Previous Issue
Volume 15, June
 
 

J. Low Power Electron. Appl., Volume 15, Issue 3 (September 2025) – 13 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
13 pages, 1281 KiB  
Article
Fast Energy Recovery During Motor Braking: Analysis and Simulation
by Lin Xu, Wengan Li, Zenglong Zhao and Fanyi Meng
J. Low Power Electron. Appl. 2025, 15(3), 49; https://doi.org/10.3390/jlpea15030049 - 22 Aug 2025
Abstract
At present, environmental pollution is becoming more and more serious, and the energy problem is becoming more prominent. Energy-braking recovery can collect the mechanical energy lost in the traditional braking process and convert it into electricity or other forms of energy for vehicle [...] Read more.
At present, environmental pollution is becoming more and more serious, and the energy problem is becoming more prominent. Energy-braking recovery can collect the mechanical energy lost in the traditional braking process and convert it into electricity or other forms of energy for vehicle reuse, thus reducing carbon emissions, achieving energy saving and emission reduction, and promoting green development. Based on this, this paper studies the energy-braking recovery method. The study focuses specifically on the recovery of energy during vehicle braking triggered by brake-signal activation, without addressing alternative deceleration strategies under braking conditions. The proposed energy-braking recovery scheme is evaluated primarily through simulation, with the analysis grounded in practical application scenarios and leveraging existing technologies. Firstly, the principle of energy-braking recovery is introduced, and the method of estimating the State on Charge (SOC) of the battery and controlling the motor speed is determined. Then, the simulation model of the energy brake recovery system is built with MATLAB R2023b (MathWorks, Natick, MA, USA), and the design ideas and specific structures of the three modules of the simulation model are introduced in detail. Finally, the results of the simulated motor speed and SOC value of the battery are analysed, and it is confirmed that they meet the requirements of the system and achieve close to the ideal effect. Full article
21 pages, 19398 KiB  
Article
A Non-Isolated High Gain Step-Up DC/DC Converter Based on Coupled Inductor with Reduced Voltage Stresses
by Yuqing Yang, Song Xu, Wei Jiang and Seiji Hashimoto
J. Low Power Electron. Appl. 2025, 15(3), 48; https://doi.org/10.3390/jlpea15030048 - 22 Aug 2025
Abstract
Hybrid electric vehicles (HEVs) have gained significant attention for their superior energy efficiency and are becoming a predominant mode of urban transportation. The DC/DC converter plays a critical role in HEV energy management systems, especially in matching the voltage levels between the battery [...] Read more.
Hybrid electric vehicles (HEVs) have gained significant attention for their superior energy efficiency and are becoming a predominant mode of urban transportation. The DC/DC converter plays a critical role in HEV energy management systems, especially in matching the voltage levels between the battery and DC bus. This paper proposes a novel high-gain DC/DC converter with a wide input voltage range based on coupled inductors. The innovation lies in the integration of a resonant cavity and the simultaneous realization of zero-voltage switching (ZVS) and zero-current switching (ZCS), effectively reducing both voltage/current stresses on the power switches and switching losses. Compared with conventional topologies, the proposed design achieves higher voltage gain without extreme duty cycles, improved conversion efficiency, and enhanced reliability. Detailed operating principles are analyzed, and design conditions for voltage stress reduction, gain extension, and soft switching are derived. The simulation model has been conducted in a PSIM environment, and a 300 W experimental prototype, implemented using a dsPIC33FJ64GS606 digital controller, has been established and demonstrates 93% peak efficiency at a 10 times voltage gain. The performance and practical feasibility of the proposed topology have been evaluated by both simulation and experiments. Full article
(This article belongs to the Topic Advanced Integrated Circuit Design and Application)
Show Figures

Figure 1

18 pages, 1423 KiB  
Article
Design of a Power-Aware Reconfigurable and Parameterizable Pseudorandom Pattern Generator for BIST-Based Applications
by Geethu Remadevi Somanathan, Ujarla Harshavardhan Reddy and Ramesh Bhakthavatchalu
J. Low Power Electron. Appl. 2025, 15(3), 47; https://doi.org/10.3390/jlpea15030047 - 15 Aug 2025
Viewed by 211
Abstract
This paper presents a power-aware Reconfigurable Parameterizable Pseudorandom Pattern Generator (RP-PRPG) for a number of applications, including built in self-testing (BIST) and cryptography. Linear Feedback Shift Registers (LFSRs) are broadly utilized in pattern generation due to their efficiency and simplicity. However, the diversity [...] Read more.
This paper presents a power-aware Reconfigurable Parameterizable Pseudorandom Pattern Generator (RP-PRPG) for a number of applications, including built in self-testing (BIST) and cryptography. Linear Feedback Shift Registers (LFSRs) are broadly utilized in pattern generation due to their efficiency and simplicity. However, the diversity of generated patterns, as well as their power consumption, improves through circuit modifications. This work explores enhancements to LFSR structures to achieve broader range of patterns with reduced power consumption for BIST-based applications. The proposed circuit constructed on the LFSR platform can be programmed to generate patterns with varying degrees of different LFSR configurations. Diverse set of patterns of any circuit arrangement can be created using any characteristic polynomial and by utilizing the reseeding capacity of the circuit. The circuit combines a double-tier linear feedback circuit with zero forcing methods, resulting in more than 70% transition reduction, thus significantly lowering power dissipation. The behaviour of the proposed circuit is assessed for characteristic polynomials with degrees ranging from 4 to 128 using various Linear Feedback Shift Register (LFSR) topologies. For reconfigurable HDL and ASIC synthesis, the power-aware RP-PRPG can be used to generate an efficient set of stream ciphers as well as applications involving the scan-for-test protocol. Full article
Show Figures

Figure 1

20 pages, 2103 KiB  
Article
Federated Multi-Stage Attention Neural Network for Multi-Label Electricity Scene Classification
by Lei Zhong, Xuejiao Jiang, Jialong Xu, Kaihong Zheng, Min Wu, Lei Gao, Chao Ma, Dewen Zhu and Yuan Ai
J. Low Power Electron. Appl. 2025, 15(3), 46; https://doi.org/10.3390/jlpea15030046 - 5 Aug 2025
Viewed by 263
Abstract
Privacy-sensitive electricity scene classification requires robust models under data localization constraints, making federated learning (FL) a suitable framework. Existing FL frameworks face two critical challenges in multi-label electricity scene classification: (1) Label correlations and their strengths significantly impact classification performance. (2) Electricity scene [...] Read more.
Privacy-sensitive electricity scene classification requires robust models under data localization constraints, making federated learning (FL) a suitable framework. Existing FL frameworks face two critical challenges in multi-label electricity scene classification: (1) Label correlations and their strengths significantly impact classification performance. (2) Electricity scene data and labels show distributional inconsistencies across regions. However, current FL frameworks lack explicit modeling of label correlation strengths, and locally trained regional models naturally capture these differences, leading to regional differences in their model parameters. In this scenario, the server’s standard single-stage aggregation often over-averages the global model’s parameters, reducing its discriminative ability. To address these issues, we propose FMMAN, a federated multi-stage attention neural network for multi-label electricity scene classification. The main contributions of this FMMAN lie in label correlation learning and the stepwise model aggregation. It splits the client–server interaction into multiple stages: (1) Clients train models locally to encode features and label correlation strengths after receiving the server’s initial model. (2) The server clusters these locally trained models into K groups to ensure that models within a group have more consistent parameters and generates K prototype models via intra-group aggregation to reduce over-averaging. The K models are then distributed back to the clients. (3) Clients refine their models using the K prototypes with contrastive group-specific consistency regularization to further mitigate over-averaging, and sends the refined model back to the server. (4) Finally, the server aggregates the models into a global model. Experiments on multi-label benchmarks verify that FMMAN outperforms baseline methods. Full article
Show Figures

Figure 1

18 pages, 2514 KiB  
Article
Event-Triggered Model Predictive Control of Buck Converter with Disturbances: Design and Experimentation
by Ziyuan Yang, Shengquan Li, Kaiwen Cao, Donglei Chen, Juan Li and Wei Cao
J. Low Power Electron. Appl. 2025, 15(3), 45; https://doi.org/10.3390/jlpea15030045 - 1 Aug 2025
Viewed by 228
Abstract
Considering the challenges posed by traditional continuous control set model predictive control (CCS-MPC) calculations, this paper proposes an event-triggered-based model predictive control (ET-MPC). First, a novel tracking error state-space model is proposed to improve tracking performance. Second, a reduced-order extended state observer (RESO) [...] Read more.
Considering the challenges posed by traditional continuous control set model predictive control (CCS-MPC) calculations, this paper proposes an event-triggered-based model predictive control (ET-MPC). First, a novel tracking error state-space model is proposed to improve tracking performance. Second, a reduced-order extended state observer (RESO) is designed to estimate and compensate for the total disturbances, thereby effectively improving robustness against the variations of the load resistance and reference voltage. At the same time, RESO significantly reduces computational complexity and accelerates the convergence speed of state estimation. Subsequently, an event trigger mechanism is introduced to enhance the MPC with a threshold function for the converter status. Finally, the reduced-order extended state observer-based model predictive control (RESO-MPC) is compared with the proposed ET-MPC through experiments. The ripple voltage of ET-MPC is within 2%, and the computational burden is reduced by more than 57%, verifying the effectiveness of the proposed ET-MPC. Full article
Show Figures

Figure 1

12 pages, 2575 KiB  
Article
Simulation of Propagation Characteristics and Field Distribution in Cylindrical Photonic Crystals Composed of Near-Zero Materials and Metal
by Zhihao Xu, Dan Zhang, Rongkang Xuan, Shenxiang Yang and Na Wang
J. Low Power Electron. Appl. 2025, 15(3), 44; https://doi.org/10.3390/jlpea15030044 - 31 Jul 2025
Viewed by 173
Abstract
This study investigates the propagation characteristics and field distribution of photonic crystals composed of epsilon-near-zero (ENZ) materials and metal cylinders. The research reveals that the cutoff frequency of the photonic crystal formed by combining metal cylinders with an ENZ background is independent of [...] Read more.
This study investigates the propagation characteristics and field distribution of photonic crystals composed of epsilon-near-zero (ENZ) materials and metal cylinders. The research reveals that the cutoff frequency of the photonic crystal formed by combining metal cylinders with an ENZ background is independent of the volume fraction of the metal cylinders and exhibits a stop-band profile within the measured frequency range. This unique behavior is attributed to the scattering of long-wavelength light when the wavelength approaches the effective wavelength range of the ENZ material. Taking advantage of this feature, the study selectively filters specific wavelength ranges from the mid-frequency band by varying the ratio of cylinder radius to lattice constant (R/a). Decreasing the R/a ratio enables the design of waveguide devices that operate over a broader guided wavelength range within the intermediate-frequency band. The findings emphasize the importance of the interaction between light and ENZ materials in shaping the transmission characteristics of photonic crystal structures. Full article
Show Figures

Figure 1

13 pages, 2428 KiB  
Article
A Novel Low-Power Bipolar DC–DC Converter with Voltage Self-Balancing
by Yangfan Liu, Qixiao Li and Zhongxuan Wang
J. Low Power Electron. Appl. 2025, 15(3), 43; https://doi.org/10.3390/jlpea15030043 - 24 Jul 2025
Viewed by 301
Abstract
Bipolar power supply can effectively reduce line losses and optimize power transmission. This paper proposes a low-power bipolar DC–DC converter with voltage self-balancing, which not only achieves bipolar output but also automatically balances the inter-pole voltage under load imbalance conditions without requiring additional [...] Read more.
Bipolar power supply can effectively reduce line losses and optimize power transmission. This paper proposes a low-power bipolar DC–DC converter with voltage self-balancing, which not only achieves bipolar output but also automatically balances the inter-pole voltage under load imbalance conditions without requiring additional voltage balancing control. This paper first elaborates on the derivation process of the proposed converter, then analyzes its working principles and performance characteristics. A 400 W experimental prototype is built to validate the correctness of the theoretical analysis and the voltage self-balancing capability. Finally, loss analysis and conclusions are presented. Full article
Show Figures

Figure 1

17 pages, 493 KiB  
Article
Microstrip Line Modeling Taking into Account Dispersion Using a General-Purpose SPICE Simulator
by Vadim Kuznetsov
J. Low Power Electron. Appl. 2025, 15(3), 42; https://doi.org/10.3390/jlpea15030042 - 22 Jul 2025
Viewed by 398
Abstract
XSPICE models for a generic transmission line, a microstrip line, and coupled microstrips are presented. The developed models extend general-purpose circuit simulation tools using RF circuits design features. The models could be used for circuit simulation in frequency, DC, and time domains for [...] Read more.
XSPICE models for a generic transmission line, a microstrip line, and coupled microstrips are presented. The developed models extend general-purpose circuit simulation tools using RF circuits design features. The models could be used for circuit simulation in frequency, DC, and time domains for any active or passive RF or microwave schematic (including microwave monolithic integrated circuits—MMICs) involving transmission lines. The presented models could be used with any circuit simulation backend supporting XSPICE extensions and could be integrated without patching the core simulator code. The presented XSPICE models for microstrip lines take into account the frequency dependency of characteristic impedance and dispersion. The models were designed using open-source circuit simulation software. This study provides a practical example of the low-noise RF amplifier (LNA) design with Ngspice simulation backend using the proposed models. Full article
Show Figures

Figure 1

23 pages, 4087 KiB  
Article
Low-Voltage Ride Through Capability Analysis of a Reduced-Size DFIG Excitation Utilized in Split-Shaft Wind Turbines
by Rasoul Akbari and Afshin Izadian
J. Low Power Electron. Appl. 2025, 15(3), 41; https://doi.org/10.3390/jlpea15030041 - 21 Jul 2025
Viewed by 297
Abstract
Split-shaft wind turbines decouple the turbine’s shaft from the generator’s shaft, enabling several modifications in the drivetrain. One of the significant achievements of a split-shaft drivetrain is the reduction in size of the excitation circuit. The grid-side converter is eliminated, and the rotor-side [...] Read more.
Split-shaft wind turbines decouple the turbine’s shaft from the generator’s shaft, enabling several modifications in the drivetrain. One of the significant achievements of a split-shaft drivetrain is the reduction in size of the excitation circuit. The grid-side converter is eliminated, and the rotor-side converter can safely reduce its size to a fraction of a full-size excitation. Therefore, this low-power-rated converter operates at low voltage and handles regular operations well. However, fault conditions may expose weaknesses in the converter and push it to its limits. This paper investigates the effects of the reduced-size rotor-side converter on the voltage ride-through capabilities required from all wind turbines. Four different protection circuits, including the active crowbar, active crowbar along a resistor–inductor circuit (C-RL), series dynamic resistor (SDR), and new-bridge fault current limiter (NBFCL), are employed, and their effects are investigated and compared. Wind turbine controllers are also utilized to reduce the impact of faults on the power electronic converters. One effective method is to store excess energy in the generator’s rotor. The proposed low-voltage ride-through strategies are simulated in MATLAB Simulink (2022b) to validate the results and demonstrate their effectiveness and functionality. Full article
Show Figures

Figure 1

16 pages, 2270 KiB  
Article
Performance Evaluation of FPGA, GPU, and CPU in FIR Filter Implementation for Semiconductor-Based Systems
by Muhammet Arucu and Teodor Iliev
J. Low Power Electron. Appl. 2025, 15(3), 40; https://doi.org/10.3390/jlpea15030040 - 21 Jul 2025
Viewed by 691
Abstract
This study presents a comprehensive performance evaluation of field-programmable gate array (FPGA), graphics processing unit (GPU), and central processing unit (CPU) platforms for implementing finite impulse response (FIR) filters in semiconductor-based digital signal processing (DSP) systems. Utilizing a standardized FIR filter designed with [...] Read more.
This study presents a comprehensive performance evaluation of field-programmable gate array (FPGA), graphics processing unit (GPU), and central processing unit (CPU) platforms for implementing finite impulse response (FIR) filters in semiconductor-based digital signal processing (DSP) systems. Utilizing a standardized FIR filter designed with the Kaiser window method, we compare computational efficiency, latency, and energy consumption across the ZYNQ XC7Z020 FPGA, Tesla K80 GPU, and Arm-based CPU, achieving processing times of 0.004 s, 0.008 s, and 0.107 s, respectively, with FPGA power consumption of 1.431 W and comparable energy profiles for GPU and CPU. The FPGA is 27 times faster than the CPU and 2 times faster than the GPU, demonstrating its suitability for low-latency DSP tasks. A detailed analysis of resource utilization and scalability underscores the FPGA’s reconfigurability for optimized DSP implementations. This work provides novel insights into platform-specific optimizations, addressing the demand for energy-efficient solutions in edge computing and IoT applications, with implications for advancing sustainable DSP architectures. Full article
(This article belongs to the Topic Advanced Integrated Circuit Design and Application)
Show Figures

Figure 1

17 pages, 4316 KiB  
Article
A Coverage Path Planning Method with Energy Optimization for UAV Monitoring Tasks
by Zhengqiang Xiong, Chang Han, Xiaoliang Wang and Li Gao
J. Low Power Electron. Appl. 2025, 15(3), 39; https://doi.org/10.3390/jlpea15030039 - 9 Jul 2025
Viewed by 369
Abstract
Coverage path planning solves the problem of moving an effector over all points within a specific region with effective routes. Most existing studies focus on geometric constraints, often overlooking robot-specific features, like the available energy, weight, maximum speed, sensor resolution, etc. This paper [...] Read more.
Coverage path planning solves the problem of moving an effector over all points within a specific region with effective routes. Most existing studies focus on geometric constraints, often overlooking robot-specific features, like the available energy, weight, maximum speed, sensor resolution, etc. This paper proposes a coverage path planning algorithm for Unmanned Aerial Vehicles (UAVs) that minimizes energy consumption while satisfying a set of other requirements, such as coverage and observation resolution. To deal with these issues, we propose a novel energy-optimal coverage path planning framework for monitoring tasks. Firstly, the 3D terrain’s spatial characteristics are digitized through a combination of parametric modeling and meshing techniques. To accurately estimate actual energy expenditure along a segmented trajectory, a power estimation module is introduced, which integrates dynamic feasibility constraints into the energy computation. Utilizing a Digital Surface Model (DSM), a global energy consumption map is generated by constructing a weighted directed graph over the terrain. Subsequently, an energy-optimal coverage path is derived by applying a Genetic Algorithm (GA) to traverse this map. Extensive simulation results validate the superiority of the proposed approach compared to existing methods. Full article
Show Figures

Figure 1

16 pages, 5447 KiB  
Article
A Gate Driver for Crosstalk Suppression of eGaN HEMT Power Devices
by Longsheng Zhang, Kaihong Wang, Shilong Guo and Binxin Zhu
J. Low Power Electron. Appl. 2025, 15(3), 38; https://doi.org/10.3390/jlpea15030038 - 6 Jul 2025
Viewed by 338
Abstract
The eGaN HEMT power devices face serious crosstalk problems when applied to high-frequency bridge circuits, thereby limiting the switching performance of these devices. To address this issue, a gate driver is proposed in this paper that can suppress both positive and negative crosstalk [...] Read more.
The eGaN HEMT power devices face serious crosstalk problems when applied to high-frequency bridge circuits, thereby limiting the switching performance of these devices. To address this issue, a gate driver is proposed in this paper that can suppress both positive and negative crosstalk of eGaN HEMT power devices, offering the advantages of simple control and easy integration. The basic idea is to suppress positive crosstalk by constructing a negative voltage capacitor, and to suppress negative crosstalk by reducing the impedance of the gate loop. To verify the capability of the proposed gate driver, double-pulse and synchronous Buck test platforms are constructed. The experimental results clearly demonstrate that the proposed gate driver reduces the positive and negative crosstalk spikes by 2.03 V and 1.54 V, respectively, ensuring that the positive and negative crosstalk spikes fall within a safe operating range. Additionally, the turn-off speed of the device is enhanced, leading to a reduction in switching loss. Full article
Show Figures

Figure 1

29 pages, 2379 KiB  
Article
An Analog Architecture and Algorithm for Efficient Convolutional Neural Network Image Computation
by Jennifer Hasler and Praveen Raj Ayyappan
J. Low Power Electron. Appl. 2025, 15(3), 37; https://doi.org/10.3390/jlpea15030037 - 25 Jun 2025
Viewed by 631
Abstract
This article presents an energy-efficient IC architecture implementation of an analog image-processing ML system, where the primary issue is analog architecture development for existing energy-efficient analog computing devices. An architecture is developed for image classification, transforming a typical imager input into a classified [...] Read more.
This article presents an energy-efficient IC architecture implementation of an analog image-processing ML system, where the primary issue is analog architecture development for existing energy-efficient analog computing devices. An architecture is developed for image classification, transforming a typical imager input into a classified result using a particular NN algorithm, a convolutional NN (ConvNN). These efforts show the need to continue to develop energy-efficient analog architectures alongside efficient analog circuits to fully exploit the opportunities of analog computing for system application. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop