Next Issue
Volume 8, February
Previous Issue
Volume 7, December
 
 

Viruses, Volume 8, Issue 1 (January 2016) – 26 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
269 KiB  
Editorial
Acknowledgement to Reviewers of Viruses in 2015
by Viruses Editorial Office
Viruses 2016, 8(1), 27; https://doi.org/10.3390/v8010027 - 22 Jan 2016
Viewed by 4021
Abstract
The editors of Viruses would like to express their sincere gratitude to the following reviewers for assessing manuscripts in 2015. [...] Full article
8384 KiB  
Article
Branched Lateral Tail Fiber Organization in T5-Like Bacteriophages DT57C and DT571/2 is Revealed by Genetic and Functional Analysis
by Alla K. Golomidova, Eugene E. Kulikov, Nikolai S. Prokhorov, Ricardo С. Guerrero-Ferreira, Yuriy A. Knirel, Elena S. Kostryukova, Karina K. Tarasyan and Andrey V. Letarov
Viruses 2016, 8(1), 26; https://doi.org/10.3390/v8010026 - 21 Jan 2016
Cited by 49 | Viewed by 8014
Abstract
The T5-like siphoviruses DT57C and DT571/2, isolated from horse feces, are very closely related to each other, and most of their structural proteins are also nearly identical to T5 phage. Their LTFs (L-shaped tail fibers), however, are composed of two proteins, LtfA and [...] Read more.
The T5-like siphoviruses DT57C and DT571/2, isolated from horse feces, are very closely related to each other, and most of their structural proteins are also nearly identical to T5 phage. Their LTFs (L-shaped tail fibers), however, are composed of two proteins, LtfA and LtfB, instead of the single Ltf of bacteriophage T5. In silico and mutant analysis suggests a possible branched structure of DT57C and DT571/2 LTFs, where the LtfB protein is connected to the phage tail via the LtfA protein and with both proteins carrying receptor recognition domains. Such adhesin arrangement has not been previously recognized in siphoviruses. The LtfA proteins of our phages are found to recognize different host O-antigen types: E. coli O22-like for DT57C phage and E. coli O87 for DT571/2. LtfB proteins are identical in both phages and recognize another host receptor, most probably lipopolysaccharide (LPS) of E. coli O81 type. In these two bacteriophages, LTF function is essential to penetrate the shield of the host’s O-antigens. We also demonstrate that LTF-mediated adsorption becomes superfluous when the non-specific cell protection by O-antigen is missing, allowing the phages to bind directly to their common secondary receptor, the outer membrane protein BtuB. The LTF independent adsorption was also demonstrated on an O22-like host mutant missing O-antigen O-acetylation, thus showing the biological value of this O-antigen modification for cell protection against phages. Full article
Show Figures

Graphical abstract

2850 KiB  
Article
Temporal Regulation of Distinct Internal Ribosome Entry Sites of the Dicistroviridae Cricket Paralysis Virus
by Anthony Khong, Jennifer M. Bonderoff, Ruth V. Spriggs, Erik Tammpere, Craig H. Kerr, Thomas J. Jackson, Anne E. Willis and Eric Jan
Viruses 2016, 8(1), 25; https://doi.org/10.3390/v8010025 - 19 Jan 2016
Cited by 22 | Viewed by 7507
Abstract
Internal ribosome entry is a key mechanism for viral protein synthesis in a subset of RNA viruses. Cricket paralysis virus (CrPV), a member of Dicistroviridae, has a positive-sense single strand RNA genome that contains two internal ribosome entry sites (IRES), a 5′untranslated [...] Read more.
Internal ribosome entry is a key mechanism for viral protein synthesis in a subset of RNA viruses. Cricket paralysis virus (CrPV), a member of Dicistroviridae, has a positive-sense single strand RNA genome that contains two internal ribosome entry sites (IRES), a 5′untranslated region (5′UTR) and intergenic region (IGR) IRES, that direct translation of open reading frames (ORF) encoding the viral non-structural and structural proteins, respectively. The regulation of and the significance of the CrPV IRESs during infection are not fully understood. In this study, using a series of biochemical assays including radioactive-pulse labelling, reporter RNA assays and ribosome profiling, we demonstrate that while 5′UTR IRES translational activity is constant throughout infection, IGR IRES translation is delayed and then stimulated two to three hours post infection. The delay in IGR IRES translation is not affected by inhibiting global translation prematurely via treatment with Pateamine A. Using a CrPV replicon that uncouples viral translation and replication, we show that the increase in IGR IRES translation is dependent on expression of non-structural proteins and is greatly stimulated when replication is active. Temporal regulation by distinct IRESs within the CrPV genome is an effective viral strategy to ensure optimal timing and expression of viral proteins to facilitate infection. Full article
(This article belongs to the Special Issue Viral Subversion of Stress Responses and Translational Control)
Show Figures

Figure 1

2496 KiB  
Review
Molecular Mechanisms of White Spot Syndrome Virus Infection and Perspectives on Treatments
by Bas Verbruggen, Lisa K. Bickley, Ronny Van Aerle, Kelly S. Bateman, Grant D. Stentiford, Eduarda M. Santos and Charles R. Tyler
Viruses 2016, 8(1), 23; https://doi.org/10.3390/v8010023 - 18 Jan 2016
Cited by 173 | Viewed by 22435
Abstract
Since its emergence in the 1990s, White Spot Disease (WSD) has had major economic and societal impact in the crustacean aquaculture sector. Over the years shrimp farming alone has experienced billion dollar losses through WSD. The disease is caused by the White Spot [...] Read more.
Since its emergence in the 1990s, White Spot Disease (WSD) has had major economic and societal impact in the crustacean aquaculture sector. Over the years shrimp farming alone has experienced billion dollar losses through WSD. The disease is caused by the White Spot Syndrome Virus (WSSV), a large dsDNA virus and the only member of the Nimaviridae family. Susceptibility to WSSV in a wide range of crustacean hosts makes it a major risk factor in the translocation of live animals and in commodity products. Currently there are no effective treatments for this disease. Understanding the molecular basis of disease processes has contributed significantly to the treatment of many human and animal pathogens, and with a similar aim considerable efforts have been directed towards understanding host–pathogen molecular interactions for WSD. Work on the molecular mechanisms of pathogenesis in aquatic crustaceans has been restricted by a lack of sequenced and annotated genomes for host species. Nevertheless, some of the key host–pathogen interactions have been established: between viral envelope proteins and host cell receptors at initiation of infection, involvement of various immune system pathways in response to WSSV, and the roles of various host and virus miRNAs in mitigation or progression of disease. Despite these advances, many fundamental knowledge gaps remain; for example, the roles of the majority of WSSV proteins are still unknown. In this review we assess current knowledge of how WSSV infects and replicates in its host, and critique strategies for WSD treatment. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

1147 KiB  
Review
Innate Immunity Evasion by Enteroviruses: Insights into Virus-Host Interaction
by Xiaobo Lei, Xia Xiao and Jianwei Wang
Viruses 2016, 8(1), 22; https://doi.org/10.3390/v8010022 - 15 Jan 2016
Cited by 62 | Viewed by 11169
Abstract
Enterovirus genus includes multiple important human pathogens, such as poliovirus, coxsackievirus, enterovirus (EV) A71, EV-D68 and rhinovirus. Infection with EVs can cause numerous clinical conditions including poliomyelitis, meningitis and encephalitis, hand-foot-and-mouth disease, acute flaccid paralysis, diarrhea, myocarditis and respiratory illness. EVs, which are [...] Read more.
Enterovirus genus includes multiple important human pathogens, such as poliovirus, coxsackievirus, enterovirus (EV) A71, EV-D68 and rhinovirus. Infection with EVs can cause numerous clinical conditions including poliomyelitis, meningitis and encephalitis, hand-foot-and-mouth disease, acute flaccid paralysis, diarrhea, myocarditis and respiratory illness. EVs, which are positive-sense single-stranded RNA viruses, trigger activation of the host antiviral innate immune responses through pathogen recognition receptors such as retinoic acid-inducible gene (RIG-I)-likeand Toll-like receptors. In turn, EVs have developed sophisticated strategies to evade host antiviral responses. In this review, we discuss the interplay between the host innate immune responses and EV infection, with a primary focus on host immune detection and protection against EV infection and viral strategies to evade these antiviral immune responses. Full article
(This article belongs to the Special Issue Recent Progress in Enterovirus Research)
Show Figures

Figure 1

1436 KiB  
Article
Complete Genome Sequence of Germline Chromosomally Integrated Human Herpesvirus 6A and Analyses Integration Sites Define a New Human Endogenous Virus with Potential to Reactivate as an Emerging Infection
by Joshua Tweedy, Maria Alexandra Spyrou, Max Pearson, Dirk Lassner, Uwe Kuhl and Ursula A. Gompels
Viruses 2016, 8(1), 19; https://doi.org/10.3390/v8010019 - 15 Jan 2016
Cited by 38 | Viewed by 7493
Abstract
Human herpesvirus-6A and B (HHV-6A, HHV-6B) have recently defined endogenous genomes, resulting from integration into the germline: chromosomally-integrated “CiHHV-6A/B”. These affect approximately 1.0% of human populations, giving potential for virus gene expression in every cell. We previously showed that CiHHV-6A was more divergent [...] Read more.
Human herpesvirus-6A and B (HHV-6A, HHV-6B) have recently defined endogenous genomes, resulting from integration into the germline: chromosomally-integrated “CiHHV-6A/B”. These affect approximately 1.0% of human populations, giving potential for virus gene expression in every cell. We previously showed that CiHHV-6A was more divergent than CiHHV-6B by examining four genes in 44 European CiHHV-6A/B cardiac/haematology patients. There was evidence for gene expression/reactivation, implying functional non-defective genomes. To further define the relationship between HHV-6A and CiHHV-6A we used next-generation sequencing to characterize genomes from three CiHHV-6A cardiac patients. Comparisons to known exogenous HHV-6A showed CiHHV-6A genomes formed a separate clade; including all 85 non-interrupted genes and necessary cis-acting signals for reactivation as infectious virus. Greater single nucleotide polymorphism (SNP) density was defined in 16 genes and the direct repeats (DR) terminal regions. Using these SNPs, deep sequencing analyses demonstrated superinfection with exogenous HHV-6A in two of the CiHHV-6A patients with recurrent cardiac disease. Characterisation of the integration sites in twelve patients identified the human chromosome 17p subtelomere as a prevalent site, which had specific repeat structures and phylogenetically related CiHHV-6A coding sequences indicating common ancestral origins. Overall CiHHV-6A genomes were similar, but distinct from known exogenous HHV-6A virus, and have the capacity to reactivate as emerging virus infections. Full article
Show Figures

Figure 1

230 KiB  
Review
Advances and Challenges in Studying Hepatitis B Virus In Vitro
by Dvora Witt-Kehati, Maya Bitton Alaluf and Amir Shlomai
Viruses 2016, 8(1), 21; https://doi.org/10.3390/v8010021 - 14 Jan 2016
Cited by 24 | Viewed by 7444
Abstract
Hepatitis B virus (HBV) is a small DNA virus that infects the liver. Current anti-HBV drugs efficiently suppress viral replication but do not eradicate the virus due to the persistence of its episomal DNA. Efforts to develop reliable in vitro systems to model [...] Read more.
Hepatitis B virus (HBV) is a small DNA virus that infects the liver. Current anti-HBV drugs efficiently suppress viral replication but do not eradicate the virus due to the persistence of its episomal DNA. Efforts to develop reliable in vitro systems to model HBV infection, an imperative tool for studying HBV biology and its interactions with the host, have been hampered by major limitations at the level of the virus, the host and infection readouts. This review summarizes major milestones in the development of in vitro systems to study HBV. Recent advances in our understanding of HBV biology, such as the discovery of the bile-acid pump sodium-taurocholate cotransporting polypeptide (NTCP) as a receptor for HBV, enabled the establishment of NTCP expressing hepatoma cell lines permissive for HBV infection. Furthermore, advanced tissue engineering techniques facilitate now the establishment of HBV infection systems based on primary human hepatocytes that maintain their phenotype and permissiveness for infection over time. The ability to differentiate inducible pluripotent stem cells into hepatocyte-like cells opens the door for studying HBV in a more isogenic background, as well. Thus, the recent advances in in vitro models for HBV infection holds promise for a better understanding of virus-host interactions and for future development of more definitive anti-viral drugs. Full article
14701 KiB  
Article
Features of the Antitumor Effect of Vaccinia Virus Lister Strain
by Evgeniy Zonov, Galina Kochneva, Anastasiya Yunusova, Antonina Grazhdantseva, Vladimir Richter and Elena Ryabchikova
Viruses 2016, 8(1), 20; https://doi.org/10.3390/v8010020 - 12 Jan 2016
Cited by 13 | Viewed by 6924
Abstract
Oncolytic abilities of vaccinia virus (VACV) served as a basis for the development of various recombinants for treating cancer; however, “natural” oncolytic properties of the virus are not examined in detail. Our study was conducted to know how the genetically unmodified L-IVP strain [...] Read more.
Oncolytic abilities of vaccinia virus (VACV) served as a basis for the development of various recombinants for treating cancer; however, “natural” oncolytic properties of the virus are not examined in detail. Our study was conducted to know how the genetically unmodified L-IVP strain of VACV produces its antitumor effect. Human A431 carcinoma xenografts in nude mice and murine Ehrlich carcinoma in C57Bl mice were used as targets for VACV, which was injected intratumorally. A set of virological methods, immunohistochemistry, light and electron microscopy was used in the study. We found that in mice bearing A431 carcinoma, the L-IVP strain was observed in visceral organs within two weeks, but rapidly disappeared from the blood. The L-IVP strain caused decrease of sizes in both tumors, however, in different ways. Direct cell destruction by replicating virus plays a main role in regression of A431 carcinoma xenografts, while in Ehrlich carcinoma, which poorly supported VACV replication, the virus induced decrease of mitoses by pushing tumor cells into S-phase of cell cycle. Our study showed that genetically unmodified VACV possesses at least two mechanisms of antitumor effect: direct destruction of tumor cells and suppression of mitoses in tumor cells. Full article
(This article belongs to the Special Issue Oncolytic Viruses)
Show Figures

Graphical abstract

1319 KiB  
Review
Defining the Enterovirus Diversity Landscape of a Fecal Sample: A Methodological Challenge?
by Temitope Oluwasegun Cephas Faleye, Moses Olubusuyi Adewumi and Johnson Adekunle Adeniji
Viruses 2016, 8(1), 18; https://doi.org/10.3390/v8010018 - 12 Jan 2016
Cited by 5 | Viewed by 6838
Abstract
Enteroviruses are a group of over 250 naked icosahedral virus serotypes that have been associated with clinical conditions that range from intrauterine enterovirus transmission withfataloutcome through encephalitis and meningitis, to paralysis. Classically, enterovirus detection was done by assaying for the development of the [...] Read more.
Enteroviruses are a group of over 250 naked icosahedral virus serotypes that have been associated with clinical conditions that range from intrauterine enterovirus transmission withfataloutcome through encephalitis and meningitis, to paralysis. Classically, enterovirus detection was done by assaying for the development of the classic enterovirus-specific cytopathic effect in cell culture. Subsequently, the isolates were historically identified by a neutralization assay. More recently, identification has been done by reverse transcriptase-polymerase chain reaction (RT-PCR). However, in recent times, there is a move towards direct detection and identification of enteroviruses from clinical samples using the cell culture-independent RT semi-nested PCR (RT-snPCR) assay. This RT-snPCR procedure amplifies the VP1 gene, which is then sequenced and used for identification. However, while cell culture-based strategies tend to show a preponderance of certain enterovirus species depending on the cell lines included in the isolation protocol, the RT-snPCR strategies tilt in a different direction. Consequently, it is becoming apparent that the diversity observed in certain enterovirus species, e.g., enterovirus species B(EV-B), might not be because they are the most evolutionarily successful. Rather, it might stem from cell line-specific bias accumulated over several years of use of the cell culture-dependent isolation protocols. Furthermore, it might also be a reflection of the impact of the relative genome concentration on the result of pan-enterovirus VP1 RT-snPCR screens used during the identification of cell culture isolates. This review highlights the impact of these two processes on the current diversity landscape of enteroviruses and the need to re-assess enterovirus detection and identification algorithms in a bid to better balance our understanding of the enterovirus diversity landscape. Full article
(This article belongs to the Special Issue Recent Progress in Enterovirus Research)
Show Figures

Figure 1

1700 KiB  
Communication
Development of an Assay for the Identification of Receptor Binding Proteins from Bacteriophages
by David J. Simpson, Jessica C. Sacher and Christine M. Szymanski
Viruses 2016, 8(1), 17; https://doi.org/10.3390/v8010017 - 11 Jan 2016
Cited by 30 | Viewed by 8099
Abstract
Recently, a large number of new technologies have been developed that exploit the unique properties of bacteriophage receptor binding proteins (RBPs). These include their use in diagnostic applications that selectively capture bacteria and as therapeutics that reduce bacterial colonization in vivo. RBPs [...] Read more.
Recently, a large number of new technologies have been developed that exploit the unique properties of bacteriophage receptor binding proteins (RBPs). These include their use in diagnostic applications that selectively capture bacteria and as therapeutics that reduce bacterial colonization in vivo. RBPs exhibit comparable, and in many cases superior, stability, receptor specificity, and affinity to other carbohydrate binding proteins such as antibodies or lectins. In order to further exploit the use of RBPs, we have developed an assay for discovering RBPs using phage genome expression libraries and protein screens to identify binding partners that recognize the host bacterium. When phage P22 was screened using this assay, Gp9 was the only RBP discovered, confirming previous predictions that this is the sole RBP encoded by this phage. We then examined the Escherichia coli O157:H7 typing phage 1 in our assay and identified a previously undescribed RBP. This general approach has the potential to assist in the identification of RBPs from other bacteriophages. Full article
Show Figures

Figure 1

1662 KiB  
Review
Rhinoviruses and Respiratory Enteroviruses: Not as Simple as ABC
by Léna Royston and Caroline Tapparel
Viruses 2016, 8(1), 16; https://doi.org/10.3390/v8010016 - 11 Jan 2016
Cited by 128 | Viewed by 18973
Abstract
Rhinoviruses (RVs) and respiratory enteroviruses (EVs) are leading causes of upper respiratory tract infections and among the most frequent infectious agents in humans worldwide. Both are classified in the Enterovirus genus within the Picornaviridae family and they have been assigned to seven distinct [...] Read more.
Rhinoviruses (RVs) and respiratory enteroviruses (EVs) are leading causes of upper respiratory tract infections and among the most frequent infectious agents in humans worldwide. Both are classified in the Enterovirus genus within the Picornaviridae family and they have been assigned to seven distinct species, RV-A, B, C and EV-A, B, C, D. As viral infections of public health significance, they represent an important financial burden on health systems worldwide. However, the lack of efficient antiviral treatment or vaccines against these highly prevalent pathogens prevents an effective management of RV-related diseases. Current advances in molecular diagnostic techniques have revealed the presence of RV in the lower respiratory tract and its role in lower airway diseases is increasingly reported. In addition to an established etiological role in the common cold, these viruses demonstrate an unexpected capacity to spread to other body sites under certain conditions. Some of these viruses have received particular attention recently, such as EV-D68 that caused a large outbreak of respiratory illness in 2014, respiratory EVs from species C, or viruses within the newly-discovered RV-C species. This review provides an update of the latest findings on clinical and fundamental aspects of RV and respiratory EV, including a summary of basic knowledge of their biology. Full article
(This article belongs to the Special Issue Recent Progress in Enterovirus Research)
Show Figures

Figure 1

1693 KiB  
Review
Dynamic Viral Glycoprotein Machines: Approaches for Probing Transient States That Drive Membrane Fusion
by Natalie K. Garcia and Kelly K. Lee
Viruses 2016, 8(1), 15; https://doi.org/10.3390/v8010015 - 11 Jan 2016
Cited by 9 | Viewed by 9989
Abstract
The fusion glycoproteins that decorate the surface of enveloped viruses undergo dramatic conformational changes in the course of engaging with target cells through receptor interactions and during cell entry. These refolding events ultimately drive the fusion of viral and cellular membranes leading to [...] Read more.
The fusion glycoproteins that decorate the surface of enveloped viruses undergo dramatic conformational changes in the course of engaging with target cells through receptor interactions and during cell entry. These refolding events ultimately drive the fusion of viral and cellular membranes leading to delivery of the genetic cargo. While well-established methods for structure determination such as X-ray crystallography have provided detailed structures of fusion proteins in the pre- and post-fusion fusion states, to understand mechanistically how these fusion glycoproteins perform their structural calisthenics and drive membrane fusion requires new analytical approaches that enable dynamic intermediate states to be probed. Methods including structural mass spectrometry, small-angle X-ray scattering, and electron microscopy have begun to provide new insight into pathways of conformational change and fusion protein function. In combination, the approaches provide a significantly richer portrait of viral fusion glycoprotein structural variation and fusion activation as well as inhibition by neutralizing agents. Here recent studies that highlight the utility of these complementary approaches will be reviewed with a focus on the well-characterized influenza virus hemagglutinin fusion glycoprotein system. Full article
(This article belongs to the Special Issue Viral Glycoprotein Structure)
Show Figures

Figure 1

2235 KiB  
Article
Metaviromics of Namib Desert Salt Pans: A Novel Lineage of Haloarchaeal Salterproviruses and a Rich Source of ssDNA Viruses
by Evelien M. Adriaenssens, Leonardo Joaquim Van Zyl, Don A. Cowan and Marla I. Trindade
Viruses 2016, 8(1), 14; https://doi.org/10.3390/v8010014 - 8 Jan 2016
Cited by 19 | Viewed by 6434
Abstract
Viral communities of two different salt pans located in the Namib Desert, Hosabes and Eisfeld, were investigated using a combination of multiple displacement amplification of metaviromic DNA and deep sequencing, and provided comprehensive sequence data on both ssDNA and dsDNA viral community structures. [...] Read more.
Viral communities of two different salt pans located in the Namib Desert, Hosabes and Eisfeld, were investigated using a combination of multiple displacement amplification of metaviromic DNA and deep sequencing, and provided comprehensive sequence data on both ssDNA and dsDNA viral community structures. Read and contig annotations through online pipelines showed that the salt pans harbored largely unknown viral communities. Through network analysis, we were able to assign a large portion of the unknown reads to a diverse group of ssDNA viruses. Contigs belonging to the subfamily Gokushovirinae were common in both environmental datasets. Analysis of haloarchaeal virus contigs revealed the presence of three contigs distantly related with His1, indicating a possible new lineage of salterproviruses in the Hosabes playa. Based on viral richness and read mapping analyses, the salt pan metaviromes were novel and most closely related to each other while showing a low degree of overlap with other environmental viromes. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Figure 1

1940 KiB  
Article
The Influenza Virus H5N1 Infection Can Induce ROS Production for Viral Replication and Host Cell Death in A549 Cells Modulated by Human Cu/Zn Superoxide Dismutase (SOD1) Overexpression
by Xian Lin, Ruifang Wang, Wei Zou, Xin Sun, Xiaokun Liu, Lianzhong Zhao, Shengyu Wang and Meilin Jin
Viruses 2016, 8(1), 13; https://doi.org/10.3390/v8010013 - 8 Jan 2016
Cited by 65 | Viewed by 9023
Abstract
Highly pathogenic H5N1 infections are often accompanied by excessive pro-inflammatory response, high viral titer, and apoptosis; as such, the efficient control of these infections poses a great challenge. The pathogenesis of influenza virus infection is also related to oxidative stress. However, the role [...] Read more.
Highly pathogenic H5N1 infections are often accompanied by excessive pro-inflammatory response, high viral titer, and apoptosis; as such, the efficient control of these infections poses a great challenge. The pathogenesis of influenza virus infection is also related to oxidative stress. However, the role of endogenic genes with antioxidant effect in the control of influenza viruses, especially H5N1 viruses, should be further investigated. In this study, the H5N1 infection in lung epithelial cells decreased Cu/Zn superoxide dismutase (SOD1) expression at mRNA and protein levels. Forced SOD1 expression significantly inhibited the H5N1-induced increase in reactive oxygen species, decreased pro-inflammatory response, prevented p65 and p38 phosphorylation, and impeded viral ribonucleoprotein nuclear export and viral replication. The SOD1 overexpression also rescued H5N1-induced cellular apoptosis and alleviated H5N1-caused mitochondrial dysfunction. Therefore, this study described the role of SOD1 in the replication of H5N1 influenza virus and emphasized the relevance of this enzyme in the control of H5N1 replication in epithelial cells. Pharmacological modulation or targeting SOD1 may open a new way to fight H5N1 influenza virus. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Graphical abstract

223 KiB  
Article
Quantifying Next Generation Sequencing Sample Pre-Processing Bias in HIV-1 Complete Genome Sequencing
by Bram Vrancken, Nídia Sequeira Trovão, Guy Baele, Eric Van Wijngaerden, Anne-Mieke Vandamme, Kristel Van Laethem and Philippe Lemey
Viruses 2016, 8(1), 12; https://doi.org/10.3390/v8010012 - 7 Jan 2016
Cited by 14 | Viewed by 6641
Abstract
Genetic analyses play a central role in infectious disease research. Massively parallelized “mechanical cloning” and sequencing technologies were quickly adopted by HIV researchers in order to broaden the understanding of the clinical importance of minor drug-resistant variants. These efforts have, however, remained largely [...] Read more.
Genetic analyses play a central role in infectious disease research. Massively parallelized “mechanical cloning” and sequencing technologies were quickly adopted by HIV researchers in order to broaden the understanding of the clinical importance of minor drug-resistant variants. These efforts have, however, remained largely limited to small genomic regions. The growing need to monitor multiple genome regions for drug resistance testing, as well as the obvious benefit for studying evolutionary and epidemic processes makes complete genome sequencing an important goal in viral research. In addition, a major drawback for NGS applications to RNA viruses is the need for large quantities of input DNA. Here, we use a generic overlapping amplicon-based near full-genome amplification protocol to compare low-input enzymatic fragmentation (Nextera™) with conventional mechanical shearing for Roche 454 sequencing. We find that the fragmentation method has only a modest impact on the characterization of the population composition and that for reliable results, the variation introduced at all steps of the procedure—from nucleic acid extraction to sequencing—should be taken into account, a finding that is also relevant for NGS technologies that are now more commonly used. Furthermore, by applying our protocol to deep sequence a number of pre-therapy plasma and PBMC samples, we illustrate the potential benefits of a near complete genome sequencing approach in routine genotyping. Full article
10855 KiB  
Review
Overcoming Barriers in Oncolytic Virotherapy with HDAC Inhibitors and Immune Checkpoint Blockade
by Antonio Marchini, Eleanor M. Scott and Jean Rommelaere
Viruses 2016, 8(1), 9; https://doi.org/10.3390/v8010009 - 6 Jan 2016
Cited by 76 | Viewed by 15077
Abstract
Oncolytic viruses (OVs) target and destroy cancer cells while sparing their normal counterparts. These viruses have been evaluated in numerous studies at both pre-clinical and clinical levels and the recent Food and Drug Administration (FDA) approval of an oncolytic herpesvirus-based treatment raises optimism [...] Read more.
Oncolytic viruses (OVs) target and destroy cancer cells while sparing their normal counterparts. These viruses have been evaluated in numerous studies at both pre-clinical and clinical levels and the recent Food and Drug Administration (FDA) approval of an oncolytic herpesvirus-based treatment raises optimism that OVs will become a therapeutic option for cancer patients. However, to improve clinical outcome, there is a need to increase OV efficacy. In addition to killing cancer cells directly through lysis, OVs can stimulate the induction of anti-tumour immune responses. The host immune system thus represents a “double-edged sword” for oncolytic virotherapy: on the one hand, a robust anti-viral response will limit OV replication and spread; on the other hand, the immune-mediated component of OV therapy may be its most important anti-cancer mechanism. Although the relative contribution of direct viral oncolysis and indirect, immune-mediated oncosuppression to overall OV efficacy is unclear, it is likely that an initial period of vigorous OV multiplication and lytic activity will most optimally set the stage for subsequent adaptive anti-tumour immunity. In this review, we consider the use of histone deacetylase (HDAC) inhibitors as a means of boosting virus replication and lessening the negative impact of innate immunity on the direct oncolytic effect. We also discuss an alternative approach, aimed at potentiating OV-elicited anti-tumour immunity through the blockade of immune checkpoints. We conclude by proposing a two-phase combinatorial strategy in which initial OV replication and spread is maximised through transient HDAC inhibition, with anti-tumour immune responses subsequently enhanced by immune checkpoint blockade. Full article
(This article belongs to the Special Issue Oncolytic Viruses)
Show Figures

Figure 1

985 KiB  
Review
MicroRNA and Pathogenesis of Enterovirus Infection
by Bing-Ching Ho, Pan-Chyr Yang and Sung-Liang Yu
Viruses 2016, 8(1), 11; https://doi.org/10.3390/v8010011 - 6 Jan 2016
Cited by 39 | Viewed by 12092
Abstract
There are no currently available specific antiviral therapies for non-polio Enterovirus infections. Although several vaccines have entered clinical trials, the efficacy requires further evaluation, particularly for cross-strain protective activity. Curing patients with viral infections is a public health problem due to antigen alterations [...] Read more.
There are no currently available specific antiviral therapies for non-polio Enterovirus infections. Although several vaccines have entered clinical trials, the efficacy requires further evaluation, particularly for cross-strain protective activity. Curing patients with viral infections is a public health problem due to antigen alterations and drug resistance caused by the high genomic mutation rate. To conquer these limits in the development of anti-Enterovirus treatments, a comprehensive understanding of the interactions between Enterovirus and host cells is urgently needed. MicroRNA (miRNA) constitutes the biggest family of gene regulators in mammalian cells and regulates almost a half of all human genes. The roles of miRNAs in Enterovirus pathogenesis have recently begun to be noted. In this review, we shed light on recent advances in the understanding of Enterovirus infection-modulated miRNAs. The impacts of altered host miRNAs on cellular processes, including immune escape, apoptosis, signal transduction, shutdown of host protein synthesis and viral replication, are discussed. Finally, miRNA-based medication provides a promising strategy for the development of antiviral therapy. Full article
(This article belongs to the Special Issue Recent Progress in Enterovirus Research)
Show Figures

Graphical abstract

682 KiB  
Article
Direct Identification of Enteroviruses in Cerebrospinal Fluid of Patients with Suspected Meningitis by Nested PCR Amplification
by Alexandr Krasota, Natalia Loginovskih, Olga Ivanova and Galina Lipskaya
Viruses 2016, 8(1), 10; https://doi.org/10.3390/v8010010 - 6 Jan 2016
Cited by 13 | Viewed by 6312
Abstract
Enteroviruses, the most common human viral pathogens worldwide, have been associated with serous meningitis, encephalitis, syndrome of acute flaccid paralysis, myocarditis and the onset of diabetes type 1. In the future, the rapid identification of the etiological agent would allow to adjust the [...] Read more.
Enteroviruses, the most common human viral pathogens worldwide, have been associated with serous meningitis, encephalitis, syndrome of acute flaccid paralysis, myocarditis and the onset of diabetes type 1. In the future, the rapid identification of the etiological agent would allow to adjust the therapy promptly and thereby improve the course of the disease and prognosis. We developed RT-nested PCR amplification of the genomic region coding viral structural protein VP1 for direct identification of enteroviruses in clinical specimens and compared it with the existing analogs. One-hundred-fifty-nine cerebrospinal fluids (CSF) from patients with suspected meningitis were studied. The amplification of VP1 genomic region using the new method was achieved for 86 (54.1%) patients compared with 75 (47.2%), 53 (33.3%) and 31 (19.5%) achieved with previously published methods. We identified 11 serotypes of the Enterovirus species B in 2012, including relatively rare echovirus 14 (E-14), E-15 and E-32, and eight serotypes of species B and 5 enteroviruses A71 (EV-A71) in 2013. The developed method can be useful for direct identification of enteroviruses in clinical material with the low virus loads such as CSF. Full article
(This article belongs to the Special Issue Recent Progress in Enterovirus Research)
Show Figures

Graphical abstract

2200 KiB  
Article
PRMT5 Is Upregulated in HTLV-1-Mediated T-Cell Transformation and Selective Inhibition Alters Viral Gene Expression and Infected Cell Survival
by Amanda R. Panfil, Jacob Al-Saleem, Cory M. Howard, Jessica M. Mates, Jesse J. Kwiek, Robert A. Baiocchi and Patrick L. Green
Viruses 2016, 8(1), 7; https://doi.org/10.3390/v8010007 - 30 Dec 2015
Cited by 21 | Viewed by 6792
Abstract
Human T-cell leukemia virus type-1 (HTLV-1) is a tumorigenic retrovirus responsible for development of adult T-cell leukemia/lymphoma (ATLL). This disease manifests after a long clinical latency period of up to 2–3 decades. Two viral gene products, Tax and HBZ, have transforming properties and [...] Read more.
Human T-cell leukemia virus type-1 (HTLV-1) is a tumorigenic retrovirus responsible for development of adult T-cell leukemia/lymphoma (ATLL). This disease manifests after a long clinical latency period of up to 2–3 decades. Two viral gene products, Tax and HBZ, have transforming properties and play a role in the pathogenic process. Genetic and epigenetic cellular changes also occur in HTLV-1-infected cells, which contribute to transformation and disease development. However, the role of cellular factors in transformation is not completely understood. Herein, we examined the role of protein arginine methyltransferase 5 (PRMT5) on HTLV-1-mediated cellular transformation and viral gene expression. We found PRMT5 expression was upregulated during HTLV-1-mediated T-cell transformation, as well as in established lymphocytic leukemia/lymphoma cell lines and ATLL patient PBMCs. shRNA-mediated reduction in PRMT5 protein levels or its inhibition by a small molecule inhibitor (PRMT5i) in HTLV-1-infected lymphocytes resulted in increased viral gene expression and decreased cellular proliferation. PRMT5i also had selective toxicity in HTLV-1-transformed T-cells. Finally, we demonstrated that PRMT5 and the HTLV-1 p30 protein had an additive inhibitory effect on HTLV-1 gene expression. Our study provides evidence for PRMT5 as a host cell factor important in HTLV-1-mediated T-cell transformation, and a potential target for ATLL treatment. Full article
(This article belongs to the Special Issue Recent Advances in HTLV Research 2015)
Show Figures

Figure 1

708 KiB  
Review
Development of Novel Vaccines against Enterovirus-71
by Pinn Tsin Isabel Yee and Chit Laa Poh
Viruses 2016, 8(1), 1; https://doi.org/10.3390/v8010001 - 30 Dec 2015
Cited by 12 | Viewed by 10469
Abstract
The hand, foot and mouth disease is caused by a group of Enteroviruses such as Enterovirus 71 (EV-A71) and Coxsackievirus CV-A5, CV-A8, and CV-A16. Mild symptoms of EV-A71 infection in children range from high fever, vomiting, rashes and ulcers in mouth but can [...] Read more.
The hand, foot and mouth disease is caused by a group of Enteroviruses such as Enterovirus 71 (EV-A71) and Coxsackievirus CV-A5, CV-A8, and CV-A16. Mild symptoms of EV-A71 infection in children range from high fever, vomiting, rashes and ulcers in mouth but can produce more severe symptoms such as brainstem and cerebellar encephalitis, leading up to cardiopulmonary failure and death. The lack of vaccines and antiviral drugs against EV-A71 highlights the urgency of developing preventive and treatment agents against EV-A71 to prevent further fatalities. Research groups have developed experimental inactivated vaccines, recombinant Viral Protein 1 (VP1) vaccine and virus-like particles (VLPs). The inactivated EV-A71 vaccine is considered the safest viral vaccine, as there will be no reversion to the infectious wild type strain. The recombinant VP1 vaccine is a cost-effective immunogen, while VLPs contain an arrangement of epitopes that can elicit neutralizing antibodies against the virus. As each type of vaccine has its advantages and disadvantages, increased studies are required in the development of such vaccines, whereby high efficacy, long-lasting immunity, minimal risk to those vaccinated, safe and easy production, low cost, dispensing the need for refrigeration and convenient delivery are the major goals in their design. Full article
(This article belongs to the Special Issue Recent Progress in Enterovirus Research)
Show Figures

Figure 1

3215 KiB  
Article
Human Cytomegalovirus Inhibits the PARsylation Activity of Tankyrase—A Potential Strategy for Suppression of the Wnt Pathway
by Sujayita Roy, Fengjie Liu and Ravit Arav-Boger
Viruses 2016, 8(1), 8; https://doi.org/10.3390/v8010008 - 29 Dec 2015
Cited by 15 | Viewed by 6193
Abstract
Human cytomegalovirus (HCMV) was reported to downregulate the Wnt/β-catenin pathway. Induction of Axin1, the negative regulator of the Wnt pathway, has been reported as an important mechanism for inhibition of β-catenin. Since Tankyrase (TNKS) negatively regulates Axin1, we investigated the effect of HCMV [...] Read more.
Human cytomegalovirus (HCMV) was reported to downregulate the Wnt/β-catenin pathway. Induction of Axin1, the negative regulator of the Wnt pathway, has been reported as an important mechanism for inhibition of β-catenin. Since Tankyrase (TNKS) negatively regulates Axin1, we investigated the effect of HCMV on TNKS expression and poly-ADP ribose polymerase (PARsylation) activity, during virus replication. Starting at 24 h post infection, HCMV stabilized the expression of TNKS and reduced its PARsylation activity, resulting in accumulation of Axin1 and reduction in its PARsylation as well. General PARsylation was not changed in HCMV-infected cells, suggesting specific inhibition of TNKS PARsylation. Similarly, treatment with XAV939, a chemical inhibitor of TNKS’ activity, resulted in the accumulation of TNKS in both non-infected and HCMV-infected cell lines. Reduction of TNKS activity or knockdown of TNKS was beneficial for HCMV, evidenced by its improved growth in fibroblasts. Our results suggest that HCMV modulates the activity of TNKS to induce Axin1, resulting in inhibition of the β-catenin pathway. Since HCMV replication is facilitated by TNKS knockdown or inhibition of its activity, TNKS may serve as an important virus target for control of a variety of cellular processes. Full article
Show Figures

Graphical abstract

3378 KiB  
Article
Quercetin as an Antiviral Agent Inhibits Influenza A Virus (IAV) Entry
by Wenjiao Wu, Richan Li, Xianglian Li, Jian He, Shibo Jiang, Shuwen Liu and Jie Yang
Viruses 2016, 8(1), 6; https://doi.org/10.3390/v8010006 - 25 Dec 2015
Cited by 317 | Viewed by 27483
Abstract
Influenza A viruses (IAVs) cause seasonal pandemics and epidemics with high morbidity and mortality, which calls for effective anti-IAV agents. The glycoprotein hemagglutinin of influenza virus plays a crucial role in the initial stage of virus infection, making it a potential target for [...] Read more.
Influenza A viruses (IAVs) cause seasonal pandemics and epidemics with high morbidity and mortality, which calls for effective anti-IAV agents. The glycoprotein hemagglutinin of influenza virus plays a crucial role in the initial stage of virus infection, making it a potential target for anti-influenza therapeutics development. Here we found that quercetin inhibited influenza infection with a wide spectrum of strains, including A/Puerto Rico/8/34 (H1N1), A/FM-1/47/1 (H1N1), and A/Aichi/2/68 (H3N2) with half maximal inhibitory concentration (IC50) of 7.756 ± 1.097, 6.225 ± 0.467, and 2.738 ± 1.931 μg/mL, respectively. Mechanism studies identified that quercetin showed interaction with the HA2 subunit. Moreover, quercetin could inhibit the entry of the H5N1 virus using the pseudovirus-based drug screening system. This study indicates that quercetin showing inhibitory activity in the early stage of influenza infection provides a future therapeutic option to develop effective, safe and affordable natural products for the treatment and prophylaxis of IAV infections. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Graphical abstract

357 KiB  
Review
HTLV-1, Immune Response and Autoimmunity
by Juarez A S Quaresma, Gilberto T Yoshikawa, Roberta V L Koyama, George A S Dias, Satomi Fujihara and Hellen T Fuzii
Viruses 2016, 8(1), 5; https://doi.org/10.3390/v8010005 - 24 Dec 2015
Cited by 85 | Viewed by 8557
Abstract
Human T-lymphotropic virus type-1 (HTLV-1) infection is associated with adult T-cell leukemia/lymphoma (ATL). Tropical spastic paraparesis/HTLV-1-associated myelopathy (PET/HAM) is involved in the development of autoimmune diseases including Rheumatoid Arthritis (RA), Systemic Lupus Erythematosus (SLE), and Sjögren’s Syndrome (SS). The development of HTLV-1-driven autoimmunity [...] Read more.
Human T-lymphotropic virus type-1 (HTLV-1) infection is associated with adult T-cell leukemia/lymphoma (ATL). Tropical spastic paraparesis/HTLV-1-associated myelopathy (PET/HAM) is involved in the development of autoimmune diseases including Rheumatoid Arthritis (RA), Systemic Lupus Erythematosus (SLE), and Sjögren’s Syndrome (SS). The development of HTLV-1-driven autoimmunity is hypothesized to rely on molecular mimicry, because virus-like particles can trigger an inflammatory response. However, HTLV-1 modifies the behavior of CD4+ T cells on infection and alters their cytokine production. A previous study showed that in patients infected with HTLV-1, the activity of regulatory CD4+ T cells and their consequent expression of inflammatory and anti-inflammatory cytokines are altered. In this review, we discuss the mechanisms underlying changes in cytokine release leading to the loss of tolerance and development of autoimmunity. Full article
(This article belongs to the Special Issue Recent Advances in HTLV Research 2015)
Show Figures

Figure 1

684 KiB  
Review
Exploring Reovirus Plasticity for Improving Its Use as Oncolytic Virus
by Vera Kemp, Rob C. Hoeben and Diana J. M. Van den Wollenberg
Viruses 2016, 8(1), 4; https://doi.org/10.3390/v8010004 - 24 Dec 2015
Cited by 27 | Viewed by 7600
Abstract
Reoviruses are non-enveloped viruses with a segmented double stranded RNA genome. In humans, they are not associated with serious disease. Human reoviruses exhibit an inherent preference to replicate in tumor cells, which makes them ideally suited for use in oncolytic virotherapies. Their use [...] Read more.
Reoviruses are non-enveloped viruses with a segmented double stranded RNA genome. In humans, they are not associated with serious disease. Human reoviruses exhibit an inherent preference to replicate in tumor cells, which makes them ideally suited for use in oncolytic virotherapies. Their use as anti-cancer agent has been evaluated in several clinical trials, which revealed that intra-tumoral and systemic delivery of reoviruses are well tolerated. Despite evidence of anti-tumor effects, the efficacy of reovirus in anti-cancer monotherapy needs to be further enhanced. The opportunity to treat both the primary tumor as well as metastases makes systemic delivery a preferred administration route. Several pre-clinical studies have been conducted to address the various hurdles connected to systemic delivery of reoviruses. The majority of those studies have been done in tumor-bearing immune-deficient murine models. This thwarts studies on the impact of the contribution of the immune system to the tumor cell eradication. This review focuses on key aspects of the reovirus/host-cell interactions and the methods that are available to modify the virus to alter these interactions. These aspects are discussed with a focus on improving the reovirus’ antitumor efficacy. Full article
(This article belongs to the Special Issue Oncolytic Viruses)
Show Figures

Figure 1

4814 KiB  
Article
Newcastle Disease Virus: Potential Therapeutic Application for Human and Canine Lymphoma
by Diana Sánchez, Rosana Pelayo, Luis Alberto Medina, Eduardo Vadillo, Rogelio Sánchez, Luis Núñez, Gabriela Cesarman-Maus and Rosa Elena Sarmiento-Silva
Viruses 2016, 8(1), 3; https://doi.org/10.3390/v8010003 - 23 Dec 2015
Cited by 16 | Viewed by 8488
Abstract
Research on oncolytic viruses has mostly been directed towards the treatment of solid tumors, which has yielded limited information regarding their activity in hematological cancer. It has also been directed towards the treatment of humans, yet veterinary medicine may also benefit. Several strains [...] Read more.
Research on oncolytic viruses has mostly been directed towards the treatment of solid tumors, which has yielded limited information regarding their activity in hematological cancer. It has also been directed towards the treatment of humans, yet veterinary medicine may also benefit. Several strains of the Newcastle disease virus (NDV) have been used as oncolytics in vitro and in a number of in vivo experiments. We studied the cytolytic effect of NDV-MLS, a low virulence attenuated lentogenic strain, on a human large B-cell lymphoma cell line (SU-DHL-4), as well as on primary canine-derived B-cell lymphoma cells, and compared them to healthy peripheral blood mononuclear cells (PBMC) from both humans and dogs. NDV-MLS reduced cell survival in both human (42% ± 5%) and dog (34% ± 12%) lymphoma cells as compared to untreated controls. No significant effect on PBMC was seen. Cell death involved apoptosis as documented by flow-cytometry. NDV-MLS infections of malignant lymphoma tumors in vivo in dogs were confirmed by electron microscopy. Early (24 h) biodistribution of intravenous injection of 1 × 1012 TCID50 (tissue culture infective dose) in a dog with T-cell lymphoma showed viral localization only in the kidney, the salivary gland, the lung and the stomach by immunohistochemistry and/or endpoint PCR. We conclude that NDV-MLS may be a promising agent for the treatment of lymphomas. Future research is needed to elucidate the optimal therapeutic regimen and establish appropriate biosafety measures. Full article
(This article belongs to the Special Issue Oncolytic Viruses)
Show Figures

Figure 1

4863 KiB  
Article
TRIM19/PML Restricts HIV Infection in a Cell Type-Dependent Manner
by Tanja Kahle, Bianca Volkmann, Kristin Eissmann, Alexandra Herrmann, Sven Schmitt, Sabine Wittmann, Laura Merkel, Nina Reuter, Thomas Stamminger and Thomas Gramberg
Viruses 2016, 8(1), 2; https://doi.org/10.3390/v8010002 - 23 Dec 2015
Cited by 16 | Viewed by 6494
Abstract
The promyelocytic leukemia protein (PML) is the main structural component of the nuclear matrix structures termed nuclear domain 10 (ND10) or PML nuclear bodies (PML-NBs). PML and ND10 structures have been shown to mediate an intrinsic immune response against a variety of different [...] Read more.
The promyelocytic leukemia protein (PML) is the main structural component of the nuclear matrix structures termed nuclear domain 10 (ND10) or PML nuclear bodies (PML-NBs). PML and ND10 structures have been shown to mediate an intrinsic immune response against a variety of different viruses. Their role during retroviral replication, however, is still controversially discussed. In this study, we analyzed the role of PML and the ND10 components Daxx and Sp100 during retroviral replication in different cell types. Using cell lines exhibiting a shRNA-mediated knockdown, we found that PML, but not Daxx or Sp100, inhibits HIV and other retroviruses in a cell type-dependent manner. The PML-mediated block to retroviral infection was active in primary human fibroblasts and murine embryonic fibroblasts but absent from T cells and myeloid cell lines. Quantitative PCR analysis of HIV cDNA in infected cells revealed that PML restricts infection at the level of reverse transcription. Our findings shed light on the controversial role of PML during retroviral infection and show that PML contributes to the intrinsic restriction of retroviral infections in a cell type-dependent manner. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop