Previous Issue
Volume 13, September
 
 

Proteomes, Volume 13, Issue 4 (December 2025) – 1 article

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
1051 KB  
Review
In Search of Ideal Solutions for Cancer Diagnosis: From Conventional Methods to Protein Biomarkers in Liquid Biopsy
by Anca-Narcisa Neagu, Pathea S. Bruno, Claudiu-Laurentiu Josan, Natalie Waterman, Hailey Morrissiey, Victor T. Njoku and Costel C. Darie
Proteomes 2025, 13(4), 47; https://doi.org/10.3390/proteomes13040047 (registering DOI) - 23 Sep 2025
Abstract
Cancer detection has made significant progress, moving from conventional methods to innovative, non-invasive or minimally invasive approaches aimed at improving early diagnosis, precision, and treatment outcomes. This review examines current and emerging diagnostic technologies, including liquid biopsy (LB), molecular biomarkers, and artificial intelligence [...] Read more.
Cancer detection has made significant progress, moving from conventional methods to innovative, non-invasive or minimally invasive approaches aimed at improving early diagnosis, precision, and treatment outcomes. This review examines current and emerging diagnostic technologies, including liquid biopsy (LB), molecular biomarkers, and artificial intelligence (AI). LB analyzes biomarkers in bodily fluids, showing promise in detecting tumors at molecular levels, monitoring cancer progression, and predicting treatment responses. The assignment of specific proteoforms, often linked to tumor subtype, stage, and therapy resistance, adds another layer of diagnostic precision, offering valuable insights for personalized oncology. However, the clinical application of LB faces challenges related to sensitivity, specificity, tumor heterogeneity, and a lack of standardized protocols. Relatively high costs, complex result interpretation, and privacy concerns also hinder its widespread adoption in clinical practice. Despite these challenges, advancements in AI, nanotechnology, and multi-omics strategies offer opportunities to enhance cancer diagnostic accuracy. Future developments, including wearable biosensors and lab-on-a-chip technologies, could lead to personalized, real-time cancer detection with improved patient outcomes, potentially redefining cancer care and fostering a more proactive, patient-centered healthcare approach. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop