Design of Tri-Mode Frequency Reconfigurable UAV Conformal Antenna Based on Frequency Selection Network
Abstract
1. Introduction
2. Design and Analysis of Proposed CR Antenna
2.1. Evolution of CR Communication Antenna Design
2.2. Design of Reconfigurable Frequency-Selective Network Based on Microstrip Line
2.2.1. Equivalent Circuit Analysis
2.2.2. Simulation of Surface Current and S-Parameters
3. Results and Discussion
3.1. Fabrication and Performance Testing
3.2. Performance Evaluation of Antenna Conformal to UAV
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wei, Q.; Li, R.; Bai, W.; Han, Z. Multi-UAV-Enabled Energy-Efficient Data Delivery for Low-Altitude Economy: Joint Coded Caching, User Grouping, and UAV Deployment. IEEE Internet Things J. 2025, 12, 27519–27532. [Google Scholar] [CrossRef]
- Li, Y.; Wang, W.; Zhang, C.; Huang, Y.; Niyato, D. Joint UAV Deployment and Space-Time-Frequency Resource Allocation for Low-Altitude Economy. IEEE Wirel. Commun. Lett. 2025, 1–1. [Google Scholar] [CrossRef]
- Saleem, Y.; Rehmani, M.H.; Zeadally, S. Integration of Cognitive Radio Technology with unmanned aerial vehicles: Issues, opportunities, and future research challenges. J. Netw. Comput. Appl. 2015, 50, 15–31. [Google Scholar] [CrossRef]
- Hilal, W.; Gadsden, S.A.; Yawney, J. Cognitive Dynamic Systems: A Review of Theory, Applications, and Recent Advances. Proc. IEEE 2023, 111, 575–622. [Google Scholar] [CrossRef]
- Zhao, X.; Riaz, S.; Geng, S. A Reconfigurable MIMO/UWB MIMO Antenna for Cognitive Radio Applications. IEEE Access 2019, 7, 46739–46747. [Google Scholar] [CrossRef]
- Wu, J.; Li, P.; Bao, J.; Ge, H. Quick Multiband Spectrum Sensing for Delay-Constraint Cognitive UAV Networks. IEEE Sens. J. 2022, 22, 19088–19100. [Google Scholar] [CrossRef]
- Asadallah, F.A.; Khalek, H.A.; Modad, B.A.A.; Hosn, J.A.; Costantine, J.; Kanj, R.; Tawk, Y. Spectrum-Aware Compact Reconfigurable UHF Antenna for Interweave Cognitive Radio. IEEE Open J. Antennas Propag. 2023, 4, 69–73. [Google Scholar] [CrossRef]
- Sadiq, A.M.; Liu, M.; Zhang, X.; Luo, Y.; Chen, Y.; Ma, K. Single-Motor Controlled Mechanically Frequency Reconfigurable Unidirectional Antenna Array With Stable Radiation Patterns. IEEE Open J. Antennas Propag. 2024, 5, 1773–1785. [Google Scholar] [CrossRef]
- McMichael, I.T. A Mechanically Reconfigurable Patch Antenna With Polarization Diversity. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1186–1189. [Google Scholar] [CrossRef]
- Tawk, Y.; Costantine, J.; Christodoulou, C.G. A frequency reconfigurable rotatable microstrip antenna design. In Proceedings of the 2010 IEEE Antennas and Propagation Society International Symposium, Toronto, Canada, 11–17 July 2010; pp. 1–4. [Google Scholar] [CrossRef]
- Kovitz, J.M.; Rajagopalan, H.; Rahmat-Samii, Y. Design and Implementation of Broadband MEMS RHCP/LHCP Reconfigurable Arrays Using Rotated E-Shaped Patch Elements. IEEE Trans. Antennas Propag. 2015, 63, 2497–2507. [Google Scholar] [CrossRef]
- Andy, A.; Alizadeh, P.; Rajab, K.Z.; Kreouzis, T.; Donnan, R. An optically-switched frequency reconfigurable antenna for cognitive radio applications. In Proceedings of the 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 10–15 April 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Dang, Q.H.; Nguyen-Trong, N.; Fumeaux, C.; Chen, S.J. Tuning-Range Extension Strategies for Varactor-Based Frequency-Reconfigurable Antennas. IEEE Open J. Antennas Propag. 2023, 4, 1087–1094. [Google Scholar] [CrossRef]
- Dildar, H.; Althobiani, F.; Ahmad, I.; Khan, W.U.R.; Ullah, S.; Mufti, N.; Ullah, S.; Muhammad, F.; Irfan, M.; Glowacz, A. Design and Experimental Analysis of Multiband Frequency Reconfigurable Antenna for 5G and Sub-6 GHz Wireless Communication. Micromachines 2021, 12, 32. [Google Scholar] [CrossRef] [PubMed]
- Nguyen-Trong, N.; Fumeaux, C. Tuning Range and Efficiency Optimization of a Frequency-Reconfigurable Patch Antenna. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 150–154. [Google Scholar] [CrossRef]
- Subbaraj, S.; Kanagasabai, M.; Alsath, M.G.N.; Palaniswamy, S.K.; Kingsly, S.; Kulandhaisamy, I.; Shrivastav, A.K.; Natarajan, R.; Meiyalagan, S. A Compact Frequency-Reconfigurable Antenna with Independent Tuning for Hand-Held Wireless Devices. IEEE Trans. Antennas Propag. 2020, 68, 1151–1154. [Google Scholar] [CrossRef]
- Paramayudha, K.; Chen, S.J.; Kaufmann, T.; Withayachumnankul, W.; Fumeaux, C. Triple-Band Reconfigurable Low-Profile Monopolar Antenna with Independent Tunability. IEEE Open J. Antennas Propag. 2020, 1, 47–56. [Google Scholar] [CrossRef]
- Jin, G.; Deng, C.; Xu, Y.; Yang, J.; Liao, S. Differential Frequency-Reconfigurable Antenna Based on Dipoles for Sub-6 GHz 5G and WLAN Applications. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 472–476. [Google Scholar] [CrossRef]
- Ma, T.; Dang, Q.H.; Fumeaux, C.; Nguyen-Trong, N. A Low-Profile Frequency-reconfigurable Filtering Patch Antenna. IEEE Trans. Antennas Propag. 2024, 72, 2998–3003. [Google Scholar] [CrossRef]
- Shereen, M.K.; Khattak, M.I. A Hybrid Reconfigurability Structure and Improved Gain Characteristics for a Novel 5G Monopole Antenna for Future Mobile Communication. Wirel. Pers. Commun. 2022, 123, 1841–1853. [Google Scholar] [CrossRef]
- Nazir, I.; Mukhtar, F.; Rana, I.E. A Miniaturized Frequency Reconfigurable Substrate Integrated Waveguide Antenna for Frequency Jamming Applications. IEEE Access 2024, 12, 127805–127824. [Google Scholar] [CrossRef]
- Nosrati, M.; Jafargholi, A.; Pazoki, R.; Tavassolian, N. Broadband Slotted Blade Dipole Antenna for Airborne UAV Applications. IEEE Trans. Antennas Propag. 2018, 66, 3857–3864. [Google Scholar] [CrossRef]
- Carpenter, A.; Lawrence, J.A.; Ghail, R.; Mason, P.J. The Development of Copper Clad Laminate Horn Antennas for Drone Interferometric Synthetic Aperture Radar. Drones 2023, 7, 215. [Google Scholar] [CrossRef]
- Dubrovka, F.F.; Piltyay, S.; Movchan, M.; Zakharchuk, I. Ultrawideband Compact Lightweight Biconical Antenna with Capability of Various Polarizations Reception for Modern UAV Applications. IEEE Trans. Antennas Propag. 2023, 71, 2922–2929. [Google Scholar] [CrossRef]
- Burr, R.; Schartel, M.; Mayer, W.; Walter, T.; Waldschmidt, C. Lightweight Broadband Antennas for UAV based GPR Sensors. In Proceedings of the 2018 15th European Radar Conference (EuRAD), Madrid, Spain, 26–28 September 2018; pp. 245–248. [Google Scholar] [CrossRef]
- Alhamad, R.; Almajali, E.; Mahmoud, S. Electrical Reconfigurability in Modern 4G, 4G/5G and 5G Antennas: A Critical Review of Polarization and Frequency Reconfigurable Designs. IEEE Access 2023, 11, 29215–29233. [Google Scholar] [CrossRef]
- Zhou, J.; Cai, J.; Chen, J.X. Contactless Varactor-Loaded Bandwidth-Enhanced Frequency-Reconfigurable Patch Antenna. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 2456–2460. [Google Scholar] [CrossRef]
- Khaleel, H.R.; Al-Rizzo, H.M.; Rucker, D.G.; Mohan, S. A Compact Polyimide-Based UWB Antenna for Flexible Electronics. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 564–567. [Google Scholar] [CrossRef]
- Deng, J.; Hou, S.; Zhao, L.; Guo, L. Wideband-to-narrowband tunable monopole antenna with integrated bandpass filters for UWB/WLAN applications. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2734–2737. [Google Scholar] [CrossRef]
- Zhang, Z.; Pan, Z. Time domain performance of reconfigurable filter antenna for IR-UWB, WLAN, and WiMAX applications. Electronics 2019, 8, 1007. [Google Scholar] [CrossRef]
- Shome, P.P.; Khan, T.; Koul, S.K.; Antar, Y.M. Compact UWB-to-C band reconfigurable filtenna based on elliptical monopole antenna integrated with bandpass filter for cognitive radio systems. IET Microw. Antennas Propag. 2020, 14, 1079–1088. [Google Scholar] [CrossRef]
- Ibrahim, A.A.; Mohamed, H.A.; Rizo, A.R.D.; Parra-Michel, R.; Aboushady, H. Tunable filtenna with DGS loaded resonators for a cognitive radio system based on an SDR transceiver. IEEE Access 2022, 10, 32123–32131. [Google Scholar] [CrossRef]
- Liu, B.-J.; Qiu, J.-H.; Lan, S.-C.; Li, G.-Q. A wideband-to-narrowband rectangular dielectric resonator antenna integrated with tunable bandpass filter. IEEE Access 2019, 7, 61251–61258. [Google Scholar] [CrossRef]
Mode Type | Applications | Frequency Range (GHz) | PIN_A | PIN_B | Part I | Part II | Part III |
---|---|---|---|---|---|---|---|
M1: Dual-band | WLAN (2.4G/5.8G) 5G NR (n41/n77/n78) ISM (2.45G/5.8G) | Band 1: 2.09–3.9 Band 2: 5.45–6.55 | ON | ON | ON | ON | OFF |
M2: Single-band | WiMAX (3.5G) | 3.4–6.5 | OFF | ON | OFF | ON | OFF |
M3: Continuous tuning | WLAN (5.2G) 5G NR (n79) | 4.0–6.25 | OFF | OFF | OFF | ON | ON |
Reference | Substrate | Modes Supported | Tuning Ratio (%) | Peak Gain (dBi) | Efficiency (%) | Size (mm) |
---|---|---|---|---|---|---|
[29] | FR-4 | 2 | 0 | 2.1 | 50–82 | 45 × 40 × 2 |
[30] | FR-4 | 3 | 0 | <2.0 | NA | 80 × 90 × 1.6 |
[31] | FR-4 | 2 | 0 | 2.0 | >76 | 42 × 39 × 1.6 |
[32] | Roger 4003C | 1 | 29.8 | NA | NA | 60 × 80 × 0.813 |
[19] | F4B | 2 | 21.9 | 10 | >65 | 114 × 114 × 3 |
[33] | FR-4 | 2 | 15.3 | 4.69 | NA | 24 × 32 × 5 |
this work | PI | 3 | flat: 34.6 bent: 38.8 | flat: 4.57 bent: 4.77 | flat: 66.9–85.9 bent: 67.2–82.9 | 31.4 × 58 × 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, T.; Zhu, M.; He, Z.; Zhang, Y.; Yu, G.; Qiu, Y.; Wang, J.; Li, Y.; Zhu, H.; Zhou, H.-M. Design of Tri-Mode Frequency Reconfigurable UAV Conformal Antenna Based on Frequency Selection Network. J. Low Power Electron. Appl. 2025, 15, 51. https://doi.org/10.3390/jlpea15030051
Bao T, Zhu M, He Z, Zhang Y, Yu G, Qiu Y, Wang J, Li Y, Zhu H, Zhou H-M. Design of Tri-Mode Frequency Reconfigurable UAV Conformal Antenna Based on Frequency Selection Network. Journal of Low Power Electronics and Applications. 2025; 15(3):51. https://doi.org/10.3390/jlpea15030051
Chicago/Turabian StyleBao, Teng, Mingmin Zhu, Zhifeng He, Yi Zhang, Guoliang Yu, Yang Qiu, Jiawei Wang, Yan Li, Haibin Zhu, and Hao-Miao Zhou. 2025. "Design of Tri-Mode Frequency Reconfigurable UAV Conformal Antenna Based on Frequency Selection Network" Journal of Low Power Electronics and Applications 15, no. 3: 51. https://doi.org/10.3390/jlpea15030051
APA StyleBao, T., Zhu, M., He, Z., Zhang, Y., Yu, G., Qiu, Y., Wang, J., Li, Y., Zhu, H., & Zhou, H.-M. (2025). Design of Tri-Mode Frequency Reconfigurable UAV Conformal Antenna Based on Frequency Selection Network. Journal of Low Power Electronics and Applications, 15(3), 51. https://doi.org/10.3390/jlpea15030051