Next Issue
Volume 15, November
Previous Issue
Volume 15, September
 
 
ijms-logo

Journal Browser

Journal Browser

Int. J. Mol. Sci., Volume 15, Issue 10 (October 2014) – 120 articles , Pages 17204-19329

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Cover Story:
Order results
Result details
Section
Select all
Export citation of selected articles as:
5532 KiB  
Article
Mechanical Reinforcement of Diopside Bone Scaffolds with Carbon Nanotubes
by Cijun Shuai, Tingting Liu, Chengde Gao, Pei Feng and Shuping Peng
Int. J. Mol. Sci. 2014, 15(10), 19319-19329; https://doi.org/10.3390/ijms151019319 - 23 Oct 2014
Cited by 14 | Viewed by 6111
Abstract
Carbon nanotubes are ideal candidates for the mechanical reinforcement of ceramic due to their excellent mechanical properties, high aspect ratio and nanometer scale diameter. In this study, the effects of multi-walled carbon nanotubes (MWCNTs) on the mechanical properties of diopside (Di) scaffolds fabricated [...] Read more.
Carbon nanotubes are ideal candidates for the mechanical reinforcement of ceramic due to their excellent mechanical properties, high aspect ratio and nanometer scale diameter. In this study, the effects of multi-walled carbon nanotubes (MWCNTs) on the mechanical properties of diopside (Di) scaffolds fabricated by selective laser sintering were investigated. Results showed that compressive strength and fracture toughness improved significantly with increasing MWCNTs from 0.5 to 2 wt %, and then declined with increasing MWCNTs to 5 wt %. Compressive strength and fracture toughness were enhanced by 106% and 21%, respectively. The reinforcing mechanisms were identified as crack deflection, MWCNTs crack bridging and pull-out. Further, the scaffolds exhibited good apatite-formation ability and supported adhesion and proliferation of cells in vitro. Full article
(This article belongs to the Special Issue Biomaterials for Tissue Engineering)
Show Figures

Figure 1

714 KiB  
Article
Antioxidant and Immunoregulatory Activity of Polysaccharides from Quinoa (Chenopodium quinoa Willd.)
by Yang Yao, Zhenxing Shi and Guixing Ren
Int. J. Mol. Sci. 2014, 15(10), 19307-19318; https://doi.org/10.3390/ijms151019307 - 23 Oct 2014
Cited by 58 | Viewed by 9443
Abstract
The water-extractable (QWP) and the alkali-extractable (QAP) polysaccharides from quinoa (named QWP and QAP, respectively) and their four polysaccharide sub-fractions (QWP-1, QWP-2, QAP-1 and QAP-2), were isolated and purified by anion-exchange and gel filtration chromatography. QWP-1 and QWP-2 were composed of Rha, Ara, [...] Read more.
The water-extractable (QWP) and the alkali-extractable (QAP) polysaccharides from quinoa (named QWP and QAP, respectively) and their four polysaccharide sub-fractions (QWP-1, QWP-2, QAP-1 and QAP-2), were isolated and purified by anion-exchange and gel filtration chromatography. QWP-1 and QWP-2 were composed of Rha, Ara, Gal and GalA. QAP-1 and QAP-2 were composed of Rha, Ara, Man, Gal and GalA. Antioxidant and immunoregulatory activities of the polysaccharides were evaluated. The results showed that QWP-1, QWP-2, QAP-1 and QAP-2 had significant antioxidant and immunoregulatory activities. The results suggest that QWP-1, QWP-2, QAP-1 and QAP-2 could be used as potential antioxidants and immunomodulators. Full article
(This article belongs to the Special Issue Bioactive Carbohydrates and Peptides)
Show Figures

Figure 1

5024 KiB  
Article
Interferon Regulatory Factor-1 (IRF-1) Is Involved in the Induction of Phosphatidylserine Receptor (PSR) in Response to dsRNA Virus Infection and Contributes to Apoptotic Cell Clearance in CHSE-214 Cell
by Hsin-Chia Kung, Øystein Evensen, Jiann-Ruey Hong, Chia-Yu Kuo, Chun-Hsi Tso, Fang-Huar Ngou, Ming-Wei Lu and Jen-Leih Wu
Int. J. Mol. Sci. 2014, 15(10), 19281-19306; https://doi.org/10.3390/ijms151019281 - 23 Oct 2014
Cited by 15 | Viewed by 9237
Abstract
The phosphatidylserine receptor (PSR) recognizes a surface marker on apoptotic cells and initiates engulfment. This receptor is important for effective apoptotic cell clearance and maintains normal tissue homeostasis and regulation of the immune response. However, the regulation of PSR expression remains poorly understood. [...] Read more.
The phosphatidylserine receptor (PSR) recognizes a surface marker on apoptotic cells and initiates engulfment. This receptor is important for effective apoptotic cell clearance and maintains normal tissue homeostasis and regulation of the immune response. However, the regulation of PSR expression remains poorly understood. In this study, we determined that interferon regulatory factor-1 (IRF-1) was dramatically upregulated upon viral infection in the fish cell. We observed apoptosis in virus-infected cells and found that both PSR and IRF-1 increased simultaneously. Based on a bioinformatics promoter assay, IRF-1 binding sites were identified in the PSR promoter. Compared to normal viral infection, we found that PSR expression was delayed, viral replication was increased and virus-induced apoptosis was inhibited following IRF-1 suppression with morpholino oligonucleotides. A luciferase assay to analyze promoter activity revealed a decreasing trend after the deletion of the IRF-1 binding site on PSR promoter. The results of this study indicated that infectious pancreatic necrosis virus (IPNV) infection induced both the apoptotic and interferon (IFN) pathways, and IRF-1 was involved in regulating PSR expression to induce anti-viral effects. Therefore, this work suggests that PSR expression in salmonid cells during IPNV infection is activated when IRF-1 binds the PSR promoter. This is the first report to show the potential role of IRF-1 in triggering the induction of apoptotic cell clearance-related genes during viral infection and demonstrates the extensive crosstalk between the apoptotic and innate immune response pathways. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

1264 KiB  
Article
Effects of SC-560 in Combination with Cisplatin or Taxol on Angiogenesis in Human Ovarian Cancer Xenografts
by Wei Li, Liang Wan, Ling-Yun Zhai and Jane Wang
Int. J. Mol. Sci. 2014, 15(10), 19265-19280; https://doi.org/10.3390/ijms151019265 - 23 Oct 2014
Cited by 10 | Viewed by 5761
Abstract
This study was designed to evaluate the effect of cyclooxygenase-1 (COX-1) inhibitor, SC-560, combined with cisplatin or taxol, on angiogenesis in human ovarian cancer xenografts. Mice were treated with intraperitoneal (i.p.) injections of SC-560 6 mg/kg/day, i.p. injections of cisplatin 3 mg/kg every [...] Read more.
This study was designed to evaluate the effect of cyclooxygenase-1 (COX-1) inhibitor, SC-560, combined with cisplatin or taxol, on angiogenesis in human ovarian cancer xenografts. Mice were treated with intraperitoneal (i.p.) injections of SC-560 6 mg/kg/day, i.p. injections of cisplatin 3 mg/kg every other day and i.p. injections of taxol 20 mg/kg once a week for 21 days. Vascular endothelial growth factor (VEGF) mRNA levels were detected by reverse transcription-polymerase chain reaction (RT-PCR); microvessel density (MVD) was determined by immunohistochemistry; and prostaglandin E2 (PGE2) levels were determined using ELISA. Expression levels of VEGF mRNA and MVD in treatment groups were inhibited significantly when compared with the control group (p < 0.05 for all), and SC-560 combined with cisplatin displayed a greater reduction in the expression of VEGF and MVD than SC-560 or cisplatin alone (p < 0.05). SC-560 combined with taxol showed a greater inhibition on VEGF mRNA expression than SC-560 or taxol alone (p < 0.05). The level of PGE2 in treatment groups was significantly reduced when compared with the control group (p < 0.01 for all). These findings may indicate that cisplatin or taxol supplemented by SC-560 in human ovarian cancer xenografts enhances the inhibition effect of cisplatin or taxol alone on angiogenesis. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

4204 KiB  
Article
DRAM1 Protects Neuroblastoma Cells from Oxygen-Glucose Deprivation/Reperfusion-Induced Injury via Autophagy
by Mengqiang Yu, Yugang Jiang, Qingliang Feng, Yi'an Ouyang and Jie Gan
Int. J. Mol. Sci. 2014, 15(10), 19253-19264; https://doi.org/10.3390/ijms151019253 - 23 Oct 2014
Cited by 24 | Viewed by 7271
Abstract
DNA damage-regulated autophagy modulator protein 1 (DRAM1), a multi-pass membrane lysosomal protein, is reportedly a tumor protein p53 (TP53) target gene involved in autophagy. During cerebral ischemia/reperfusion (I/R) injury, DRAM1 protein expression is increased, and autophagy is activated. However, the functional [...] Read more.
DNA damage-regulated autophagy modulator protein 1 (DRAM1), a multi-pass membrane lysosomal protein, is reportedly a tumor protein p53 (TP53) target gene involved in autophagy. During cerebral ischemia/reperfusion (I/R) injury, DRAM1 protein expression is increased, and autophagy is activated. However, the functional significance of DRAM1 and the relationship between DRAM1 and autophagy in brain I/R remains uncertain. The aim of this study is to investigate whether DRAM1 mediates autophagy activation in cerebral I/R injury and to explore its possible effects and mechanisms. We adopt the oxygen-glucose deprivation and reperfusion (OGD/R) Neuro-2a cell model to mimic cerebral I/R conditions in vitro, and RNA interference is used to knock down DRAM1 expression in this model. Cell viability assay is performed using the LIVE/DEAD viability/cytotoxicity kit. Cell phenotypic changes are analyzed through Western blot assays. Autophagy flux is monitored through the tandem red fluorescent protein–Green fluorescent protein–microtubule associated protein 1 light chain 3 (RFP–GFP–LC3) construct. The expression levels of DRAM1 and microtubule associated protein 1 light chain 3II/I (LC3II/I) are strongly up-regulated in Neuro-2a cells after OGD/R treatment and peaked at the 12 h reperfusion time point. The autophagy-specific inhibitor 3-Methyladenine (3-MA) inhibits the expression of DRAM1 and LC3II/I and exacerbates OGD/R-induced cell injury. Furthermore, DRAM1 knockdown aggravates OGD/R-induced cell injury and significantly blocks autophagy through decreasing autophagosome-lysosome fusion. In conclusion, our data demonstrate that DRAM1 knockdown in Neuro-2a cells inhibits autophagy by blocking autophagosome-lysosome fusion and exacerbated OGD/R-induced cell injury. Thus, DRAM1 might constitute a new therapeutic target for I/R diseases. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

1706 KiB  
Article
Heparin Assisted Photochemical Synthesis of Gold Nanoparticles and Their Performance as SERS Substrates
by Maria Del Pilar Rodríguez-Torres, Luis Armando Díaz-Torres and Sergio Romero-Servin
Int. J. Mol. Sci. 2014, 15(10), 19239-19252; https://doi.org/10.3390/ijms151019239 - 23 Oct 2014
Cited by 29 | Viewed by 9157
Abstract
Reactive and pharmaceutical-grade heparins were used as biologically compatible reducing and stabilizing agents to photochemically synthesize colloidal gold nanoparticles. Aggregates and anisotropic shapes were obtained photochemically under UV black-light lamp irradiation (λ = 366 nm). Heparin-functionalized gold nanoparticles were characterized by Scanning Electron [...] Read more.
Reactive and pharmaceutical-grade heparins were used as biologically compatible reducing and stabilizing agents to photochemically synthesize colloidal gold nanoparticles. Aggregates and anisotropic shapes were obtained photochemically under UV black-light lamp irradiation (λ = 366 nm). Heparin-functionalized gold nanoparticles were characterized by Scanning Electron Microscopy and UV-Vis spectroscopy. The negatively charged colloids were used for the Surface Enhanced Raman Spectroscopy (SERS) analysis of differently charged analytes (dyes). Measurements of pH were taken to inspect how the acidity of the medium affects the colloid-analyte interaction. SERS spectra were taken by mixing the dyes and the colloidal solutions without further functionalization or addition of any aggregating agent. Full article
(This article belongs to the Special Issue Bioactive Nanoparticles 2014)
Show Figures

Graphical abstract

1231 KiB  
Review
Stem Cell Treatment for Alzheimer’s Disease
by Ming Li, Kequan Guo and Susumu Ikehara
Int. J. Mol. Sci. 2014, 15(10), 19226-19238; https://doi.org/10.3390/ijms151019226 - 23 Oct 2014
Cited by 44 | Viewed by 14738
Abstract
Alzheimer’s disease (AD) is a progressive and neurodegenerative disorder that induces dementia in older people. It was first reported in 1907 by Alois Alzheimer, who characterized the disease as causing memory loss and cognitive impairment. Pathologic characteristics of AD are β-amyloid plaques, neurofibrillary [...] Read more.
Alzheimer’s disease (AD) is a progressive and neurodegenerative disorder that induces dementia in older people. It was first reported in 1907 by Alois Alzheimer, who characterized the disease as causing memory loss and cognitive impairment. Pathologic characteristics of AD are β-amyloid plaques, neurofibrillary tangles and neurodegeneration. Current therapies only target the relief of symptoms using various drugs, and do not cure the disease. Recently, stem cell therapy has been shown to be a potential approach to various diseases, including neurodegenerative disorders, and in this review, we focus on stem cell therapies for AD. Full article
(This article belongs to the Special Issue Neuroprotective Strategies 2014)
Show Figures

Figure 1

2308 KiB  
Review
Glutathionylation of the L-type Ca2+ Channel in Oxidative Stress-Induced Pathology of the Heart
by Victoria P. A. Johnstone and Livia C. Hool
Int. J. Mol. Sci. 2014, 15(10), 19203-19225; https://doi.org/10.3390/ijms151019203 - 22 Oct 2014
Cited by 18 | Viewed by 6007
Abstract
There is mounting evidence to suggest that protein glutathionylation is a key process contributing to the development of pathology. Glutathionylation occurs as a result of posttranslational modification of a protein and involves the addition of a glutathione moiety at cysteine residues. Such modification [...] Read more.
There is mounting evidence to suggest that protein glutathionylation is a key process contributing to the development of pathology. Glutathionylation occurs as a result of posttranslational modification of a protein and involves the addition of a glutathione moiety at cysteine residues. Such modification can occur on a number of proteins, and exerts a variety of functional consequences. The L-type Ca2+ channel has been identified as a glutathionylation target that participates in the development of cardiac pathology. Ca2+ influx via the L-type Ca2+ channel increases production of mitochondrial reactive oxygen species (ROS) in cardiomyocytes during periods of oxidative stress. This induces a persistent increase in channel open probability, and the resulting constitutive increase in Ca2+ influx amplifies the cross-talk between the mitochondria and the channel. Novel strategies utilising targeted peptide delivery to uncouple mitochondrial ROS and Ca2+ flux via the L-type Ca2+ channel following ischemia-reperfusion have delivered promising results, and have proven capable of restoring appropriate mitochondrial function in myocytes and in vivo. Full article
(This article belongs to the Special Issue Oxidative Stress in Cardiovascular Disease 2015)
Show Figures

Figure 1

708 KiB  
Review
Culinary Herbs and Spices: Their Bioactive Properties, the Contribution of Polyphenols and the Challenges in Deducing Their True Health Benefits
by Elizabeth I. Opara and Magali Chohan
Int. J. Mol. Sci. 2014, 15(10), 19183-19202; https://doi.org/10.3390/ijms151019183 - 22 Oct 2014
Cited by 137 | Viewed by 22549
Abstract
Herbs and spices have been used for both culinary and medicinal purposes for centuries. Over the last decade, research into their role as contributors of dietary polyphenols, known to possess a number of properties associated with reducing the risk of developing chronic non-communicable [...] Read more.
Herbs and spices have been used for both culinary and medicinal purposes for centuries. Over the last decade, research into their role as contributors of dietary polyphenols, known to possess a number of properties associated with reducing the risk of developing chronic non-communicable diseases, has increased. However, bearing in mind how these foods are consumed, normally in small quantities and in combination with other foods, it is unclear what their true benefit is from a health perspective. The aim of this review is to use the literature to discuss how preparative and digestive processes, bioavailability and interactions between foods may influence the bioactive properties of these foods, and whether or not polyphenols are responsible for these properties. Furthermore, this review aims to highlight the challenges that need to be addressed so as to determine the true benefits of these foods and the mechanisms of action that underpin their purported efficacy. Full article
(This article belongs to the Special Issue Bioactive Phenolics and Polyphenols)
12187 KiB  
Article
Molecular Characteristics and Biochemical Functions of VpPR10s from Vitis pseudoreticulata Associated with Biotic and Abiotic Stresses
by Lan Wang, Jinyu Wei, Ying Zou, Keyao Xu, Yuejin Wang, Lu Cui and Yan Xu
Int. J. Mol. Sci. 2014, 15(10), 19162-19182; https://doi.org/10.3390/ijms151019162 - 22 Oct 2014
Cited by 19 | Viewed by 5943
Abstract
Grapes are one of the world’s oldest and most important fruit crops. They are of high economic value in many countries, but the susceptibility of the dominant winegrape species Vitis vinifera to fungal disease is a significant problem. The Chinese wild grape species [...] Read more.
Grapes are one of the world’s oldest and most important fruit crops. They are of high economic value in many countries, but the susceptibility of the dominant winegrape species Vitis vinifera to fungal disease is a significant problem. The Chinese wild grape species are a rich source of disease-resistance genes and these can be used to discover how disease resistance in V. vinifera grapevines might be enhanced. Pathogenesis-related (PR) 10 proteins are involved in the disease-response. Here, we use the genomic DNA of the Chinese wild species Vitis pseudoreticulata accession “Baihe-35-1” as the template to design specific primers based on VvPR10s sequences. We used overlap extension PCR to obtain the sequences: VpPR10.4, VpPR10.6, VpPR10.7 and VpPR10.9. The coding sequences of the VpPR10s were then cloned into the pGEX-4T-1 vector. The purified proteins VpPR10.4, VpPR10.6, VpPR10.7 and VpPR10.9 were used to analyse nuclease activity. Meanwhile, functional analysis of VpPR10s under different biotic and abiotic stresses was carried out to further clarify the disease-resistance mechanisms of the Chinese wild grapevine VpPR10 genes. The analysis of protein structure indicates that VpPR10.4 and VpPR10.7 had the P-loop domain and the Bet v 1 motif, which are a consistent feature of plant PR10. However, there was no P-loop domain or Bet v 1 motif in VpPR10.9 and we could not find the Bet v 1 motif in VpPR10.6. The results of the nuclease activity assay and of the functional analyses of VpPR10s under different biotic and abiotic stresses also confirm that VpPR10.4 and VpPR10.7 proteins have marked RNase, DNase, anti-fungal activities and respond to abiotic stresses. The VpPR10.6 and VpPR10.9 proteins do not have these activities and functions. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

3053 KiB  
Article
Identification and Molecular Characterization of a Chitin-Binding Protein from the Beet Webworm, Loxostege sticticalis L.
by Jiao Yin, Shuang Yang, Kebin Li, Wei Guo and Yazhong Cao
Int. J. Mol. Sci. 2014, 15(10), 19147-19161; https://doi.org/10.3390/ijms151019147 - 22 Oct 2014
Cited by 9 | Viewed by 5630
Abstract
As the first crucial barrier in the midgut of insects, the peritrophic membrane (PM) plays an important role in preventing external invasion. PM proteins, as the major components of the PM, determine the structure and function of this membrane. A new PM protein, [...] Read more.
As the first crucial barrier in the midgut of insects, the peritrophic membrane (PM) plays an important role in preventing external invasion. PM proteins, as the major components of the PM, determine the structure and function of this membrane. A new PM protein, named LstiCBP, from the PM of Loxostege sticticalis larvae was identified using cDNA library screening. The full cDNA of LstiCBP is 2606 bp in length and contains a 2403 bp ORF that encodes an 808-amino acid preprotein with a 15-amino acid as signal peptide. The deduced protein sequence of the cDNA contains 8 cysteine-rich chitin-binding domains (CBDs). Recombinant LstiCBP was successfully expressed in BL21 cells using recombinant plasmid DNA and showed high chitin-binding activity. LstiCBP expression was detected in the midgut at both the transcriptional and translational levels; however, the biochemical and physiological functions of LstiCBP in L. sticticalis require further investigation. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

3269 KiB  
Article
Genetic Analysis of 430 Chinese Cynodon dactylon Accessions Using Sequence-Related Amplified Polymorphism Markers
by Chunqiong Huang, Guodao Liu, Changjun Bai and Wenqiang Wang
Int. J. Mol. Sci. 2014, 15(10), 19134-19146; https://doi.org/10.3390/ijms151019134 - 21 Oct 2014
Cited by 11 | Viewed by 5282
Abstract
Although Cynodon dactylon (C. dactylon) is widely distributed in China, information on its genetic diversity within the germplasm pool is limited. The objective of this study was to reveal the genetic variation and relationships of 430 C. dactylon accessions collected from [...] Read more.
Although Cynodon dactylon (C. dactylon) is widely distributed in China, information on its genetic diversity within the germplasm pool is limited. The objective of this study was to reveal the genetic variation and relationships of 430 C. dactylon accessions collected from 22 Chinese provinces using sequence-related amplified polymorphism (SRAP) markers. Fifteen primer pairs were used to amplify specific C. dactylon genomic sequences. A total of 481 SRAP fragments were generated, with fragment sizes ranging from 260–1800 base pairs (bp). Genetic similarity coefficients (GSC) among the 430 accessions averaged 0.72 and ranged from 0.53–0.96. Cluster analysis conducted by two methods, namely the unweighted pair-group method with arithmetic averages (UPGMA) and principle coordinate analysis (PCoA), separated the accessions into eight distinct groups. Our findings verify that Chinese C. dactylon germplasms have rich genetic diversity, which is an excellent basis for C. dactylon breeding for new cultivars. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

2083 KiB  
Article
Bistable Switch in let-7 miRNA Biogenesis Pathway Involving Lin28
by Fei Shi, Wenbao Yu and Xia Wang
Int. J. Mol. Sci. 2014, 15(10), 19119-19133; https://doi.org/10.3390/ijms151019119 - 21 Oct 2014
Cited by 5 | Viewed by 5799
Abstract
miRNAs are small noncoding RNAs capable of regulating gene expression at the post-transcriptional level. A growing body of evidence demonstrated that let-7 family of miRNAs, as one of the highly conserved miRNAs, plays an important role in cell differentiation and development, as well [...] Read more.
miRNAs are small noncoding RNAs capable of regulating gene expression at the post-transcriptional level. A growing body of evidence demonstrated that let-7 family of miRNAs, as one of the highly conserved miRNAs, plays an important role in cell differentiation and development, as well as tumor suppressor function depending on their levels of expression. To explore the physiological significance of let-7 in regulating cell fate decisions, we present a coarse grained model of let-7 biogenesis network, in which let-7 and its regulator Lin28 inhibit mutually. The dynamics of this minimal network architecture indicates that, as the concentration of Lin28 increases, the system undergoes a transition from monostability to a bistability and then to a one-way switch with increasing strength of positive feedback of let-7, while in the absence of Lin28 inhibition, the system loses bistability. Moreover, the ratio of degradation rates of let-7 and Lin28 is critical for the switching sensitivity and resistance to stimulus fluctuations. These findings may highlight why let-7 is required for normal gene expression in the context of embryonic development and oncogenesis, which will facilitate the development of approaches to exploit this regulatory pathway by manipulating Lin28/let-7 axis for novel treatments of human diseases. Full article
(This article belongs to the Section Physical Chemistry, Theoretical and Computational Chemistry)
Show Figures

Figure 1

3044 KiB  
Article
Protein/Arabinoxylans Gels: Effect of Mass Ratio on the Rheological, Microstructural and Diffusional Characteristics
by Claudia M. Berlanga-Reyes, Elizabeth Carvajal-Millan, Kevin B. Hicks, Madhav P. Yadav, Agustín Rascón-Chu, Jaime Lizardi-Mendoza, Alma R. Toledo-Guillén and Alma R. Islas-Rubio
Int. J. Mol. Sci. 2014, 15(10), 19106-19118; https://doi.org/10.3390/ijms151019106 - 21 Oct 2014
Cited by 19 | Viewed by 5444
Abstract
Wheat bran arabinoxylan (WBAX) gels entrapping standard model proteins at different mass ratios were formed. The entrapment of protein affected the gel elasticity and viscosity values, which decreased from 177 to 138 Pa. The presence of protein did not modify the covalent cross-links [...] Read more.
Wheat bran arabinoxylan (WBAX) gels entrapping standard model proteins at different mass ratios were formed. The entrapment of protein affected the gel elasticity and viscosity values, which decreased from 177 to 138 Pa. The presence of protein did not modify the covalent cross-links content of the gel. The distribution of protein through the network was investigated by confocal laser scanning microscopy. In mixed gels, protein aggregates forming clusters were detected at protein/polysaccharide ratios higher than 0.25. These clusters were not homogeneously distributed, suggesting that WBAX and protein are located in two different phases. The apparent diffusion coefficient (Dm) of proteins during release from mixed gels was investigated for mass ratios of 0.06 and 0.12. For insulin, Dm increased significantly from 2.64 × 107 to 3.20 × 107 cm2/s as the mass ratio augmented from 0.06 to 0.12. No significant difference was found for Dm values of ovalbumin and bovine serum albumin released from the mixed gels. The results indicate that homogeneous protein/WBAX gels can be formed at low mass ratios, allowing the estimation of Dm by using an analytical solution of the second Fick’s law. Full article
(This article belongs to the Special Issue Supramolecular Polymers and Their Assemblies)
Show Figures

Graphical abstract

5426 KiB  
Article
Enhanced Production of Bioactive Isoprenoid Compounds from Cell Suspension Cultures of Artemisia annua L. Using β-Cyclodextrins
by Francesca Rizzello, Angelo De Paolis, Miriana Durante, Federica Blando, Giovanni Mita and Sofia Caretto
Int. J. Mol. Sci. 2014, 15(10), 19092-19105; https://doi.org/10.3390/ijms151019092 - 21 Oct 2014
Cited by 20 | Viewed by 6867
Abstract
Plant cell cultures as valuable tools for the production of specific metabolites can be greatly improved by the application of elicitors including cyclodextrins (CDs) for enhancing the yields of the desired plant compounds. Here the effects of 2,6-dimethyl-β-cyclodextrins (DIMEB) on the production of [...] Read more.
Plant cell cultures as valuable tools for the production of specific metabolites can be greatly improved by the application of elicitors including cyclodextrins (CDs) for enhancing the yields of the desired plant compounds. Here the effects of 2,6-dimethyl-β-cyclodextrins (DIMEB) on the production of carotenoids and quinones from Artemisia annua L. cell suspension cultures were investigated. The addition of 50 mM DIMEB induced an early increase of intracellular carotenoid and quinone contents, which could be observed to a higher extent for lutein (10-fold), Q9 (3-fold) and Q10 (2.5-fold). Real Time PCR analysis revealed that the expression of 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR) gene in DIMEB treated cell cultures after three days was 2.5-fold higher than in untreated samples, thus suggesting that the DIMEB induced increase of carotenoids and quinones could be due to the induction of the plastidial isoprenoid biosynthetic route. In addition, the DIMEB treatment induced an enhanced release of carotenoids and quinones into the culture medium of A. annua cell suspension cultures possibly due to the ability of CDs to form inclusion complexes with hydrophobic molecules. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

885 KiB  
Article
Active Transport Can Greatly Enhance Cdc20:Mad2 Formation
by Bashar Ibrahim and Richard Henze
Int. J. Mol. Sci. 2014, 15(10), 19074-19091; https://doi.org/10.3390/ijms151019074 - 21 Oct 2014
Cited by 12 | Viewed by 6734
Abstract
To guarantee genomic integrity and viability, the cell must ensure proper distribution of the replicated chromosomes among the two daughter cells in mitosis. The mitotic spindle assembly checkpoint (SAC) is a central regulatory mechanism to achieve this goal. A dysfunction of this checkpoint [...] Read more.
To guarantee genomic integrity and viability, the cell must ensure proper distribution of the replicated chromosomes among the two daughter cells in mitosis. The mitotic spindle assembly checkpoint (SAC) is a central regulatory mechanism to achieve this goal. A dysfunction of this checkpoint may lead to aneuploidy and likely contributes to the development of cancer. Kinetochores of unattached or misaligned chromosomes are thought to generate a diffusible “wait-anaphase” signal, which is the basis for downstream events to inhibit the anaphase promoting complex/cyclosome (APC/C). The rate of Cdc20:C-Mad2 complex formation at the kinetochore is a key regulatory factor in the context of APC/C inhibition. Computer simulations of a quantitative SAC model show that the formation of Cdc20:C-Mad2 is too slow for checkpoint maintenance when cytosolic O-Mad2 has to encounter kinetochores by diffusion alone. Here, we show that an active transport of O-Mad2 towards the spindle mid-zone increases the efficiency of Mad2-activation. Our in-silico data indicate that this mechanism can greatly enhance the formation of Cdc20:Mad2 and furthermore gives an explanation on how the “wait-anaphase” signal can dissolve abruptly within a short time. Our results help to understand parts of the SAC mechanism that remain unclear. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology 2014)
Show Figures

Figure 1

8072 KiB  
Article
Neuroprotective Role of Liver Growth Factor “LGF” in an Experimental Model of Cerebellar Ataxia
by Lucía Calatrava-Ferreras, Rafael Gonzalo-Gobernado, Diana Reimers, Antonio S. Herranz, Adriano Jiménez-Escrig, Juan José Díaz-Gil, María José Casarejos, María Teresa Montero-Vega and Eulalia Bazán
Int. J. Mol. Sci. 2014, 15(10), 19056-19073; https://doi.org/10.3390/ijms151019056 - 21 Oct 2014
Cited by 6 | Viewed by 6431
Abstract
Cerebellar ataxias (CA) comprise a heterogeneous group of neurodegenerative diseases characterized by a lack of motor coordination. They are caused by disturbances in the cerebellum and its associated circuitries, so the major therapeutic goal is to correct cerebellar dysfunction. Neurotrophic factors enhance the [...] Read more.
Cerebellar ataxias (CA) comprise a heterogeneous group of neurodegenerative diseases characterized by a lack of motor coordination. They are caused by disturbances in the cerebellum and its associated circuitries, so the major therapeutic goal is to correct cerebellar dysfunction. Neurotrophic factors enhance the survival and differentiation of selected types of neurons. Liver growth factor (LGF) is a hepatic mitogen that shows biological activity in neuroregenerative therapies. We investigate the potential therapeutic activity of LGF in the 3-acetylpiridine (3-AP) rat model of CA. This model of CA consists in the lesion of the inferior olive-induced by 3-AP (40 mg/kg). Ataxic rats were treated with 5 µg/rat LGF or vehicle during 3 weeks, analyzing: (a) motor coordination by using the rota-rod test; and (b) the immunohistochemical and biochemical evolution of several parameters related with the olivo-cerebellar function. Motor coordination improved in 3-AP-lesioned rats that received LGF treatment. LGF up-regulated NeuN and Bcl-2 protein levels in the brainstem, and increased calbindin expression and the number of neurons receiving calbindin-positive projections in the cerebellum. LGF also reduced extracellular glutamate and GABA concentrations and microglia activation in the cerebellum. In view of these results, we propose LGF as a potential therapeutic agent in cerebellar ataxias. Full article
(This article belongs to the Special Issue Neuroprotective Strategies 2014)
Show Figures

Graphical abstract

814 KiB  
Article
ToxDBScan: Large-Scale Similarity Screening of Toxicological Databases for Drug Candidates
by Michael Römer, Linus Backert, Johannes Eichner and Andreas Zell
Int. J. Mol. Sci. 2014, 15(10), 19037-19055; https://doi.org/10.3390/ijms151019037 - 21 Oct 2014
Cited by 7 | Viewed by 6421
Abstract
We present a new tool for hepatocarcinogenicity evaluation of drug candidates in rodents. ToxDBScan is a web tool offering quick and easy similarity screening of new drug candidates against two large-scale public databases, which contain expression profiles for substances with known carcinogenic profiles: [...] Read more.
We present a new tool for hepatocarcinogenicity evaluation of drug candidates in rodents. ToxDBScan is a web tool offering quick and easy similarity screening of new drug candidates against two large-scale public databases, which contain expression profiles for substances with known carcinogenic profiles: TG-GATEs and DrugMatrix. ToxDBScan uses a set similarity score that computes the putative similarity based on similar expression of genes to identify chemicals with similar genotoxic and hepatocarcinogenic potential. We propose using a discretized representation of expression profiles, which use only information on up- or down-regulation of genes as relevant features. Therefore, only the deregulated genes are required as input. ToxDBScan provides an extensive report on similar compounds, which includes additional information on compounds, differential genes and pathway enrichments. We evaluated ToxDBScan with expression data from 15 chemicals with known hepatocarcinogenic potential and observed a sensitivity of 88 Based on the identified chemicals, we achieved perfect classification of the independent test set. ToxDBScan is publicly available from the ZBIT Bioinformatics Toolbox. Full article
Show Figures

Graphical abstract

6717 KiB  
Article
Exercise Preconditioning Protects against Spinal Cord Injury in Rats by Upregulating Neuronal and Astroglial Heat Shock Protein 72
by Cheng-Kuei Chang, Willy Chou, Hung-Jung Lin, Yi-Ching Huang, Ling-Yu Tang, Mao-Tsun Lin and Ching-Ping Chang
Int. J. Mol. Sci. 2014, 15(10), 19018-19036; https://doi.org/10.3390/ijms151019018 - 20 Oct 2014
Cited by 20 | Viewed by 6353
Abstract
The heat shock protein 72 (HSP 72) is a universal marker of stress protein whose expression can be induced by physical exercise. Here we report that, in a localized model of spinal cord injury (SCI), exercised rats (given pre-SCI exercise) had significantly higher [...] Read more.
The heat shock protein 72 (HSP 72) is a universal marker of stress protein whose expression can be induced by physical exercise. Here we report that, in a localized model of spinal cord injury (SCI), exercised rats (given pre-SCI exercise) had significantly higher levels of neuronal and astroglial HSP 72, a lower functional deficit, fewer spinal cord contusions, and fewer apoptotic cells than did non-exercised rats. pSUPER plasmid expressing HSP 72 small interfering RNA (SiRNA-HSP 72) was injected into the injured spinal cords. In addition to reducing neuronal and astroglial HSP 72, the (SiRNA-HSP 72) significantly attenuated the beneficial effects of exercise preconditioning in reducing functional deficits as well as spinal cord contusion and apoptosis. Because exercise preconditioning induces increased neuronal and astroglial levels of HSP 72 in the gray matter of normal spinal cord tissue, exercise preconditioning promoted functional recovery in rats after SCI by upregulating neuronal and astroglial HSP 72 in the gray matter of the injured spinal cord. We reveal an important function of neuronal and astroglial HSP 72 in protecting neuronal and astroglial apoptosis in the injured spinal cord. We conclude that HSP 72-mediated exercise preconditioning is a promising strategy for facilitating functional recovery from SCI. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

4493 KiB  
Article
CYP24A1 Expression Inversely Correlates with Melanoma Progression: Clinic-Pathological Studies
by Anna A. Brożyna, Cezary Jochymski, Zorica Janjetovic, Wojciech Jóźwicki, Robert C. Tuckey and Andrzej T. Slominski
Int. J. Mol. Sci. 2014, 15(10), 19000-19017; https://doi.org/10.3390/ijms151019000 - 20 Oct 2014
Cited by 37 | Viewed by 7208
Abstract
The major role of 24-hydroxylase (CYP24A1) is to maintain 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) homeostasis. Recently, it has been discovered that CYP24A1 also catalyses the hydroxylation of 20(OH)D3, producing dihydroxy-derivatives that show very effective antitumorigenic activities. Previously we showed a negative correlation of [...] Read more.
The major role of 24-hydroxylase (CYP24A1) is to maintain 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) homeostasis. Recently, it has been discovered that CYP24A1 also catalyses the hydroxylation of 20(OH)D3, producing dihydroxy-derivatives that show very effective antitumorigenic activities. Previously we showed a negative correlation of vitamin D receptor (VDR) and CYP27B1 expression with progression, aggressiveness and overall or disease-free survivals of skin melanomas. Therefore, we analyzed CYP24A1 expression in relation to clinicopathomorphological features of nevi, skin melanomas and metastases. In melanocytic tumors, the level of CYP24A1 was higher than in the normal epidermis. The statistically highest mean CYP24A1 level was found in nevi and early stage melanomas. With melanoma progression, CYP24A1 levels decreased and in advanced stages were comparable to the normal epidermis and metastases. Furthermore, the CYP24A1 expression positively correlated with VDR and CYP27B1, and negatively correlated with mitotic activity. Lower CYP24A1 levels correlated with the presence of ulceration, necrosis, nodular type and amelanotic phenotypes. Moreover, a lack of detectable CYP24A1 expression was related to shorter overall and disease-free survival. In conclusion, the local vitamin D endocrine system affects melanoma behavior and an elevated level of CYP24A1 appears to have an important impact on the formation of melanocytic nevi and melanomagenesis, or progression, at early stages of tumor development. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

1018 KiB  
Review
Large Intervening Non-Coding RNA HOTAIR Is an Indicator of Poor Prognosis and a Therapeutic Target in Human Cancers
by Yanlan Yao, Jinming Li and Lunan Wang
Int. J. Mol. Sci. 2014, 15(10), 18985-18999; https://doi.org/10.3390/ijms151018985 - 20 Oct 2014
Cited by 72 | Viewed by 8721
Abstract
In the human genome, the fraction of protein-coding genes that are stably transcribed is only up to 2%, with the remaining numerous RNAs having no protein-coding function. These non-coding RNAs (ncRNAs) have received considerable attention in cancer research in recent years. Breakthroughs have [...] Read more.
In the human genome, the fraction of protein-coding genes that are stably transcribed is only up to 2%, with the remaining numerous RNAs having no protein-coding function. These non-coding RNAs (ncRNAs) have received considerable attention in cancer research in recent years. Breakthroughs have been made in understanding microRNAs and small interfering RNAs, but larger RNAs such as long ncRNAs (lncRNAs) remain an enigma. One lncRNA, HOX antisense intergenic RNA (HOTAIR), has been shown to be dysregulated in many types of cancer, including breast cancer, colorectal cancer, and hepatoma. HOTAIR functions as a regulatory molecule in a wide variety of biological processes. However, its mechanism of action has not been clearly elucidated. It is widely believed that HOTAIR mediates chromosomal remodeling and coordinates with polycomb repressive complex 2 (PRC2) to regulate gene expression. Further study of HOTAIR-related pathways and the role of HOTAIR in tumorigenesis and tumor progression may identify new treatment targets. In this review, we will focus on the characteristics of HOTAIR, as well as data pertaining to its mechanism and its association with cancers. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology 2014)
Show Figures

Graphical abstract

687 KiB  
Review
Extrusion Pretreatment of Lignocellulosic Biomass: A Review
by Jun Zheng and Lars Rehmann
Int. J. Mol. Sci. 2014, 15(10), 18967-18984; https://doi.org/10.3390/ijms151018967 - 20 Oct 2014
Cited by 147 | Viewed by 10062
Abstract
Bioconversion of lignocellulosic biomass to bioethanol has shown environmental, economic and energetic advantages in comparison to bioethanol produced from sugar or starch. However, the pretreatment process for increasing the enzymatic accessibility and improving the digestibility of cellulose is hindered by many physical-chemical, structural [...] Read more.
Bioconversion of lignocellulosic biomass to bioethanol has shown environmental, economic and energetic advantages in comparison to bioethanol produced from sugar or starch. However, the pretreatment process for increasing the enzymatic accessibility and improving the digestibility of cellulose is hindered by many physical-chemical, structural and compositional factors, which make these materials difficult to be used as feedstocks for ethanol production. A wide range of pretreatment methods has been developed to alter or remove structural and compositional impediments to (enzymatic) hydrolysis over the last few decades; however, only a few of them can be used at commercial scale due to economic feasibility. This paper will give an overview of extrusion pretreatment for bioethanol production with a special focus on twin-screw extruders. An economic assessment of this pretreatment is also discussed to determine its feasibility for future industrial cellulosic ethanol plant designs. Full article
(This article belongs to the Special Issue Green Chemistry and the Biorefinery)
2426 KiB  
Review
Metabolomics of Genetically Modified Crops
by Carolina Simó, Clara Ibáez, Alberto Valdés, Alejandro Cifuentes and Virginia García-Cañas
Int. J. Mol. Sci. 2014, 15(10), 18941-18966; https://doi.org/10.3390/ijms151018941 - 20 Oct 2014
Cited by 69 | Viewed by 11547
Abstract
Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs) making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics [...] Read more.
Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs) making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not) the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade. Full article
(This article belongs to the Special Issue Detection and Safety Assessment of Genetically Modified Organisms)
Show Figures

Figure 1

3377 KiB  
Article
Protective Effects of a New Phloretin Derivative against UVB-Induced Damage in Skin Cell Model and Human Volunteers
by Seoungwoo Shin, Hyunwoo Kum, Dehun Ryu, Minkyung Kim, Eunsun Jung and Deokhoon Park
Int. J. Mol. Sci. 2014, 15(10), 18919-18940; https://doi.org/10.3390/ijms151018919 - 20 Oct 2014
Cited by 36 | Viewed by 8346
Abstract
The phenolic compound phloretin is a prominent member of the chemical class of dihydrochalcones. Phloretin is specifically found in apple and apple juice and known for its biological properties. We were particularly interested in its potential dermo-cosmetic applications. However, practical limitations of phloretin [...] Read more.
The phenolic compound phloretin is a prominent member of the chemical class of dihydrochalcones. Phloretin is specifically found in apple and apple juice and known for its biological properties. We were particularly interested in its potential dermo-cosmetic applications. However, practical limitations of phloretin do exist due to its poor water-solubility. Phloretin was sulfonated with sulfuric acid (98%, wt) and mixed with saturated salt water to produce phloretin 3',3-disulfonate in order to increase its water-solubility. Here we reported the photoprotective effect of phloretin 3',3-disulfonate (PS), a new semi-synthetic derivative of phloretin. Results showed that PS attenuated cyclobutane pyrimidine dimer (CPDs) formation, glutathione (GSH) depletion and apoptosis induced by ultraviolet B (UVB). The photoprotective effect of PS is tightly correlated to the enhancement of nucleotide excision repair (NER) gene expression. Furthemore, PS had inhibitory effects on UVB-induced release of the inflammatory mediators, such as IL-6 and prostaglandin-E2. We also confirmed the safety and clinical efficacy of PS on human skin. Overall, the results demonstrated significant benefits of PS on the protection of keratinocytes against UVB-induced injuries and suggested its potential use in skin photoprotection. Full article
(This article belongs to the Collection Radiation Toxicity in Cells)
Show Figures

Figure 1

5856 KiB  
Article
Protein Profiles Reveal Diverse Responsive Signaling Pathways in Kernels of Two Maize Inbred Lines with Contrasting Drought Sensitivity
by Liming Yang, Tingbo Jiang, Jake C. Fountain, Brian T. Scully, Robert D. Lee, Robert C. Kemerait, Sixue Chen and Baozhu Guo
Int. J. Mol. Sci. 2014, 15(10), 18892-18918; https://doi.org/10.3390/ijms151018892 - 20 Oct 2014
Cited by 33 | Viewed by 7447
Abstract
Drought stress is a major factor that contributes to disease susceptibility and yield loss in agricultural crops. To identify drought responsive proteins and explore metabolic pathways involved in maize tolerance to drought stress, two maize lines (B73 and Lo964) with contrasting drought sensitivity [...] Read more.
Drought stress is a major factor that contributes to disease susceptibility and yield loss in agricultural crops. To identify drought responsive proteins and explore metabolic pathways involved in maize tolerance to drought stress, two maize lines (B73 and Lo964) with contrasting drought sensitivity were examined. The treatments of drought and well water were applied at 14 days after pollination (DAP), and protein profiles were investigated in developing kernels (35 DAP) using iTRAQ (isobaric tags for relative and absolute quantitation). Proteomic analysis showed that 70 and 36 proteins were significantly altered in their expression under drought treatments in B73 and Lo964, respectively. The numbers and levels of differentially expressed proteins were generally higher in the sensitive genotype, B73, implying an increased sensitivity to drought given the function of the observed differentially expressed proteins, such as redox homeostasis, cell rescue/defense, hormone regulation and protein biosynthesis and degradation. Lo964 possessed a more stable status with fewer differentially expressed proteins. However, B73 seems to rapidly initiate signaling pathways in response to drought through adjusting diverse defense pathways. These changes in protein expression allow for the production of a drought stress-responsive network in maize kernels. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

2195 KiB  
Review
Computer-Aided Targeting of the PI3K/Akt/mTOR Pathway: Toxicity Reduction and Therapeutic Opportunities
by Tan Li and Guanyu Wang
Int. J. Mol. Sci. 2014, 15(10), 18856-18891; https://doi.org/10.3390/ijms151018856 - 20 Oct 2014
Cited by 58 | Viewed by 8903
Abstract
The PI3K/Akt/mTOR pathway plays an essential role in a wide range of biological functions, including metabolism, macromolecular synthesis, cell growth, proliferation and survival. Its versatility, however, makes it a conspicuous target of many pathogens; and the consequential deregulations of this pathway often lead [...] Read more.
The PI3K/Akt/mTOR pathway plays an essential role in a wide range of biological functions, including metabolism, macromolecular synthesis, cell growth, proliferation and survival. Its versatility, however, makes it a conspicuous target of many pathogens; and the consequential deregulations of this pathway often lead to complications, such as tumorigenesis, type 2 diabetes and cardiovascular diseases. Molecular targeted therapy, aimed at modulating the deregulated pathway, holds great promise for controlling these diseases, though side effects may be inevitable, given the ubiquity of the pathway in cell functions. Here, we review a variety of factors found to modulate the PI3K/Akt/mTOR pathway, including gene mutations, certain metabolites, inflammatory factors, chemical toxicants, drugs found to rectify the pathway, as well as viruses that hijack the pathway for their own synthetic purposes. Furthermore, this evidence of PI3K/Akt/mTOR pathway alteration and related pathogenesis has inspired the exploration of computer-aided targeting of this pathway to optimize therapeutic strategies. Herein, we discuss several possible options, using computer-aided targeting, to reduce the toxicity of molecularly-targeted therapy, including mathematical modeling, to reveal system-level control mechanisms and to confer a low-dosage combination therapy, the potential of PP2A as a therapeutic target, the formulation of parameters to identify patients who would most benefit from specific targeted therapies and molecular dynamics simulations and docking studies to discover drugs that are isoform specific or mutation selective so as to avoid undesired broad inhibitions. We hope this review will stimulate novel ideas for pharmaceutical discovery and deepen our understanding of curability and toxicity by targeting the PI3K/Akt/mTOR pathway. Full article
Show Figures

Figure 1

3543 KiB  
Article
Fucoidan, a Sulfated Polysaccharide, Inhibits Osteoclast Differentiation and Function by Modulating RANKL Signaling
by Young Woo Kim, Seung-Hoon Baek, Sang-Han Lee, Tae-Ho Kim and Shin-Yoon Kim
Int. J. Mol. Sci. 2014, 15(10), 18840-18855; https://doi.org/10.3390/ijms151018840 - 20 Oct 2014
Cited by 29 | Viewed by 8599
Abstract
Multinucleated osteoclasts differentiate from hematopoietic progenitors of the monocyte/macrophage lineage. Because of its pivotal role in bone resorption, regulation of osteoclast differentiation is a potential therapeutic approach to the treatment of erosive bone disease. In this study, we have found that fucoidan, a [...] Read more.
Multinucleated osteoclasts differentiate from hematopoietic progenitors of the monocyte/macrophage lineage. Because of its pivotal role in bone resorption, regulation of osteoclast differentiation is a potential therapeutic approach to the treatment of erosive bone disease. In this study, we have found that fucoidan, a sulfated polysaccharide extracted from brown seaweed, inhibited osteoclast differentiation. In particular, addition of fucoidan into the early stage osteoclast cultures significantly inhibited receptor activator of nuclear factor kappa B (NF-κB) ligand (RANKL)-induced osteoclast formation, thus suggesting that fucoidan affects osteoclast progenitors. Furthermore, fucoidan significantly inhibited the activation of RANKL-dependent mitogen-activated protein kinases (MAPKs) such as JNK, ERK, and p38, and also c-Fos and NFATc1, which are crucial transcription factors for osteoclastogenesis. In addition, the activation of NF-κB, which is an upstream transcription factor modulating NFATc1 expression, was alleviated in the fucoidan-treated cells. These results collectively suggest that fucoidan inhibits osteoclastogenesis from bone marrow macrophages by inhibiting RANKL-induced p38, JNK, ERK and NF-κB activation, and by downregulating the expression of genes that partake in both osteoclast differentiation and resorption. Full article
(This article belongs to the Special Issue Signalling Molecules and Signal Transduction in Cells 2014)
Show Figures

Graphical abstract

833 KiB  
Article
Metaphylogenomic and Potential Functionality of the Limpet Patella pellucida’s Gastrointestinal Tract Microbiome
by Magda Dudek, Jessica Adams, Martin Swain, Matthew Hegarty, Sharon Huws and Joe Gallagher
Int. J. Mol. Sci. 2014, 15(10), 18819-18839; https://doi.org/10.3390/ijms151018819 - 20 Oct 2014
Cited by 14 | Viewed by 8355
Abstract
This study investigated the microbial diversity associated with the digestive tract of the seaweed grazing marine limpet Patella pellucida. Using a modified indirect DNA extraction protocol and performing metagenomic profiling based on specific prokaryotic marker genes, the abundance of bacterial groups was [...] Read more.
This study investigated the microbial diversity associated with the digestive tract of the seaweed grazing marine limpet Patella pellucida. Using a modified indirect DNA extraction protocol and performing metagenomic profiling based on specific prokaryotic marker genes, the abundance of bacterial groups was identified from the analyzed metagenome. The members of three significantly abundant phyla of Proteobacteria, Firmicutes and Bacteroidetes were characterized through the literature and their predicted functions towards the host, as well as potential applications in the industrial environment assessed. Full article
(This article belongs to the Special Issue Metagenomics: a Powerful Lens Viewing the Microbial World)
Show Figures

Figure 1

930 KiB  
Article
Characterization, Expression Profile, and Promoter Analysis of the Rhodeus uyekii Vitellogenin Ao1 Gene
by Hee Jeong Kong, Ju Lan Kim, Ji Young Moon, Woo-Jin Kim, Hyung Soo Kim, Jung Youn Park, Hyun Kook Cho and Cheul Min An
Int. J. Mol. Sci. 2014, 15(10), 18804-18818; https://doi.org/10.3390/ijms151018804 - 17 Oct 2014
Cited by 10 | Viewed by 5836
Abstract
The fish Vitellogenin (Vg) gene has been applied as a biomarker for exposure to estrogenic compounds in the aquatic environment. In this study, we cloned and characterized Vg cDNA from the Korean rose bitterling Rhodeus uyekii (Ru-Vg). The Ru-Vg cDNA encodes a 1424-amino-acid [...] Read more.
The fish Vitellogenin (Vg) gene has been applied as a biomarker for exposure to estrogenic compounds in the aquatic environment. In this study, we cloned and characterized Vg cDNA from the Korean rose bitterling Rhodeus uyekii (Ru-Vg). The Ru-Vg cDNA encodes a 1424-amino-acid polypeptide that belongs to the VgAo1 family and contains a putative signal peptide, lipovitellin I, phosvitin, and lipovitellin II, but does not contain the vWFD domain or the C-terminal peptide. The deduced Ru-Vg protein has high amino acid identity (73.97%–32.17%) with fish Vg proteins. Pairwise alignment and phylogenetic analysis revealed that Ru-Vg is most closely related to Acheilognathus yamatsutae Vg. Ru-Vg transcripts were detected using quantitative polymerase chain reaction in all tissues tested, with the highest level of expression observed in the ovary. Ru-Vg mRNA was upregulated in R. uyekii hepatopancreas cells in response to treatment with 17β-estradiol (E2) or 17α-ethinylestradiol (EE2). Luciferase reporter expression, driven by the 5'-regulatory region of the Ru-Vg gene spanning from −1020 bp to the start codon was induced by the estrogen receptor and was synergistically activated by treatment with E2 or EE2. These results suggest that R. uyekii and the Ru-Vg gene may be useful as biomarkers for exposure to E2 or EE2. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

924 KiB  
Article
Cartilage Turnover Reflected by Metabolic Processing of Type II Collagen: A Novel Marker of Anabolic Function in Chondrocytes
by Natasja Stæhr Gudmann, Jianxia Wang, Sabine Hoielt, Pingping Chen, Anne Sofie Siebuhr, Yi He, Thorbjørn G. Christiansen, Morten Asser Karsdal and Anne Christine Bay-Jensen
Int. J. Mol. Sci. 2014, 15(10), 18789-18803; https://doi.org/10.3390/ijms151018789 - 17 Oct 2014
Cited by 40 | Viewed by 6152
Abstract
The aim of this study was to enable measurement of cartilage formation by a novel biomarker of type II collagen formation. The competitive enzyme-linked immunosorbent assay (ELISA) Pro-C2 was developed and characterized for assessment of the beta splice variant of type II procollagen [...] Read more.
The aim of this study was to enable measurement of cartilage formation by a novel biomarker of type II collagen formation. The competitive enzyme-linked immunosorbent assay (ELISA) Pro-C2 was developed and characterized for assessment of the beta splice variant of type II procollagen (PIIBNP). This is expected to originate primarily from remodeling of hyaline cartilage. A mouse monoclonal antibody (Mab) was raised in mouse, targeting specifically PIIBNP (QDVRQPG) and used in development of the assay. The specificity, sensitivity, 4-parameter fit and stability of the assay were tested. Levels of PIIBNP were quantified in human serum (0.6–2.2 nM), human amniotic fluid (163–188 nM) and sera from different animal species, e.g., fetal bovine serum (851–901 nM) with general good linearity (100% (SD 7.6) recovery) and good intra- and inter-assay variation (CV% < 10). Dose (0.1 to 100 ng/mL) and time (7, 14 and 21 days) dependent release of PIIBNP were evaluated in the conditioned medium from bovine cartilage explants (BEX) and human cartilage explants (HEX) upon stimulation with insulin-like growth factor (IGF-1), transforming growth factor (TGF)-β1 and fibroblastic growth factor-2 (FGF-2). TGF-β1 and IGF-1 in concentrations of 10–100 ng/mL significantly (p < 0.05) induced release of PIIBNP in BEX compared to conditions without treatment (WO). In HEX, IGF-1 100 ng/mL was able to induce a significant increase of PIIBNP after one week compared to WO. FGF-2 did not induce a PIIBNP release in our models. To our knowledge this is the first assay, which is able to specifically evaluate PIIBNP excretion. The Pro-C2 assay seems to provide a promising and novel marker of type II collagen formation. Full article
(This article belongs to the Special Issue The Chondrocyte Phenotype in Cartilage Biology)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop