Protein-Predicted Obesity Phenotypes and Cardiovascular Events: A Secondary Analysis of UK Biobank Proteomics Data
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hales, C.M.; Carroll, M.D.; Fryar, C.D.; Ogden, C.L. Prevalence of Obesity and Severe Obesity Among Adults: United States, 2017–2018; NCHS Data Brief, No. 360; National Center for Health Statistics: Hyattsville, MD, USA, 2020; pp. 1–8. [Google Scholar]
- Powell-Wiley, T.M.; Poirier, P.; Burke, L.E.; Despres, J.P.; Gordon-Larsen, P.; Lavie, C.J.; Lear, S.A.; Ndumele, C.E.; Neeland, I.J.; Sanders, P.; et al. Obesity and Cardiovascular Disease: A Scientific Statement from the American Heart Association. Circulation 2021, 143, e984–e1010. [Google Scholar] [CrossRef] [PubMed]
- Frankenfield, D.C.; Rowe, W.A.; Cooney, R.N.; Smith, J.S.; Becker, D. Limits of body mass index to detect obesity and predict body composition. Nutrition 2001, 17, 26–30. [Google Scholar] [CrossRef]
- Cheng, C.H.; Ho, C.C.; Yang, C.F.; Huang, Y.C.; Lai, C.H.; Liaw, Y.P. Waist-to-hip ratio is a better anthropometric index than body mass index for predicting the risk of type 2 diabetes in Taiwanese population. Nutr. Res. 2010, 30, 585–593. [Google Scholar] [CrossRef]
- Goonasegaran, A.R.; Nabila, F.N.; Shuhada, N.S. Comparison of the effectiveness of body mass index and body fat percentage in defining body composition. Singap. Med. J. 2012, 53, 403–408. [Google Scholar]
- Zaghlool, S.B.; Sharma, S.; Molnar, M.; Matias-Garcia, P.R.; Elhadad, M.A.; Waldenberger, M.; Peters, A.; Rathmann, W.; Graumann, J.; Gieger, C.; et al. Revealing the role of the human blood plasma proteome in obesity using genetic drivers. Nat. Commun. 2021, 12, 1279. [Google Scholar] [CrossRef]
- Helgason, H.; Eiriksdottir, T.; Ulfarsson, M.O.; Choudhary, A.; Lund, S.H.; Ivarsdottir, E.V.; Hjorleifsson Eldjarn, G.; Einarsson, G.; Ferkingstad, E.; Moore, K.H.S.; et al. Evaluation of Large-Scale Proteomics for Prediction of Cardiovascular Events. JAMA 2023, 330, 725–735. [Google Scholar] [CrossRef]
- Nurmohamed, N.S.; Belo Pereira, J.P.; Hoogeveen, R.M.; Kroon, J.; Kraaijenhof, J.M.; Waissi, F.; Timmerman, N.; Bom, M.J.; Hoefer, I.E.; Knaapen, P.; et al. Targeted proteomics improves cardiovascular risk prediction in secondary prevention. Eur. Heart J. 2022, 43, 1569–1577. [Google Scholar] [CrossRef]
- Sudlow, C.; Gallacher, J.; Allen, N.; Beral, V.; Burton, P.; Danesh, J.; Downey, P.; Elliott, P.; Green, J.; Landray, M.; et al. UK biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015, 12, e1001779. [Google Scholar] [CrossRef]
- Sun, B.B.; Chiou, J.; Traylor, M.; Benner, C.; Hsu, Y.H.; Richardson, T.G.; Surendran, P.; Mahajan, A.; Robins, C.; Vasquez-Grinnell, S.G.; et al. Plasma proteomic associations with genetics and health in the UK Biobank. Nature 2023, 622, 329–338. [Google Scholar] [CrossRef]
- Inker, L.A.; Eneanya, N.D.; Coresh, J.; Tighiouart, H.; Wang, D.; Sang, Y.; Crews, D.C.; Doria, A.; Estrella, M.M.; Froissart, M.; et al. New Creatinine- and Cystatin C-Based Equations to Estimate GFR without Race. N. Engl. J. Med. 2021, 385, 1737–1749. [Google Scholar] [CrossRef] [PubMed]
- McCaw, Z.R.; Lane, J.M.; Saxena, R.; Redline, S.; Lin, X. Operating characteristics of the rank-based inverse normal transformation for quantitative trait analysis in genome-wide association studies. Biometrics 2020, 76, 1262–1272. [Google Scholar] [CrossRef]
- Alexa, A.; Rahnenfuhrer, J.; Lengauer, T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 2006, 22, 1600–1607. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Fine, J.P.; Gray, R.J. A Proportional Hazards Model for the Subdistribution of a Competing Risk. J. Am. Stat. Assoc. 1999, 94, 496–509. [Google Scholar] [CrossRef]
- Khan, S.S.; Matsushita, K.; Sang, Y.; Ballew, S.H.; Grams, M.E.; Surapaneni, A.; Blaha, M.J.; Carson, A.P.; Chang, A.R.; Ciemins, E.; et al. Development and Validation of the American Heart Association’s PREVENT Equations. Circulation 2024, 149, 430–449. [Google Scholar] [CrossRef]
- Uno, H.; Cai, T.; Pencina, M.J.; D’Agostino, R.B.; Wei, L.J. On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data. Stat. Med. 2011, 30, 1105–1117. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.A.; Kivimaki, M.; Langenberg, C.; Hingorani, A.D.; Casas, J.P.; Bouchard, C.; Jonasson, C.; Sarzynski, M.A.; Shipley, M.J.; Alexander, L.; et al. Plasma protein patterns as comprehensive indicators of health. Nat. Med. 2019, 25, 1851–1857. [Google Scholar] [CrossRef] [PubMed]
- Konige, M.; Wang, H.; Sztalryd, C. Role of adipose specific lipid droplet proteins in maintaining whole body energy homeostasis. Biochim. Biophys. Acta 2014, 1842, 393–401. [Google Scholar] [CrossRef]
- Huemer, M.T.; Bauer, A.; Petrera, A.; Scholz, M.; Hauck, S.M.; Drey, M.; Peters, A.; Thorand, B. Proteomic profiling of low muscle and high fat mass: A machine learning approach in the KORA S4/FF4 study. J. Cachexia Sarcopenia Muscle 2021, 12, 1011–1023. [Google Scholar] [CrossRef]
- Liao, J.; Goodrich, J.A.; Chen, W.; Qiu, C.; Chen, J.C.; Costello, E.; Alderete, T.L.; Chatzi, L.; Gilliland, F.; Chen, Z. Cardiometabolic profiles and proteomics associated with obesity phenotypes in a longitudinal cohort of young adults. Sci. Rep. 2024, 14, 7384. [Google Scholar] [CrossRef] [PubMed]
- Kruse, K.; Lee, Q.S.; Sun, Y.; Klomp, J.; Yang, X.; Huang, F.; Sun, M.Y.; Zhao, S.; Hong, Z.; Vogel, S.M.; et al. N-cadherin signaling via Trio assembles adherens junctions to restrict endothelial permeability. J. Cell Biol. 2019, 218, 299–316. [Google Scholar] [CrossRef] [PubMed]
- Niland, S.; Eble, J.A. Integrin-mediated cell-matrix interaction in physiological and pathological blood vessel formation. J. Oncol. 2012, 2012, 125278. [Google Scholar] [CrossRef]
- Hansen, S.M.; Berezin, V.; Bock, E. Signaling mechanisms of neurite outgrowth induced by the cell adhesion molecules NCAM and N-cadherin. Cell Mol. Life Sci. 2008, 65, 3809–3821. [Google Scholar] [CrossRef]
- Goudswaard, L.J.; Bell, J.A.; Hughes, D.A.; Corbin, L.J.; Walter, K.; Davey Smith, G.; Soranzo, N.; Danesh, J.; Di Angelantonio, E.; Ouwehand, W.H.; et al. Effects of adiposity on the human plasma proteome: Observational and Mendelian randomisation estimates. Int. J. Obes. 2021, 45, 2221–2229. [Google Scholar] [CrossRef] [PubMed]
- Sebo, P.; Herrmann, F.R.; Haller, D.M. Accuracy of anthropometric measurements by general practitioners in overweight and obese patients. BMC Obes. 2017, 4, 23. [Google Scholar] [CrossRef]
- Abizaid, A.; Horvath, T.L. Ghrelin and the central regulation of feeding and energy balance. Indian J. Endocrinol. Metab. 2012, 16, S617–S626. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Navarrete, J.M.; Martinez-Barricarte, R.; Catalan, V.; Sabater, M.; Gomez-Ambrosi, J.; Ortega, F.J.; Ricart, W.; Bluher, M.; Fruhbeck, G.; Rodriguez de Cordoba, S.; et al. Complement factor H is expressed in adipose tissue in association with insulin resistance. Diabetes 2010, 59, 200–209. [Google Scholar] [CrossRef]
- Portero-Otin, M.; de la Maza, M.P.; Uribarri, J. Dietary Advanced Glycation End Products: Their Role in the Insulin Resistance of Aging. Cells 2023, 12, 1684. [Google Scholar] [CrossRef]
- Asadipooya, K.; Uy, E.M. Advanced Glycation End Products (AGEs), Receptor for AGEs, Diabetes, and Bone: Review of the Literature. J. Endocr. Soc. 2019, 3, 1799–1818. [Google Scholar] [CrossRef]
- Rosati, A.; Graziano, V.; De Laurenzi, V.; Pascale, M.; Turco, M.C. BAG3: A multifaceted protein that regulates major cell pathways. Cell Death Dis. 2011, 2, e141. [Google Scholar] [CrossRef] [PubMed]
- Obradovic, M.; Sudar-Milovanovic, E.; Soskic, S.; Essack, M.; Arya, S.; Stewart, A.J.; Gojobori, T.; Isenovic, E.R. Leptin and Obesity: Role and Clinical Implication. Front. Endocrinol. 2021, 12, 585887. [Google Scholar] [CrossRef] [PubMed]
- The Global BMI Mortality Collaboration; Di Angelantonio, E.; Bhupathiraju, S.N.; Wormser, D.; Gao, P.; Kaptoge, S.; Berrington de Gonzalez, A.; Cairns, B.J.; Huxley, R.; Jackson, C.L.; et al. Body-mass index and all-cause mortality: Individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet 2016, 388, 776–786. [Google Scholar] [CrossRef]
- Peters, S.A.E.; Bots, S.H.; Woodward, M. Sex Differences in the Association Between Measures of General and Central Adiposity and the Risk of Myocardial Infarction: Results From the UK Biobank. J. Am. Heart Assoc. 2018, 7, e008507. [Google Scholar] [CrossRef] [PubMed]
- Valencak, T.G.; Osterrieder, A.; Schulz, T.J. Sex matters: The effects of biological sex on adipose tissue biology and energy metabolism. Redox Biol. 2017, 12, 806–813. [Google Scholar] [CrossRef]
Variables | Overall N = 40,651 | No MACE N = 36,580 (90.0%) | MACE N = 4071 (10.0%) | Parametric p Value No MACE vs. MACE | Non-Parametric p Value No MACE vs. MACE |
---|---|---|---|---|---|
Age (years) | 56.44 (8.19) | 55.98 (8.20) | 60.60 (6.89) | <0.001 | <0.001 |
Male (%) | 18,026 (44.3) | 15,525 (42.4) | 2501 (61.4) | <0.001 | <0.001 |
White (%) | 37,997 (93.5) | 34,171 (93.4) | 3826 (94.0) | 0.175 | 0.170 |
BMI (kg/m2) | 27.32 (4.74) | 27.19 (4.69) | 28.46 (5.04) | <0.001 | <0.001 |
Body Fat Percentage (%) | 31.46 (8.57) | 31.51 (8.58) | 31.00 (8.42) | <0.001 | <0.001 |
Waist–hip Ratio | 0.87 (0.09) | 0.86 (0.09) | 0.91 (0.09) | <0.001 | <0.001 |
Total Cholesterol (mg/dL) | 221.97 (43.61) | 222.17 (43.22) | 220.19 (46.92) | 0.007 | 0.006 |
HDL-C (mg/dL) | 56.48 (14.79) | 56.91 (14.75) | 52.64 (14.61) | <0.001 | <0.001 |
Systolic Blood Pressure (mmHg) | 139.63 (19.64) | 138.88 (19.49) | 146.35 (19.76) | <0.001 | <0.001 |
eGFR (mL/min/1.73 m2) | 94.88 (13.07) | 95.30 (12.81) | 91.13 (14.66) | <0.001 | <0.001 |
Diabetes Prevalence (%) | 1845 (4.5) | 1419 (3.9) | 426 (10.5) | <0.001 | <0.001 |
Current Smoking (%) | 4276 (10.6) | 3615 (9.9) | 661 (16.3) | <0.001 | <0.001 |
Blood-Pressure-Lowering Medication Use (%) | 7530 (18.7) | 6220 (17.2) | 1310 (32.7) | <0.001 | <0.001 |
Cholesterol-Lowering Medication Use (%) | 5702 (14.2) | 4638 (12.8) | 1064 (26.5) | <0.001 | <0.001 |
Ischemic Stroke Incidence (%) | 781 (1.9) | 0 | 781 (19.2) | - | - |
MI Incidence (%) | 3096 (7.6) | 0 | 3096 (76.1) | - | - |
CV Death (%) | 978 (2.4) | 0 | 978 (24.0) | - | - |
Obesity-Related Phenotype | Sex | Overall | No MACE | MACE | Parametric p Value No MACE vs. MACE | Non-Parametric p Value No MACE vs. MACE |
---|---|---|---|---|---|---|
BMI (kg/m2) | Male | 27.68 (4.14) | 27.53 (4.06) | 28.58 (4.52) | <0.001 | <0.001 |
Female | 27.03 (5.16) | 26.94 (5.10) | 28.28 (5.76) | <0.001 | <0.001 | |
Body Fat Percentage (%) | Male | 25.09 (5.77) | 24.85 (5.71) | 26.58 (5.87) | <0.001 | <0.001 |
Female | 36.53 (6.88) | 36.42 (6.86) | 38.04 (6.94) | <0.001 | <0.001 | |
Waist–hip Ratio | Male | 0.93 (0.06) | 0.93 (0.06) | 0.95 (0.06) | <0.001 | <0.001 |
Female | 0.82 (0.07) | 0.82 (0.07) | 0.84 (0.07) | <0.001 | <0.001 |
Outcome | Model | PPSBMI (per SD) | PPSBFP (per SD) | PPSWHR (per SD) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | N Event | HR (95% CI) | p | N | N Event | HR (95% CI) | p | N | N Event | HR (95% CI) | p | ||
MACE | Model 1 | 32,757 | 4057 | 1.22 (1.18, 1.26) | <0.0001 | 32,268 | 3952 | 1.29 (1.23, 1.35) | <0.0001 | 32,816 | 4070 | 1.47 (1.4, 1.55) | <0.0001 |
Model 2 | 32,757 | 4057 | 1.16 (1.08, 1.24) | <0.0001 | 32,268 | 3952 | 1.35 (1.24, 1.47) | <0.0001 | 32,816 | 4070 | 1.34 (1.26, 1.42) | <0.0001 | |
Model 3 | 26,450 | 3271 | 1.08 (1, 1.17) | 0.0524 | 26,074 | 3196 | 1.25 (1.14, 1.38) | <0.0001 | 26,495 | 3282 | 1.15 (1.06, 1.24) | 0.001 | |
Ischemic Stroke | Model 1 | 32,755 | 776 | 1.14 (1.06, 1.23) | 0.0005 | 32,267 | 767 | 1.19 (1.07, 1.32) | 0.0011 | 32,814 | 781 | 1.32 (1.18, 1.48) | <0.0001 |
Model 2 | 32,755 | 776 | 1.11 (0.95, 1.29) | 0.1864 | 32,267 | 767 | 1.12 (0.93, 1.35) | 0.2162 | 32,814 | 781 | 1.26 (1.1, 1.46) | 0.0011 | |
Model 3 | 26,450 | 640 | 1.11 (0.93, 1.31) | 0.2481 | 26,074 | 636 | 1.02 (0.83, 1.25) | 0.8681 | 26,495 | 643 | 1.21 (1, 1.46) | 0.0523 | |
MI | Model 1 | 32,757 | 3093 | 1.23 (1.19, 1.28) | <0.0001 | 32,268 | 3015 | 1.31 (1.24, 1.38) | <0.0001 | 32,816 | 3095 | 1.52 (1.44, 1.62) | <0.0001 |
Model 2 | 32,757 | 3093 | 1.21 (1.12, 1.3) | <0.0001 | 32,268 | 3015 | 1.39 (1.26, 1.53) | <0.0001 | 32,816 | 3095 | 1.41 (1.31, 1.51) | <0.0001 | |
Model 3 | 26,450 | 2496 | 1.11 (1.02, 1.22) | 0.0207 | 26,074 | 2438 | 1.28 (1.14, 1.42) | <0.0001 | 26,495 | 2498 | 1.17 (1.06, 1.28) | 0.0011 | |
CV Death | Model 1 | 32,757 | 970 | 1.28 (1.19, 1.38) | <0.0001 | 32,268 | 924 | 1.39 (1.25, 1.54) | <0.0001 | 32,816 | 978 | 1.43 (1.28, 1.59) | <0.0001 |
Model 2 | 32,757 | 970 | 1.04 (0.9, 1.2) | 0.6069 | 32,268 | 924 | 1.52 (1.27, 1.83) | <0.0001 | 32,816 | 978 | 1.17 (1.02, 1.33) | 0.0221 | |
Model 3 | 26,450 | 767 | 1.02 (0.86, 1.2) | 0.8306 | 26,074 | 732 | 1.43 (1.15, 1.76) | 0.0011 | 26,495 | 774 | 1.08 (0.91, 1.28) | 0.3712 |
Protein-Predicted Score | Protein-Predicted Score Model | PREVENT Model *** C Statistic | |
Unadjusted Model * C Statistic | Protein-Predicted Score Model ** C Statistic | ||
PPSBMI | 0.557 | 0.685 | 0.694 |
PPSBFP | 0.529 | 0.684 | |
PPSWHR | 0.626 | 0.687 | |
PPSBMI + PPSBFP + PPSWHR | 0.634 | 0.688 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Seo, B.; Hui, Q.; Wilson, P.W.F.; Quyyumi, A.A.; Sun, Y.V. Protein-Predicted Obesity Phenotypes and Cardiovascular Events: A Secondary Analysis of UK Biobank Proteomics Data. Proteomes 2025, 13, 51. https://doi.org/10.3390/proteomes13040051
Liu C, Seo B, Hui Q, Wilson PWF, Quyyumi AA, Sun YV. Protein-Predicted Obesity Phenotypes and Cardiovascular Events: A Secondary Analysis of UK Biobank Proteomics Data. Proteomes. 2025; 13(4):51. https://doi.org/10.3390/proteomes13040051
Chicago/Turabian StyleLiu, Chang, Bojung Seo, Qin Hui, Peter W. F. Wilson, Arshed A. Quyyumi, and Yan V. Sun. 2025. "Protein-Predicted Obesity Phenotypes and Cardiovascular Events: A Secondary Analysis of UK Biobank Proteomics Data" Proteomes 13, no. 4: 51. https://doi.org/10.3390/proteomes13040051
APA StyleLiu, C., Seo, B., Hui, Q., Wilson, P. W. F., Quyyumi, A. A., & Sun, Y. V. (2025). Protein-Predicted Obesity Phenotypes and Cardiovascular Events: A Secondary Analysis of UK Biobank Proteomics Data. Proteomes, 13(4), 51. https://doi.org/10.3390/proteomes13040051