org/10.3390/inorganics13040100 - 23 Mar 2025
Viewed by 620
Abstract
We completed B3LYP and B3PW computations for AO- and BO2-terminated (001) as well as AO3- and B-terminated (111) surfaces of BSO, BTO, STO, PTO, CTO, BZO, SZO, and CZO perovskites. In particular, we performed the first B3LYP computations for [...] Read more.
We completed B3LYP and B3PW computations for AO- and BO2-terminated (001) as well as AO3- and B-terminated (111) surfaces of BSO, BTO, STO, PTO, CTO, BZO, SZO, and CZO perovskites. In particular, we performed the first B3LYP computations for polar BSO (111) surfaces. We observed that most of the upper-layer atoms for AO- and BO2-terminated ABO perovskite (001) surfaces relax inward. In contrast, practically all second-layer atoms relax upward. Lastly, almost all third-layer atoms relax inward. This tendency is less pronounced for atomic relaxation of first, second, and third layer atoms for AO3- and B-terminated ABO perovskite (111) surfaces. For almost all ABO perovskites, their (001) surface rumplings s are considerably larger for AO-terminated compared to BO2-terminated surfaces. On the contrary, the ABO perovskite (001) surface energies, for both AO and BO2-terminations, are essentially equivalent. The ABO perovskite polar (111) surface energies are always substantially larger than their neutral (001) surface energies. In most cases, the surface energies of AO3-terminated ABO perovskite polar (111) surfaces are considerably larger than their B-terminated surface energies. Our computations illustrate a noticeable boost in the B-O bond covalency near the BO2-terminated (001) surface related to the bulk. Our computed ABO perovskite bulk Γ-Γ band gaps are almost always reduced near the AO- and BO2-terminated neutral (001) surfaces as well as in most cases also near the AO3- and B-terminated polar (111) surfaces. Full article
(This article belongs to the Special Issue Optical and Quantum Electronics: Physics and Materials)
Show Figures

Figure 1

11 pages, 2252 KiB  
Article
Effects of Zn Doping on Optical Properties of Polycrystalline β-Ga2O3
by Yue Yan, Shuai Zhu, Jing Yang, Yuanyuan Zhang, Wei Bai and Xiaodong Tang
Inorganics 2025, 13(4), 99; https://doi.org/10.3390/inorganics13040099 - 22 Mar 2025
Viewed by 234
Abstract
In this study, Zn-doped Ga2O3 polycrystalline samples were prepared by solid-phase sintering, and the effects of Zn doping on the optical properties of Ga2O3 were investigated. It is found that the introduced Zn ions disrupted the Ga-O [...] Read more.
In this study, Zn-doped Ga2O3 polycrystalline samples were prepared by solid-phase sintering, and the effects of Zn doping on the optical properties of Ga2O3 were investigated. It is found that the introduced Zn ions disrupted the Ga-O bonds and formed ZnGa, altering the Ga-O vibration modes and causing a blue shift in the related Raman mode. From near-infrared to visible light-range was a transparent region for Zn-doped Ga2O3. The fundamental optical bandgap underwent a decrease with increasing Zn doping content, primarily due to the p-d orbital hybridization of the O 2p and Zn 3d orbitals causing an upward shift valence band maximum and band renormalization effect-induced band-tails. The recombination of electrons at donor levels (VO) and holes at acceptor levels (VGa or VO-VGa) gave rise to blue-green luminescence. Zn doping increased the concentration oxygen vacancies (VO), resulting in significant blue-green luminescence enhancement in Zn-doped Ga2O3. Additionally, Zn doping resulted in a noticeable reduction in the red luminescence of Ga2O3, which may be attributed to Zn doping suppressing nitrogen incorporation from the air during high-temperature preparation processes. Full article
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop