- Article
Efficient Error Correction Coding for Physically Unclonable Functions
- Sreehari K. Narayanan,
- Ramesh Bhakthavatchalu and
- Remya Ajai Ajayan Sarala
Physically unclonable functions (PUFs) generate keys for cryptographic applications, eliminating the need for conventional key storage mechanisms. Since PUF responses are inherently noise-sensitive, their reliability can decrease under varying conditions. Integrating channel coding can enhance response stability and consistency. This work presents an efficient scheme that integrates a delay-base d PUF with a Low-Density Parity-Check (LDPC) code. Specifically, a feed-forward PUF is combined with LDPC coding to reliably regenerate the cryptographic key. Our design reproduces the key with minimal error using channel coding. The scheme achieves 96% key-generation reliability, representing a notable improvement over PUF-based key generation without error-correction coding. LDPC decoding with the min-sum algorithm provides better error correction than the bit-flipping algorithm, but it is more computationally intensive. We could design the proposed scheme with minimum hardware resource utilization using Xilinx Vivado 2018.2 and Cadence Genus tools.
12 December 2025





