Next Issue
Volume 15, March-2
Previous Issue
Volume 15, February-2
 
 
materials-logo

Journal Browser

Journal Browser

Materials, Volume 15, Issue 5 (March-1 2022) – 361 articles

Cover Story (view full-size image): Exploration for new members of air-stable 2D antiferromagnetic magnets to widen the magnetic families has drawn great attention due to its potential applications in spintronic devices. In addition to seeking intrinsic antiferromagnets, externally introducing antiferromagnetic ordering in existing 2D materials may be a promising way. In this work, in situ nitrogen doping growth of ultrathin 2D Cr2S3 nanoflakes can be achieved which could induce a new phase with antiferromagnetic ordering in Cr2S3 nanoflakes. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
Article
Bioactive Bacterial Nanocellulose Membranes Enriched with Eucalyptus globulus Labill. Leaves Aqueous Extract for Anti-Aging Skin Care Applications
Materials 2022, 15(5), 1982; https://doi.org/10.3390/ma15051982 - 07 Mar 2022
Viewed by 908
Abstract
Bacterial nanocellulose (BNC) membranes, with remarkable physical and mechanical properties, emerged as a versatile biopolymeric carrier of bioactive compounds for skin care applications. In this study, BNC membranes were loaded with glycerol (as plasticizer and humectant agent) and different doses (1–3 μg cm [...] Read more.
Bacterial nanocellulose (BNC) membranes, with remarkable physical and mechanical properties, emerged as a versatile biopolymeric carrier of bioactive compounds for skin care applications. In this study, BNC membranes were loaded with glycerol (as plasticizer and humectant agent) and different doses (1–3 μg cm−2) of an aqueous extract obtained from the hydro-distillation of Eucalyptus globulus Labill. leaves (HDE), for application as sheet facial masks. All membranes are resistant and highly malleable at dry and wet states, with similar or even better mechanical properties than those of a commercial BNC mask. Moreover, the HDE was found to confer a dose-dependent antioxidant activity to pure BNC. Additionally, upon 3 months of storage at 22–25 °C and 52% relative humidity (RH) or at 40 °C and 75% RH, it was confirmed that the antioxidant activity and the macroscopic aspect of the membrane with 2 μg cm−2 of HDE were maintained. Membranes were also shown to be non-cytotoxic towards HaCaT and NIH/3T3 cells, and the membrane with 2 μg cm−2 of HDE caused a significant reduction in the senescence-associated β-galactosidase activity in NIH/3T3 cells. These findings suggest the suitability and potential of the obtained membranes as bioactive facial masks for anti-aging applications. Full article
(This article belongs to the Special Issue Advances in Bacterial Nanocellulose-Based Materials)
Show Figures

Graphical abstract

Article
Multi-Objective Optimization in Single-Shot Drilling of CFRP/Al Stacks Using Customized Twist Drill
Materials 2022, 15(5), 1981; https://doi.org/10.3390/ma15051981 - 07 Mar 2022
Cited by 2 | Viewed by 716
Abstract
In recent years, the use of CFRP with titanium and/or aluminum to form materials for stacking has gained popularity for aircraft construction. In practice, single-shot drilling is used to create perfectly aligned holes for the composite-metal stack. Usually, standard twist drills, which are [...] Read more.
In recent years, the use of CFRP with titanium and/or aluminum to form materials for stacking has gained popularity for aircraft construction. In practice, single-shot drilling is used to create perfectly aligned holes for the composite-metal stack. Usually, standard twist drills, which are commonly available from tool suppliers, are used for practical reasons. However, existing twist drill bits exhibit rapid wear upon the drilling of composite-metal stack layers in single shot, due to the widely contrasting properties of the composite-metal stack, which causes poor surface quality. The stringent quality requirements for aircraft component manufacturing demands frequent drill bit replacement and thus incurs additional costs, a concern still unresolved for aircraft component manufacturers. Owing to highly contrasting properties of a composite-metal stack, it is obvious that standard twist drill cannot fulfil the rigorous drilling requirements, as it is pushed to the limit for the fabrication of high-quality, defect-free holes. In this work, customised twist drills of a tungsten carbide (WC) material with different geometric features were specially fabricated and tested. Twenty drill bits with customised geometries of varying chisel edge angle (30–45°), primary clearance angle (6–8°), and point angle (130–140°) were fabricated. The stacked-up materials used in this study was CFRP and aluminum alloy 7075-T6 (Al7075-T6) with a total thickness of 3.587 mm. This study aims to investigate the effect of twist drill geometry on hole quality using drilling thrust force signature as indicator. All drilling experiments were performed at spindle speed of 2600 rev/min and feed rate of 0.05 mm/rev. Design of experiments utilising response surface methodology (RSM) method was used to construct the experimental array. Analysis of variance (ANOVA) was used to study the effect of parameters and their significance to the thrust force and thus the hole quality. The study shows that the most significant parameter affecting the drilling thrust force and hole surface roughness is primary clearance angle, followed by chisel edge angle. Correlation models of CFRP thrust force (Y1), Al7075-T6 thrust force (Y2), CFRP hole surface roughness (Y3), Al7075-T6 hole surface roughness (Y4) as a function of the tool geometry were established. The results indicated that the proposed correlation models could be used to predict the performance indicators within the limit of factors investigated. The optimum twist drill geometry was established at 45° of chisel edge angle, 7° of primary clearance angle, and 130° of point angle for the drilling of CFRP/Al7075-T6 stack material in a single-shot process. The error between the predicted and actual experiment values was between 6.64% and 8.17% for the optimum drill geometry. The results from this work contribute new knowledge to drilling thrust force signature and hole quality in the single-shot drilling of composite-metal stacks and, specifically, could be used as a practical guideline for the single-shot drilling of CFRP/Al7075-T6 stack for aircraft manufacturing. Full article
(This article belongs to the Special Issue Advances in Mechanical Prediction of Composite Laminates)
Show Figures

Figure 1

Article
Power Batteries Health Monitoring: A Magnetic Imaging Method Based on Magnetoelectric Sensors
Materials 2022, 15(5), 1980; https://doi.org/10.3390/ma15051980 - 07 Mar 2022
Cited by 2 | Viewed by 632
Abstract
With the popularity of electric vehicles, the ever-increasing demand for high-capacity batteries highlights the need for monitoring the health status of batteries. In this article, we proposed a magnetic imaging technique (MIT) to investigate the health status of power batteries nondestructively. This technique [...] Read more.
With the popularity of electric vehicles, the ever-increasing demand for high-capacity batteries highlights the need for monitoring the health status of batteries. In this article, we proposed a magnetic imaging technique (MIT) to investigate the health status of power batteries nondestructively. This technique is based on a magnetic sensor array, which consists of a 16-channel high-performance magnetoelectric sensor, and the noise equivalent magnetic induction (NEB) of each channel reaches 3–5 pT/Hz1/2@10 Hz. The distribution of the magnetic field is imaged by scanning the magnetic field variation of different positions on the surface. Therefore, the areas of magnetic anomalies are identified by distinguishing different magnetic field abnormal results. and it may be possible to classify the battery failure, so as to put forward suggestions on the use of the battery. This magnetic imaging method expands the application field of this high-performance magnetoelectric sensor and contributes to the battery’s safety monitoring. Meanwhile, it may also act as an important role in other nondestructive testing fields. Full article
(This article belongs to the Special Issue Advanced Piezoelectric Materials: Science and Technology)
Show Figures

Figure 1

Review
Endosseous Dental Implant Materials and Clinical Outcomes of Different Alloys: A Systematic Review
Materials 2022, 15(5), 1979; https://doi.org/10.3390/ma15051979 - 07 Mar 2022
Cited by 2 | Viewed by 878
Abstract
In recent years, implantology has made significant progress, as it has now become a safe and predictable practice. The development of new geometries, primary and secondary, of new surfaces and alloys, has made this possible. The purpose of this review is to analyze [...] Read more.
In recent years, implantology has made significant progress, as it has now become a safe and predictable practice. The development of new geometries, primary and secondary, of new surfaces and alloys, has made this possible. The purpose of this review is to analyze the different alloys present on the market, such as that in zirconia, and evaluate their clinical differences with those most commonly used, such as those in grade IV titanium. The review, conducted on major scientific databases such as Scopus, PubMed, Web of Science and MDPI yielded a startling number of 305 results. After the application of the filters and the evaluation of the results in the review, only 10 Randomized Clinical Trials (RCTs) were included. Multiple outcomes were considered, such as Marginal Bone Level (MBL), Bleeding on Probing (BoP), Survival Rate, Success Rate and parameters related to aesthetic and prosthetic factors. There are currently no statistically significant differences between the use of zirconia implants and titanium implants, neither for fixed prosthetic restorations nor for overdenture restorations. Only the cases reported complain about the rigidity and, therefore, the possibility of fracture of the zirconium. Certainly the continuous improvement in these materials will ensure that they could be used safely while maintaining their high aesthetic performance. Full article
(This article belongs to the Special Issue Dental Implants and Materials (Second Volume))
Show Figures

Figure 1

Article
Effects of Annealing and Solution Treatments on the Microstructure and Mechanical Properties of Ti6Al4V Manufactured by Selective Laser Melting
Materials 2022, 15(5), 1978; https://doi.org/10.3390/ma15051978 - 07 Mar 2022
Cited by 1 | Viewed by 820
Abstract
Ti6Al4V (Ti64) alloys manufactured by selective laser melting (SLM) are well known for their susceptibility to failure at a low ductility of less than 10% due to the formation of an (α′) martensitic structure. Annealing and solution treatments as post-heat treatments of α′ [...] Read more.
Ti6Al4V (Ti64) alloys manufactured by selective laser melting (SLM) are well known for their susceptibility to failure at a low ductility of less than 10% due to the formation of an (α′) martensitic structure. Annealing and solution treatments as post-heat treatments of α′ are considered a good way to improve the mechanical performance of SLM-manufactured Ti64 parts. In this research, the effect of heat treatment parameters such as temperature (850 °C and 1020 °C) and cooling rate (furnace and water cooling) on the microstructure and mechanical properties of the SLM Ti64 structure was investigated. It was shown that the tensile strength/ductility of the Ti64 alloy produced by SLM was determined by the post-heat treatment. The experimental results revealed that heat treatment at 850 °C followed by furnace cooling resulted in the best possible combination of ductility (13%) and tensile strength (σy = 932, σu = 986 MPa) with a microstructure consisting mainly of 78.71% α and 21.29% β. Heat treatment at 850 °C followed by water cooling was characterized by a reduction in hardness and the formation of predominantly α plus α′′ and a small amount of β. HT850WC exhibited yield and tensile strengths of about 870 and 930 MPa, respectively, and an elongation at fracture of 10.4%. Heat treatment at 1020 °C and subsequent cooling in the furnace was characterized by the formation of an α + β lamellar microstructure. In contrast, heat treatment at 1020 °C and subsequent water cooling formed semi-equiaxial β grains of about 170 µm in diameter with longer elongated α grains and basket-weave α′. Post-treatment at 1020 °C followed by furnace cooling showed high ductility with an elongation of 14.5% but low tensile strength (σy = 748, σu = 833 MPa). In contrast, post-treatment at 1020 °C followed by water cooling showed poor ductility with elongation of 8.6% but high tensile strength (σy = 878, σu = 990 MPa). The effect of aging at 550 °C for 3 h and cooling in a furnace on the microstructure and mechanical properties of the specimens cooled with water was also studied. It was found that aging influenced the microstructure of the Ti6Al4V parts, including β, α, and α″ precipitation and fragmentation or globularization of elongated α grains. The aging process at 550 °C leads to an increase in tensile strength and a decrease in ductility. Full article
Show Figures

Figure 1

Article
The Effect of Lightweight Functional Aggregates on the Mitigation of Anode Degradation of Impressed Current Cathodic Protection for Reinforced Concrete
Materials 2022, 15(5), 1977; https://doi.org/10.3390/ma15051977 - 07 Mar 2022
Viewed by 482
Abstract
The local acidification of secondary anode mortar was regarded as the primary reason for the degradation of the anode system, leading to a decreased service life and uneven distribution of the protection current within the impressed current cathodic protection system for reinforced concrete [...] Read more.
The local acidification of secondary anode mortar was regarded as the primary reason for the degradation of the anode system, leading to a decreased service life and uneven distribution of the protection current within the impressed current cathodic protection system for reinforced concrete structures. In related previous studies, a novel type of lightweight functional aggregate was designed and prepared for the secondary anode mortar system, aiming to improve anode performance via acidification mitigation. However, the relationship between optimization effects and this functional component has not been fully clarified. In this study, two sets of experiments were carried out to investigate the effects of lightweight functional aggregates on acidification mitigation and the protection of current distribution. Research results proved that the presence of this functional aggregate was beneficial for mitigated acidification propagation and a more uniform distributed protection current, which demonstrated the importance and effectiveness of acidification inhibition on the optimization of anode performance. Full article
(This article belongs to the Special Issue Various Substitute Aggregate Materials for Sustainable Concrete)
Show Figures

Figure 1

Article
Performance Evaluation of Tunnel-Slag-Improved High Liquid Limit Soil in Subgrade: A Case Study
Materials 2022, 15(5), 1976; https://doi.org/10.3390/ma15051976 - 07 Mar 2022
Viewed by 500
Abstract
The application of tunnel-slag-improved high liquid limit soil as filling materials in subgrade is a green environmental technology. This study explored the influence of tunnel slag mixing on the physical and mechanical properties of improved soils, based on the engineering background of Liyu [...] Read more.
The application of tunnel-slag-improved high liquid limit soil as filling materials in subgrade is a green environmental technology. This study explored the influence of tunnel slag mixing on the physical and mechanical properties of improved soils, based on the engineering background of Liyu highway, Guangxi Province, China. Firstly, the optimal moisture content, maximum dry density, shear strength parameters, California bearing ratio (CBR) and resilience modulus of plain and tunnel-slag-improved high liquid limit soils were experimentally determined. Results showed that the direct utilization of untreated soil was unacceptable in subgrade practice. A significant enhancement of integrity of high liquid limit soils could be obtained by tunnel slag mixing, and the value of 15% was determined as the optimal tunnel slag content in soils, leading to improved soil performance meeting the specification requirements. Then, numerical simulation on the stability of subgrade slope of tunnel-slag-improved soils at the content of 15% was conducted. It also reported the long-term subgrade settlements. The feasibility of utilization of tunnel slag in improving properties of high liquid limit soils was further validated. Finally, a good application of tunnel-slag-improved high liquid limit soil as subgrade filling materials in Liyu highway was achieved. The findings in this study could provide useful guidance for similar engineering. Full article
Show Figures

Figure 1

Article
Promiscuous Lipase-Catalyzed Markovnikov Addition of H-Phosphites to Vinyl Esters for the Synthesis of Cytotoxic α-Acyloxy Phosphonate Derivatives
Materials 2022, 15(5), 1975; https://doi.org/10.3390/ma15051975 - 07 Mar 2022
Cited by 3 | Viewed by 715
Abstract
An enzymatic route for phosphorous-carbon- bond formation is developed by discovering new promiscuous activity of lipase. This biocatalytic transformation of phosphorous-carbon- bond addition leads to biologically and pharmacologically relevant α-acyloxy phosphonates with methyl group in α-position. A series of target compounds were synthesized [...] Read more.
An enzymatic route for phosphorous-carbon- bond formation is developed by discovering new promiscuous activity of lipase. This biocatalytic transformation of phosphorous-carbon- bond addition leads to biologically and pharmacologically relevant α-acyloxy phosphonates with methyl group in α-position. A series of target compounds were synthesized with yields ranging from 54% to 83% by enzymatic reaction with Candida cylindracea (CcL) lipase via Markovnikov addition of H-phosphites to vinyl esters. We carefully analyzed the best conditions for the given reaction such as the type of enzyme, temperature, and type of solvent. The developed protocol is applicable to a range of H-phosphites and vinyl esters significantly simplifying the preparation of synthetically challenging α-pivaloyloxy phosphonates. Further, the obtained compounds were validated as new potential antimicrobial drugs with characteristic E. coli bacterial strains and DNA modification recognized by the Fpg protein, N-methyl purine glycosylases as new substrates. The impact of the methyl group located in the α-position of the studied α-acyloxy phosphonates on the antimicrobial activity was demonstrated. The pivotal role of this group on inhibitory activity against selected pathogenic E. coli strains was revealed. The observed results are especially important in the case of the increasing resistance of bacteria to various drugs and antibiotics. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

Article
Decellularized Avian Cartilage, a Promising Alternative for Human Cartilage Tissue Regeneration
Materials 2022, 15(5), 1974; https://doi.org/10.3390/ma15051974 - 07 Mar 2022
Viewed by 678
Abstract
Articular cartilage defects, and subsequent degeneration, are prevalent and account for the poor quality of life of most elderly persons; they are also one of the main predisposing factors to osteoarthritis. Articular cartilage is an avascular tissue and, thus, has limited capacity for [...] Read more.
Articular cartilage defects, and subsequent degeneration, are prevalent and account for the poor quality of life of most elderly persons; they are also one of the main predisposing factors to osteoarthritis. Articular cartilage is an avascular tissue and, thus, has limited capacity for healing and self-repair. Damage to the articular cartilage by trauma or pathological causes is irreversible. Many approaches to repair cartilage have been attempted with some potential; however, there is no consensus on any ideal therapy. Tissue engineering holds promise as an approach to regenerate damaged cartilage. Since cell adhesion is a critical step in tissue engineering, providing a 3D microenvironment that recapitulates the cartilage tissue is vital to inducing cartilage regeneration. Decellularized materials have emerged as promising scaffolds for tissue engineering, since this procedure produces scaffolds from native tissues that possess structural and chemical natures that are mimetic of the extracellular matrix (ECM) of the native tissue. In this work, we present, for the first time, a study of decellularized scaffolds, produced from avian articular cartilage (extracted from Gallus Gallus domesticus), reseeded with human chondrocytes, and we demonstrate for the first time that human chondrocytes survived, proliferated and interacted with the scaffolds. Morphological studies of the decellularized scaffolds revealed an interconnected, porous architecture, ideal for cell growth. Mechanical characterization showed that the decellularized scaffolds registered stiffness comparable to the native cartilage tissues. Cell growth inhibition and immunocytochemical analyses showed that the decellularized scaffolds are suitable for cartilage regeneration. Full article
(This article belongs to the Topic Advances in Biomaterials)
Show Figures

Figure 1

Article
Simulation Analysis and Process Evaluation of Cooling Hole Forming Precision in Mask Assisted Electrochemical Machining Based on GH4169
Materials 2022, 15(5), 1973; https://doi.org/10.3390/ma15051973 - 07 Mar 2022
Viewed by 623
Abstract
Good heat dissipation performance of aero-engine an effectively improve the service performance and service life of aero-engine. Therefore, this paper studies the machining method of cooling holes of high-temperature existent material GH 4169 for aero-engine innovatively puts forward the mask electrochemical machining method [...] Read more.
Good heat dissipation performance of aero-engine an effectively improve the service performance and service life of aero-engine. Therefore, this paper studies the machining method of cooling holes of high-temperature existent material GH 4169 for aero-engine innovatively puts forward the mask electrochemical machining method of cooling holes and explores the entrance morphology and taper formation law of the hole structure of high-temperature resistant material GH 4169. The mathematical model of anode dissolution of cooling holes in ECM is established, and the influence of voltage and electrolyte flow rate on cooling holes in ECM is analyzed. Compared with the mask-less electrochemical machining, the inlet radius of cooling holes in mask electrochemical machining is reduced by about 16.0% and the taper is reduced by 52.8% under the same machining parameters, which indicates that the electrochemical machining efficiency of mask is higher and the machining accuracy is better. Experiments show that the diameter of the mask structure improves the accuracy of the inlet profile of the cooling hole in the ECM. The diameter of the mask increases from 2 mm to 2.8 mm, and the inlet radius of the cooling hole increased from 1.257 mm to 1.451 mm When the diameter of the mask is 2.2 mm, the taper of the cooling hole decreased by 53.4%. The improvement effect is best, and the thickness of the mask has little influence on the forming accuracy of the cooling hole. Full article
Show Figures

Figure 1

Article
Interphase Effect on the Macro Nonlinear Mechanical Behavior of Cement-Based Solidified Sand Mixture
Materials 2022, 15(5), 1972; https://doi.org/10.3390/ma15051972 - 07 Mar 2022
Viewed by 452
Abstract
This paper investigates the interphase effect on the macro nonlinear mechanical behavior of cement-based solidified sand mixture (CBSSM) using a finite element numerical simulation method. CBSSM is a multiphase composite whose main components are soil, cement, sand and water, often found in soft [...] Read more.
This paper investigates the interphase effect on the macro nonlinear mechanical behavior of cement-based solidified sand mixture (CBSSM) using a finite element numerical simulation method. CBSSM is a multiphase composite whose main components are soil, cement, sand and water, often found in soft soil foundation reinforcement. The emergence of this composite material can reduce the cost of soft soil foundation reinforcement and weaken silt pollution. Simplifying the CBSSM into a three-phase structure can efficiently excavate the interphase effects, that is, the sand phase with higher strength, the cement-based solidified soil phase (CBSS) with moderate strength, and the interphase with weaker strength. The interphase between aggregate and CBSS in the mixture exhibits the weak properties due to high porosity but gets little attention. In order to clarify the mechanical relationship between interphase and CBSSM, a bilinear Cohesive Model (CM) was selected for the interphase, which can phenomenologically model damage behaviors such as damage nucleation, initiation and propagation. Firstly, carry out the unconfined compression experiments on the CBSSM with different artificial gradations and then gain the nonlinear stress–strain curves. Secondly, take the Monte Carlo method to establish the numerical models of CBSSM with different gradations, which can generate geometric models containing randomly distributed and non-overlapping sand aggregates in Python by code. Then, import the CBSSM geometric models into the finite element platform Abaqus and implement the same boundary conditions as the test. Fit experimental nonlinear stress–strain curves and verify the reliability of numerical models. Finally, analyze the interphase damage effect on the macroscopic mechanical properties of CBSSM by the most reliable numerical model. The results show that there is an obviously interphase effect on CBSSM mechanical behavior, and the interphase with greater strength and stiffness ensures the macro load capacity and service life of the CBSSM; a growth in the interphase number can also adversely affect the durability of CBSSM, which provides a favorable reference for the engineering practice. Full article
Show Figures

Figure 1

Article
Three-Dimensional Printing of a Hybrid Bioceramic and Biopolymer Porous Scaffold for Promoting Bone Regeneration Potential
Materials 2022, 15(5), 1971; https://doi.org/10.3390/ma15051971 - 07 Mar 2022
Cited by 2 | Viewed by 675
Abstract
In this study, we proposed a three-dimensional (3D) printed porous (termed as 3DPP) scaffold composed of bioceramic (beta-tricalcium phosphate (β-TCP)) and thermoreversible biopolymer (pluronic F-127 (PF127)) that may provide bone tissue ingrowth and loading support for bone defect treatment. The investigated scaffolds were [...] Read more.
In this study, we proposed a three-dimensional (3D) printed porous (termed as 3DPP) scaffold composed of bioceramic (beta-tricalcium phosphate (β-TCP)) and thermoreversible biopolymer (pluronic F-127 (PF127)) that may provide bone tissue ingrowth and loading support for bone defect treatment. The investigated scaffolds were printed in three different ranges of pore sizes for comparison (3DPP-1: 150–200 μm, 3DPP-2: 250–300 μm, and 3DPP-3: 300–350 μm). The material properties and biocompatibility of the 3DPP scaffolds were characterized using scanning electron microscopy, X-ray diffractometry, contact angle goniometry, compression testing, and cell viability assay. In addition, micro-computed tomography was applied to investigate bone regeneration behavior of the 3DPP scaffolds in the mini-pig model. Analytical results showed that the 3DPP scaffolds exhibited well-defined porosity, excellent microstructural interconnectivity, and acceptable wettability (θ < 90°). Among all groups, the 3DPP-1 possessed a significantly highest compressive force 273 ± 20.8 Kgf (* p < 0.05). In vitro experiment results also revealed good cell viability and cell attachment behavior in all 3DPP scaffolds. Furthermore, the 3DPP-3 scaffold showed a significantly higher percentage of bone formation volume than the 3DPP-1 scaffold at week 8 (* p < 0.05) and week 12 (* p < 0.05). Hence, the 3DPP scaffold composed of β-TCP and F-127 is a promising candidate to promote bone tissue ingrowth into the porous scaffold with decent biocompatibility. This scaffold particularly fabricated with a pore size of around 350 μm (i.e., 3DPP-3 scaffold) can provide proper loading support and promote bone regeneration in bone defects when applied in dental and orthopedic fields. Full article
(This article belongs to the Special Issue Recent Advances in 3D Printing for Biomaterials)
Show Figures

Figure 1

Article
Biomechanical Evaluation of Patient-Specific Polymethylmethacrylate Cranial Implants for Virtual Surgical Planning: An In-Vitro Study
Materials 2022, 15(5), 1970; https://doi.org/10.3390/ma15051970 - 07 Mar 2022
Cited by 1 | Viewed by 769
Abstract
Cranioplasty with freehand-molded polymethylmethacrylate implants is based on decades of experience and is still frequently used in clinical practice. However, data confirming the fracture toughness and standard biomechanical tests are rare. This study aimed to determine the amount of force that could be [...] Read more.
Cranioplasty with freehand-molded polymethylmethacrylate implants is based on decades of experience and is still frequently used in clinical practice. However, data confirming the fracture toughness and standard biomechanical tests are rare. This study aimed to determine the amount of force that could be applied to virtually planned, template-molded, patient-specific implants (n = 10) with an implant thickness of 3 mm, used in the treatment of a temporoparietal skull defect (91.87 cm2), until the implant cracks and finally breaks. Furthermore, the influence of the weight and porosity of the implant on its force resistance was investigated. The primary outcome showed that a high force was required to break the implant (mean and standard deviation 1484.6 ± 167.7 N), and this was very strongly correlated with implant weight (Pearson’s correlation coefficient 0.97; p < 0.001). Secondary outcomes were force application at the implant’s first, second, and third crack. Only a moderate correlation could be found between fracture force and the volume of porosities (Pearson’s correlation coefficient 0.59; p = 0.073). The present study demonstrates that an implant thickness of 3 mm for a temporoparietal skull defect can withstand sufficient force to protect the brain. Greater implant weight and, thus, higher material content increases thickness, resulting in more resistance. Porosities that occur during the described workflow do not seem to reduce resistance. Therefore, precise knowledge of the fracture force of polymethylmethacrylate cranial implants provides insight into brain injury prevention and serves as a reference for the virtual design process. Full article
Show Figures

Figure 1

Article
Factors Influencing the Properties of Extrusion-Based 3D-Printed Alkali-Activated Fly Ash-Slag Mortar
Materials 2022, 15(5), 1969; https://doi.org/10.3390/ma15051969 - 07 Mar 2022
Cited by 1 | Viewed by 621
Abstract
The mix proportioning of extrusion-based 3D-printed cementitious material should balance printability and hardened properties. This paper investigated the effects of three key mix proportion parameters of 3D-printed alkali-activated fly ash/slag (3D-AAFS) mortar, i.e., the sand to binder (s/b) ratio, fly ash/ground granulated blast-furnace [...] Read more.
The mix proportioning of extrusion-based 3D-printed cementitious material should balance printability and hardened properties. This paper investigated the effects of three key mix proportion parameters of 3D-printed alkali-activated fly ash/slag (3D-AAFS) mortar, i.e., the sand to binder (s/b) ratio, fly ash/ground granulated blast-furnace slag (FA/GGBS) ratio, and silicate modulus (Ms) of the activator, on extrudability, buildability, interlayer strength, and drying shrinkage. The results showed that the loss of extrudability and the development of buildability were accelerated by increasing the s/b ratio, decreasing the FA/GGBS ratio, or using a lower Ms activator. A rise in the s/b ratio improved the interlayer strength and reduces the drying shrinkage. Although increasing the FA/GGBS mass ratio from 1 to 3 led to a reduction of 35% in the interlayer bond strength, it decreased the shrinkage strain by half. A larger silicate modulus was beneficial to the interlayer bond strength, but it made shrinkage more serious. Moreover, a simple centroid design method was developed for optimizing the mix proportion of 3D-AAFS mortar to simultaneously meet the requirements of printability and hardened properties. Full article
(This article belongs to the Special Issue 3D Printing Techniques in Construction Materials)
Show Figures

Figure 1

Article
Contribution to Understanding of Synergy between Red Mud and Common Supplementary Cementitious Materials
Materials 2022, 15(5), 1968; https://doi.org/10.3390/ma15051968 - 07 Mar 2022
Cited by 3 | Viewed by 514
Abstract
Recently, much attention has been paid to the reuse of bauxite residues from alumina production, also known as red mud, in the cement industry. Red mud bears the potential to improve concrete properties due to its favourable chemical composition and particle size. In [...] Read more.
Recently, much attention has been paid to the reuse of bauxite residues from alumina production, also known as red mud, in the cement industry. Red mud bears the potential to improve concrete properties due to its favourable chemical composition and particle size. In this work, the synergy between locally available red mud and common supplementary cementitious materials such as fly ash, slag, calcined clay and limestone in cement mixes is investigated. All materials used were sourced from the immediate vicinity of the cement plant. The study of synergy involved the evaluation of the individual chemical reactivity of each material using the R3 test by isothermal calorimetry as well as their joint contribution to the heat of hydration and the composition of the reaction products of the paste and the compressive strength of the mortar. The results show how, by understanding the synergy between the materials, a higher level of cement substitutions can be achieved without compromising the mechanical properties of the mortar. Full article
(This article belongs to the Special Issue Utilisation of Recycled Materials and By-Products in Concrete)
Show Figures

Figure 1

Article
Effect of Cementitious Materials on the Engineering Properties of Lightweight Aggregate Mortars Containing Recycled Water
Materials 2022, 15(5), 1967; https://doi.org/10.3390/ma15051967 - 07 Mar 2022
Cited by 2 | Viewed by 551
Abstract
With the trend toward taller and larger structures, the demand for high-strength and lightweight cement concrete has increased in the construction industry. Equipment for transporting ready-mixed concrete is frequently used to bring concrete to construction sites, and washing this equipment generates a large [...] Read more.
With the trend toward taller and larger structures, the demand for high-strength and lightweight cement concrete has increased in the construction industry. Equipment for transporting ready-mixed concrete is frequently used to bring concrete to construction sites, and washing this equipment generates a large amount of recycled water, which is an industrial by-product. In this study, we recycled this water as the pre-wetting water for lightweight aggregate and as mixing water, and we substituted blast furnace slag powder (BS) and fly ash (FA) as cementitious materials (Cm). In addition, we evaluated the fluidity, compressive strength, tensile strength, drying shrinkage, and accelerated carbonation depth of lightweight ternary cementitious mortars (TCMs) containing artificial lightweight aggregate and recycled water. The 28-day compressive strengths of the lightweight TCM specimens with BS and FA were ~47.2–51.7 MPa, except for the specimen with 20% each of BS and FA (40.2 MPa), which was higher than that of the control specimen with 100% OPC (45.9 MPa). Meanwhile, the 28-day tensile strengths of the lightweight TCM specimens containing BS and FA were ~2.81–3.20 MPa, which are ~13.7–29.5% higher than those of the control specimen. In this study, the TCM specimen with 5% each of BS and FA performed the best in terms of the combination of compressive strength, tensile strength, and carbonation resistance. Full article
(This article belongs to the Special Issue Convergence & Sustainable Technology in Building Materials)
Show Figures

Figure 1

Article
Gelatin-Based Biofilms with FexOy-NPs Incorporated for Antioxidant and Antimicrobial Applications
Materials 2022, 15(5), 1966; https://doi.org/10.3390/ma15051966 - 07 Mar 2022
Viewed by 583
Abstract
Currently, gelatin-based films are regarded as promising alternatives to non-environmentally friendly plastic films for food packaging. Nevertheless, although they have great biodegradability, their weak mechanical properties and high solubility limit their applications. In this way, the use of nanoparticles, such as Fex [...] Read more.
Currently, gelatin-based films are regarded as promising alternatives to non-environmentally friendly plastic films for food packaging. Nevertheless, although they have great biodegradability, their weak mechanical properties and high solubility limit their applications. In this way, the use of nanoparticles, such as FexOy-NPs, could improve the properties of gelatin-based biofilms. Thus, the main objective of this work was to include different concentrations of FexOy-NPs (0.25 and 1.0%) manufactured by green synthesis (GS) and chemical synthesis (CS) into gelatin-based biofilms in order to improve their properties. The results show that FexOy-NPs can be distributed throughout the biofilm, although with a greater concentration on the upper surface. In addition, the incorporation of FexOy-NPs into the biofilms improves their physicochemical, mechanical, morphological, and biological properties. Thus, it is possible to achieve suitable gelatin-based biofilms, which can be used in several applications, such as functional packaging in the food industry, antioxidant and antimicrobial additives in biomedical and pharmaceutical biomaterials, and in agricultural pesticides. Full article
Show Figures

Figure 1

Article
Influence of Phosphorus Sources on the Compressive Strength and Microstructure of Ferronickel Slag-Based Magnesium Phosphate Cement
Materials 2022, 15(5), 1965; https://doi.org/10.3390/ma15051965 - 07 Mar 2022
Cited by 1 | Viewed by 614
Abstract
Electric furnace ferronickel slag (EFS) is a typical magnesium-rich industrial by-product discharged from the manufacture of nickel and iron-nickel alloys. The approach to use it as the raw material for the preparation of magnesium phosphate cement (MPC) has potential and proves effective. In [...] Read more.
Electric furnace ferronickel slag (EFS) is a typical magnesium-rich industrial by-product discharged from the manufacture of nickel and iron-nickel alloys. The approach to use it as the raw material for the preparation of magnesium phosphate cement (MPC) has potential and proves effective. In this study, three different phosphorus sources (PS) including phosphoric acid (H3PO4, PA), sodium dihydrogen phosphate (NaH2PO4, SDP) and potassium dihydrogen phosphate (KH2PO4, PDP) were used to react with EFS to prepare the EFS-based MPC (EMPC), and the effects of raw material mass ratio (EFS/PA, EFS/SDP, EFS/PDP) on the compressive strength, early hydration temperature and microstructure of EMPC pastes were investigated. Results showed that the compressive strength of EMPC paste is significantly impacted by the type of phosphorus source and the raw materials mass ratio. When the EFS/PDP ratio is 4.0, the compressive strength of the MPC paste reaches up to 18.8, 22.8 and 27.5 MPa at 3, 7 and 28 d, respectively. Cattiite (Mg3(PO4)2·22H2O), K-struvite (KMgPO4·6H2O) and/or Na-struvite (NaMgPO4·6H2O) were identified as the main hydration products of EMPC. The development of EMPC mainly involves the dissolution of a phosphorus source, MgO and Mg2SiO4, formation of hydration product as binder, and combination of the unreacted raw materials together by binders to build a compact form. Full article
(This article belongs to the Special Issue Magnesia-Phosphate Cement (MPC) and MPC-Based Functional Materials)
Show Figures

Figure 1

Article
Degradation of Tetracycline on SiO2-TiO2-C Aerogel Photocatalysts under Visible Light
Materials 2022, 15(5), 1963; https://doi.org/10.3390/ma15051963 - 07 Mar 2022
Viewed by 582
Abstract
SiO2-TiO2-C aerogel photocatalysts with different carbon loadings were synthesized by using sol-gel chemistry. The anatase crystal and nonmetal carbon dopant were introduced during the sol preparation and formed by hydrothermal treatment, which can simultaneously enhance the adsorption ability and [...] Read more.
SiO2-TiO2-C aerogel photocatalysts with different carbon loadings were synthesized by using sol-gel chemistry. The anatase crystal and nonmetal carbon dopant were introduced during the sol preparation and formed by hydrothermal treatment, which can simultaneously enhance the adsorption ability and visible light photo-activity. A high surface area (759 g cm−3) SiO2-TiO2-C aerogel composite can remove up to 80% tetracycline hydrochloride within 180 min under visible light. The characterization of the gel structures shows that the homogeneous dispersion of O, Si, Ti and C in the skeleton, indicating that hydrothermal synthesis could provide a very feasible way for the preparation of composite materials. n(C):n(Ti) molar ratio of 3.5 gives the best catalytic performance of the hybrid aerogel, and the cyclic test still confirms over 60% degradation activity after seven use cycles. All catalysis reaction followed the pseudo-first-order rate reaction with high correlation coefficient. The electrons and holes in the compound could be effectively restrained with doping proper amount of C, and ESR results indicate that the oxidation process was dominated by the hydroxyl radical (•OH) and superoxide radical (•O2) generated in the system. Full article
(This article belongs to the Special Issue Environmentally Friendly Materials in Construction)
Show Figures

Figure 1

Article
Biocompatibility of a New Calcium Silicate-Based Root Canal Sealer Mediated via the Modulation of Macrophage Polarization in a Rat Model
Materials 2022, 15(5), 1962; https://doi.org/10.3390/ma15051962 - 07 Mar 2022
Cited by 1 | Viewed by 839
Abstract
(1) Background: The EndoSequence BC Sealer HiFlow (Brasseler, Savannah, GA, USA) has recently been introduced in clinical applications. Thus, the aims of the present study are to determine its biocompatibility in vivo and to examine its ability to drive macrophage polarization in vitro [...] Read more.
(1) Background: The EndoSequence BC Sealer HiFlow (Brasseler, Savannah, GA, USA) has recently been introduced in clinical applications. Thus, the aims of the present study are to determine its biocompatibility in vivo and to examine its ability to drive macrophage polarization in vitro and in vivo. (2) Methods: HiFlow was implanted into rat connective tissue for 7, 30 and 150 days. The microstructures and elemental compositions were determined by scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX). Hematoxylin–eosin, immunofluorescence, RT–qPCR and flow cytometry were used to elucidate the effects on inflammatory responses and macrophage polarization. (3) Results: SEM-EDX revealed the formation of surface hydroxyapatite crystal layers. Histological evaluation showed that HiFlow exhibited long-term biocompatibility because it decreased inflammatory responses and reduced the number of macrophages over time; however, tissue necrosis was observed in all the groups. RT–qPCR verified that HiFlow regulated the expression of inflammatory factors to inhibit the inflammatory response. Immunofluorescence analysis performed on in vivo samples revealed that HiFlow promoted M2-like macrophage polarization, and these results were confirmed by flow cytometry in vitro. (4) Conclusion: After 150 days of investigation, HiFlow was considered biologically acceptable, and the formation of apatite crystal layers and the promotion of M2-like macrophage polarization may contribute to its favorable biocompatibility. Full article
(This article belongs to the Special Issue Endodontics)
Show Figures

Figure 1

Article
Accuracy Evaluation of Thermoelastic Stress Analysis with the Use of Experimental and Numerical Methods
Materials 2022, 15(5), 1961; https://doi.org/10.3390/ma15051961 - 07 Mar 2022
Viewed by 526
Abstract
Thermoelastic Stress Analysis (TSA) is one of the very few methods allowing the determination of a continuous stress distribution on the object’s surface under variable loading conditions. Such results provide a lot of valuable information in the field of technical condition assessment and [...] Read more.
Thermoelastic Stress Analysis (TSA) is one of the very few methods allowing the determination of a continuous stress distribution on the object’s surface under variable loading conditions. Such results provide a lot of valuable information in the field of technical condition assessment and residual life prediction. In order to improve the accuracy of the TSA, the Lock-In signal processing method is implemented. This research is aimed at verifying the effectiveness of this improvement and determining the TSA stress detection threshold, as it is important information in terms of the applicability of this method in the low-stress conditions encountered in considerations of fatigue of load-carrying structures. A steel sample with a centrally located hole was subjected to cyclic loads to determine the threshold of stress detection and accuracy of TSA. As a result of the research, the relationship between the magnitude of stress excitations and the underestimation of the measured stresses was developed. Based on the conducted investigations, it was concluded that reasonable TSA results can be acquired for excitations that induce a temperature response above 10 mK (0.5 NEDT). The presented field test example proves that in industrial applications reasonable results can be acquired for thermal responses below the NEDT of the IR camera. It was concluded that it is possible to successfully implement TSA in low-stress applications (temperature response below NEDT). Full article
(This article belongs to the Special Issue Advances in Structural Analysis of Materials: Finite Element Modeling)
Show Figures

Figure 1

Article
Impact of Iterative Deuterium Annealing in Long-Channel MOSFET Performance
Materials 2022, 15(5), 1960; https://doi.org/10.3390/ma15051960 - 07 Mar 2022
Cited by 3 | Viewed by 731
Abstract
In contrast to conventional forming gas annealing (FGA), high-pressure deuterium annealing (HPD) shows a superior passivation of dangling bonds on the Si/SiO2 interface. However, research detailing the process optimization for HPD has been modest. In this context, this paper demonstrates the iterative [...] Read more.
In contrast to conventional forming gas annealing (FGA), high-pressure deuterium annealing (HPD) shows a superior passivation of dangling bonds on the Si/SiO2 interface. However, research detailing the process optimization for HPD has been modest. In this context, this paper demonstrates the iterative impact of HPD for the better fabrication of semiconductor devices. Long-channel gate-enclosed FETs are fabricated as a test vehicle. After each cycle of the annealing, device parameters are extracted and compared depending on the number of the HPD. Based on the results, an HPD condition that maximizes on-state current (ION) but minimizes off-state current (IOFF) can be provided. Full article
(This article belongs to the Topic Inorganic Thin Film Materials)
Show Figures

Figure 1

Article
Investigation of Newly Developed PCM/SiC Composite Aggregate to Improve Residual Performance after Exposure to High Temperature
Materials 2022, 15(5), 1959; https://doi.org/10.3390/ma15051959 - 07 Mar 2022
Viewed by 578
Abstract
High temperature conditions, such as fire, are detrimental factors to the mechanical and chemical properties of concrete. In this paper, the authors developed a new type of coarse aggregate, named PCM/SiC composite aggregate (enhanced aggregate: EA), to improve fire-resistance performance. To investigate the [...] Read more.
High temperature conditions, such as fire, are detrimental factors to the mechanical and chemical properties of concrete. In this paper, the authors developed a new type of coarse aggregate, named PCM/SiC composite aggregate (enhanced aggregate: EA), to improve fire-resistance performance. To investigate the validity of EA for construction materials, a compressive strength test, static modulus of elasticity, X-ray diffraction (XRD), and scanning electron microscopy (SEM) were conducted. In addition, this EA has been developed to improve residual performance after exposure to high temperature, with residual compressive strength and internal temperature measurement tested at 1000 °C. Furthermore, chemical properties after heating were investigated by XRD and SEM-EDAX. The results show that the percentage of residual compressive strength of heated concrete with EA is higher than plain concrete. The concrete with EA exhibited primary cement composites such as C-H and C-S-H after exposure to high temperature through XRD and SEM-EDAX. On the other hand, major hydration products could not be observed in plain concrete. PCM and SiC offer an opportunity to delay the increase in concrete temperature. From evaluation of the results, we can see that EA enhanced the residual performance of concrete after exposure to high temperature conditions. Full article
(This article belongs to the Special Issue Advances in Fire Retardant Materials)
Show Figures

Figure 1

Article
Preparation of an MHC Alloy by Direct Doping of HfC and Its High Temperature Oxidation and Volatilization Behavior
Materials 2022, 15(5), 1958; https://doi.org/10.3390/ma15051958 - 07 Mar 2022
Viewed by 504
Abstract
An HfC-doped molybdenum (Mo-Hf-C; MHC) alloy was prepared via a powder metallurgy process, including dry direct doping followed by ball-milling, cold-isotactic-pressing, and vacuum sintering. An oxidation comparison experiment was conducted, and the oxidation and volatilization behaviors were analyzed using the mass change, volatile [...] Read more.
An HfC-doped molybdenum (Mo-Hf-C; MHC) alloy was prepared via a powder metallurgy process, including dry direct doping followed by ball-milling, cold-isotactic-pressing, and vacuum sintering. An oxidation comparison experiment was conducted, and the oxidation and volatilization behaviors were analyzed using the mass change, volatile generation rate, and morphology transformation. The results show that relatively uniform powder morphology can be obtained by the direct doping of carbide and high-energy ball milling. The oxidation of the MHC alloy at a lower temperature was characterized by the oxygen-absorption and a slight weight gain, while at a higher temperature and longer holding time, it was characterized by the mass volatile weight loss. A significant weight change appeared at 800 °C for 30 min with a weight loss rate of 4.8%. Surface oxidation products developed horizontally from ridged oxides at lower temperature stages to a flaky oxide layer at higher temperatures. The peeling of the oxide layer was the result of interfacial pore development, which led to exposure of the alloy matrix and further oxidation. Based on the oxidation and volatilization characteristics of HfC-doped MHC alloys, we conclude that the oxidation and volatilization of the MHC alloy conformed to the general law; however, the significant weight loss temperature, weight loss rate, volatilization temperature, and volatilization rate were improved compared with pure molybdenum and traditional molybdenum alloys, thus, indicating that the precipitation of the second phase HfC particles at the grain boundaries and within the grains can inhibit the oxidation and volatilization of matrix elements to a certain extent. Full article
Show Figures

Figure 1

Article
Cross-Sectional Analysis of the Resistance of RC Members Subjected to Bending with/without Axial Force
Materials 2022, 15(5), 1957; https://doi.org/10.3390/ma15051957 - 06 Mar 2022
Cited by 1 | Viewed by 636
Abstract
This paper deals with the cross-sectional analysis of the resistance of RC members subjected to a bending moment with or without axial forces. To determine section resistance, the nonlinear material law for concrete in compression is assumed according to Eurocode 2, taking into [...] Read more.
This paper deals with the cross-sectional analysis of the resistance of RC members subjected to a bending moment with or without axial forces. To determine section resistance, the nonlinear material law for concrete in compression is assumed according to Eurocode 2, taking into account the effect of concrete softening. It adequately describes the concrete behavior of RC members up to failure. The idealized stress–strain relation for the reinforcing steel is assumed. For the ring cross-section subjected to bending with axial force and for areas weakened by an opening, normalized resistances have been derived by integrating corresponding equilibrium equations. They are presented in the form of interaction curves and compared with the results of testing conducted on RC eccentrically loaded columns. Furthermore, the ultimate normalized bending moment has been derived for the RC rectangle subjected to bending without axial force. It was applied to the cross-sectional analysis of steel and concrete composite beams consisting of the RC rectangular core located inside a reversed TT-welded profile. Comparative analysis indicated good agreements between the proposed section models and experimental data. The objective of the paper is the dimensioning optimization of the considered cross-sections with the fulfillment of structural safety requirements. Full article
(This article belongs to the Special Issue Concrete and Construction Materials)
Show Figures

Figure 1

Article
Experimental Study of Mechanical Properties of Polypropylene Random Copolymer and Rice-Husk-Based Biocomposite by Using Nanoindentation
Materials 2022, 15(5), 1956; https://doi.org/10.3390/ma15051956 - 06 Mar 2022
Viewed by 658
Abstract
Nanoindentation is widely used to investigate the surface-mechanical properties of biocomposites. In this study, polypropylene random copolymer (PPRC) and biowaste rice husk (BRH) were used as the main raw materials, and glass-fiber-reinforced polypropylene and talc were also used with BRH to enhance the [...] Read more.
Nanoindentation is widely used to investigate the surface-mechanical properties of biocomposites. In this study, polypropylene random copolymer (PPRC) and biowaste rice husk (BRH) were used as the main raw materials, and glass-fiber-reinforced polypropylene and talc were also used with BRH to enhance the mechanical characterization of the biocomposites. The interfacial bonding between the polymer and the rice husk was increased by treating them with maleic anhydride and NaOH, respectively. The results obtained from the nanoindentation indicated that the plastic behavior of the biocomposites was prominent when untreated BRH was used and vice versa. The modulus and hardness of the biocomposite improved by 44.8% and 54.8% due to the neat PPRC, respectively. The tribological properties were studied based on the hardness-to-modulus ratio and it was found that BRH- and talc-based biocomposites were better than other samples in terms of low friction and wear rate. The creep measurements showed that untreated rice husk biocomposite exhibited high resistance to load deformation. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

Article
In Vitro Toxicity of Bone Graft Materials to Human Mineralizing Cells
Materials 2022, 15(5), 1955; https://doi.org/10.3390/ma15051955 - 06 Mar 2022
Viewed by 623
Abstract
Bone graft materials from synthetic, bovine, and human sources were analyzed and tested for in vitro cytotoxicity on dental pulp stem cells (DPSCs) and osteosarcoma cells (Saos-2). Raman spectroscopy indicated significant amounts of collagen only in human bone-derived materials, where the mineral to [...] Read more.
Bone graft materials from synthetic, bovine, and human sources were analyzed and tested for in vitro cytotoxicity on dental pulp stem cells (DPSCs) and osteosarcoma cells (Saos-2). Raman spectroscopy indicated significant amounts of collagen only in human bone-derived materials, where the mineral to protein ratio was 3.55 ± 0.45, consistent with bone. X-ray fluorescence revealed tungsten (W) concentrations of 463 ± 73, 400 ± 77, and 92 ± 42 ppm in synthetic, bovine, and human bone chips, respectively. When these chips were added to DPSCs on tissue culture plastic, the doubling times after two days were the same as the controls, 16.5 ± 0.5 h. Those cultured with synthetic or bovine chips were 96.5 ± 8.1 and 25.2 ± 1.4 h, respectively. Saos-2 was more sensitive. During the first two days with allogeneic or bovine graft materials, cell numbers declined. When DPSC were cultured on collagen, allogeneic and bovine bone chips did not increase doubling times. We propose cytotoxicity was associated with tungsten, where only the concentration in human bone chips was below 184 ppm, the value reported as cytotoxic in vitro. Cells on collagen were resistant to bone chips, possibly due to tungsten adsorption by collagen. Full article
(This article belongs to the Special Issue Advanced Dental Materials for Periodontal and Bone Regeneration)
Show Figures

Figure 1

Article
A New Method for the Calculation of Characteristics of Disc Springs with Trapezoidal Cross-Sections and Rounded Edges
Materials 2022, 15(5), 1954; https://doi.org/10.3390/ma15051954 - 06 Mar 2022
Viewed by 538
Abstract
In the European standards specifying disc spring manufacturing, geometry, shape and characteristic, an edge rounding is prescribed. Common methods for the calculation of disc spring characteristics, even in these standards, are based on a rectangular cross-section. This discrepancy can lead to a considerable [...] Read more.
In the European standards specifying disc spring manufacturing, geometry, shape and characteristic, an edge rounding is prescribed. Common methods for the calculation of disc spring characteristics, even in these standards, are based on a rectangular cross-section. This discrepancy can lead to a considerable divergence of the computed characteristic from the characteristic determined by testing. In literature, this divergence has not yet been examined with regard to rounded edges. In this paper, a new method addressing this problem is introduced. For this purpose, the geometry of idealized disc springs is parameterized. Based on four edge radii and two angles of the inner and outer faces, equations to compute the initial cone angle and the lever arm are introduced. These equations are used to formulate an algorithm to adapt other computation methods to non-rectangular cross-sections and rounded edges. The method is applied to the formulas by AlmenLaszlo, CurtiOrlando, Zheng and those by Kobelev. FE simulations of disc springs with rounded edges and a non-rectangular cross-section were used to verify the new formulas. The results show that the introduced method can be applied to known characteristic computation methods and result in a model expansion taking cross-section variations into account. The adjusted characteristics show more accurate alignment to the FE simulation for the cross-section variations investigated. These findings not only close the geometric gap between the manufacturing guidelines and the computation on an analytical basis, they also define a new parameter space for designs of disc springs and a corresponding force computation method to optimize spring characteristics. Full article
Show Figures

Figure 1

Article
Effects of Organic Vehicle on the Rheological and Screen-Printing Characteristics of Silver Paste for LTCC Thick Film Electrodes
Materials 2022, 15(5), 1953; https://doi.org/10.3390/ma15051953 - 06 Mar 2022
Viewed by 689
Abstract
Silver paste is widely used for low-temperature co-fired ceramic (LTCC) electrodes. In this work, a kind of LTCC silver paste for fine-line screen-printing was developed by considering the effect of the organic vehicle on rheological behavior and screen-printing properties. A step-by-step volatilization mode [...] Read more.
Silver paste is widely used for low-temperature co-fired ceramic (LTCC) electrodes. In this work, a kind of LTCC silver paste for fine-line screen-printing was developed by considering the effect of the organic vehicle on rheological behavior and screen-printing properties. A step-by-step volatilization mode was applied to screen the mixed organic solvent of α-terpineol, 2-(2-butoxyethoxy) ethyl acetate (BCA) and dibutyl phthalate (DBP). The α-terpineol:BCA:DBP ratio of 5:2:3 is selected by considering the volatility, viscosity, and pseudoplasticity of the organic vehicle. Both viscosity and pseudoplasticity of shear-thinning increase with the increase of ethyl cellulose (EC) organic binder content. Three interval thixotropy test (3ITT) was conducted to discuss the thixotropy of silver paste. The minimum printing line width of 13.27 µm is obtained using silver paste with 10 wt% EC, confirming that the homemade paste has good printability. Full article
Show Figures

Figure 1

Article
The Influence of Organic Vanadium Complexes on an Antioxidant Profile in Adipose Tissue in Wistar Rats
Materials 2022, 15(5), 1952; https://doi.org/10.3390/ma15051952 - 06 Mar 2022
Viewed by 536
Abstract
One of the aspects of biological activity of vanadium is its influence on carbohydrate metabolism. For more than 30 years, various vanadium complexes have been tested as antidiabetic agents. This study researched organic vanadium complexes with bipyridinium ligands and their influences on metabolic [...] Read more.
One of the aspects of biological activity of vanadium is its influence on carbohydrate metabolism. For more than 30 years, various vanadium complexes have been tested as antidiabetic agents. This study researched organic vanadium complexes with bipyridinium ligands and their influences on metabolic rate, as well as on the antioxidant activity of adipose tissue. The effects of sodium (2,2′-bipyridine) oxidobisperoxovanadate (V) octahydrate (known as the V complex), bis(2,2′-bipyridine) oxidovanadium (IV) sulfate dehydrate (known as the B complex), and bis(4.4′-dimethyl-2,2′-bipyridine) oxidovanadium (IV) sulfate dihydrate (labelled as the BM complex) were assessed. Solutions of the tested complexes were introduced intraperitoneally with a probe to animals fed with either a control diet or a high-fat diet. The BM complex had a significant influence on the increase in ferric reducing antioxidant power, as well as on the concentration of glutathione in the adipose tissue of rats fed with a high-fat diet. The V complex increased the concentration of glutathione in the adipose tissue of rats fed with control fodder, as well as significantly reduced the relative change in rat weight for the high-fat diet. Furthermore, the presence of each tested vanadium complex had an impact of statistically significant increase in basal metabolic rate, regardless of applied diet. Further research on these organic vanadium complexes is necessary to understand the mechanisms responsible for their ability to affect adipose tissue. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop