- Article
Towards Memory-Efficient and High-Performance Branch Prediction: The LXOR Architecture for Control Flow Optimization in Embedded and General-Purpose RISC-V Processors
- Devendra G. Sutar and
- Nitesh B. Guinde
Accurate branch prediction is crucial for achieving high instruction throughput and minimizing control hazards in modern pipelines. This paper presents a novel LXOR (Local eXclusive-OR) branch predictor, which enhances prediction accuracy while reducing hardware complexity and memory usage. Unlike traditional predictors (GAg, GAp, PAg, PAp, Gshare, Gselect) that rely on large Pattern History Tables (PHTs) or intricate global/local history combinations, the LXOR predictor employs complemented local history and XOR-based indexing, optimizing table access and reducing aliasing. Implemented and evaluated using the MARSS-RISCV simulator on a 64-bit in-order RISC-V core, the LXOR’s performance was compared against traditional predictors using Coremark and SPEC CPU2017 benchmarks. The LXOR consistently achieved competitive results, with a prediction accuracy of up to 83.92%, lower misprediction rates, and instruction flushes as low as 5.83%. It also attained an IPC rate of up to 0.83, all while maintaining a compact memory footprint of approximately 2 KB, significantly smaller than current alternatives. These findings demonstrate that the LXOR predictor not only matches the performance of more complex predictors but does so with less memory and logic overhead, making it ideal for embedded systems, low-power RISC-V processors, and resource-constrained IoT and edge devices. By balancing prediction accuracy with simplicity, the LXOR offers a scalable and cost-effective solution for next-generation microprocessors.
24 October 2025





