Previous Issue

E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Table of Contents

Molecules, Volume 24, Issue 14 (July-2 2019)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-129
Export citation of selected articles as:
Open AccessArticle
Nutrition Quality Parameters of Almonds as Affected by Deficit Irrigation Strategies
Molecules 2019, 24(14), 2646; https://doi.org/10.3390/molecules24142646 (registering DOI)
Received: 12 July 2019 / Accepted: 19 July 2019 / Published: 21 July 2019
PDF Full-text (789 KB)
Abstract
The influence of full irrigation, double-regulated (RDI) and sustained deficit irrigation (SDI) treatments on almond quality was assessed by analyzing different parameters: sugars, organic acids, antioxidant activity, total phenolic content (TPC), and volatile compounds. Almond quality studies for plants submitted to water stress [...] Read more.
The influence of full irrigation, double-regulated (RDI) and sustained deficit irrigation (SDI) treatments on almond quality was assessed by analyzing different parameters: sugars, organic acids, antioxidant activity, total phenolic content (TPC), and volatile compounds. Almond quality studies for plants submitted to water stress are scarce, and it is essential to understand the biochemical responses of plants to water stress in maintaining fruit yield and quality. Citric acid, sucrose, antioxidant activity, and TPC were not affected by the application of studied deficit irrigation strategies (DI). An increase in malic acid and a decrease in glucose was observed for stressed samples (T3 and T4), while a higher number of total volatiles compounds was found for moderate RDI (T2). Using deficit irrigation strategies, the almond yield and quality was not changed, and in fact, some parameters, such as glucose and key volatile compounds, slightly increased under moderate RDI. This finding might encourage farmers to implement these strategies and contribute to sustainable agriculture. Full article
(This article belongs to the Special Issue Bioactives and Functional Ingredients in Foods and Beverages)
Open AccessArticle
Molecular Structure and Antioxidant Properties of Alkali Metal Salts of Rosmarinic Acid. Experimental and DFT Studies
Molecules 2019, 24(14), 2645; https://doi.org/10.3390/molecules24142645 (registering DOI)
Received: 2 July 2019 / Revised: 16 July 2019 / Accepted: 17 July 2019 / Published: 21 July 2019
PDF Full-text (2948 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The molecular structure of alkali metal rosmarinates was studied in comparison to rosmarinic acid using FT-IR, FT-Raman, 1H and 13C NMR spectroscopy, as well as density functional theory (DFT) calculations. The B3LYP/6-311+G(d,p) method was used to calculate optimized geometrical structures of [...] Read more.
The molecular structure of alkali metal rosmarinates was studied in comparison to rosmarinic acid using FT-IR, FT-Raman, 1H and 13C NMR spectroscopy, as well as density functional theory (DFT) calculations. The B3LYP/6-311+G(d,p) method was used to calculate optimized geometrical structures of studied compounds, atomic charges, dipole moments, energies, as well as the wavenumbers and intensities of the bands in vibrational and NMR spectra. Theoretical parameters were compared to experimental data. Antioxidant activity was determined using two spectrophotometric methods: (i) Assessing the ability to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) stable radical and (ii) assay of antioxidant power of ferric ions reducing (FRAP). The linear correlations were found between HOMO–LUMO (highest occupied molecular orbital–lowest unoccupied molecular orbital) energy gap and the reducing power expressed as FRAP (R = 0.77) as well as between IC50 values (the ability of quenching DPPH radicals) and Δνas-s(COO) in IR spectra (differences between asymmetric and symmetric stretching vibrations bands) (R = 0.99). Photochemical properties of studied compounds were also evaluated. The influence of alkali metal on the electronic system of the rosmarinic acid molecule was discussed. Full article
Figures

Graphical abstract

Open AccessArticle
Novel Derivatives of Deoxycholic Acid Bearing Linear Aliphatic Diamine and Aminoalcohol Moieties and their Cyclic Analogs at the C3 Position: Synthesis and Evaluation of Their In Vitro Antitumor Potential
Molecules 2019, 24(14), 2644; https://doi.org/10.3390/molecules24142644 (registering DOI)
Received: 24 June 2019 / Revised: 14 July 2019 / Accepted: 15 July 2019 / Published: 21 July 2019
PDF Full-text (2320 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A series of novel deoxycholic acid (DCA) derivatives containing aliphatic diamine and aminoalcohol or morpholine moieties at the C3 position were synthesized by 3,26-epoxide ring-opening reactions. These compounds were investigated for their cytotoxicity in four human tumor cell lines and murine macrophages and [...] Read more.
A series of novel deoxycholic acid (DCA) derivatives containing aliphatic diamine and aminoalcohol or morpholine moieties at the C3 position were synthesized by 3,26-epoxide ring-opening reactions. These compounds were investigated for their cytotoxicity in four human tumor cell lines and murine macrophages and for inhibitory activity against macrophage-mediated NO synthesis in vitro. Obtained data revealed that: (i) all amine-containing substituents significantly increased the cytotoxicity of the novel compounds (IC502–10 = 1.0–36.0 μM) in comparison with DCA (IC50DCA ≥ 82.9 μM); (ii) aminoalcohol moieties were more preferable than diamine moieties due to the fact they imparted better selectivity for tumor cells of the novel derivatives; (iii) the susceptibility of tested cell lines to derivatives diminished in the following order: HuTu-80 (duodenal carcinoma) ≈ HepG2 (hepatocarcinoma) > KB-3-1 (cervical carcinoma) > RAW264.7 (macrophages) > A549 (lung carcinoma); (iv) compounds 8 and 9, bearing aminoethanol and aminopropanol moieties, respectively, exhibited high cytotoxic selectivity indexes (SIHuTu-80 = 7.9 and 8.3, respectively) and good drug-likeness parameters; (v) the novel compounds do not display anti-NO activity. Mechanistic study revealed that compound 9 induces ROS-dependent cell death by activation of intrinsic caspase-dependent apoptosis and cytodestructive autophagy in HuTu-80 cells and vitamin D receptor can be considered as its primary target. Full article
Figures

Graphical abstract

Open AccessArticle
Diacetylcurcumin: Its Potential Antiarthritic Effect on a Freund’s Complete Adjuvant-Induced Murine Model
Molecules 2019, 24(14), 2643; https://doi.org/10.3390/molecules24142643 (registering DOI)
Received: 25 June 2019 / Revised: 16 July 2019 / Accepted: 20 July 2019 / Published: 21 July 2019
PDF Full-text (2474 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The present study aims to evaluate the antiarthritic activity of diacetylcurcumin (DAC), a synthetic derivative where the free phenolic groups of curcumin are derivatized by acetylation, thereby conferring greater lipophilicity to the parent molecule and partially overcoming the limited systemic bioavailability of curcumin. [...] Read more.
The present study aims to evaluate the antiarthritic activity of diacetylcurcumin (DAC), a synthetic derivative where the free phenolic groups of curcumin are derivatized by acetylation, thereby conferring greater lipophilicity to the parent molecule and partially overcoming the limited systemic bioavailability of curcumin. Antiarthritic activity was evaluated on a Freund’s complete adjuvant (FCA)-induced murine model of arthritis. Oral administration of DAC (60 and 120 mg/kg) resulted in a significant inhibition of inflammation in the acute and chronic phases, respectively, demonstrating an improved and sustained anti-inflammatory effect, comparable to that of curcumin (150 mg/kg) in the chronic stage at a lower dose. Phenylbutazone (80 mg/kg) was used as a reference drug. The pharmacological consequence of DAC or curcumin treatment is the prevention of secondary lesions commonly associated with this biological model. Full article
(This article belongs to the Section Medicinal Chemistry)
Figures

Graphical abstract

Open AccessArticle
New Butenolides and Cyclopentenones from Saline Soil-Derived Fungus Aspergillus Sclerotiorum
Molecules 2019, 24(14), 2642; https://doi.org/10.3390/molecules24142642 (registering DOI)
Received: 3 July 2019 / Revised: 15 July 2019 / Accepted: 20 July 2019 / Published: 21 July 2019
Viewed by 63 | PDF Full-text (3479 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Three new γ-hydroxyl butenolides (13), a pair of new enantiomeric spiro-butenolides (4a and 4b), a pair of enantiomeric cyclopentenones (5a new and 5b new natural), and six known compounds (611), were [...] Read more.
Three new γ-hydroxyl butenolides (13), a pair of new enantiomeric spiro-butenolides (4a and 4b), a pair of enantiomeric cyclopentenones (5a new and 5b new natural), and six known compounds (611), were isolated from Aspergillus sclerotiorum. Their structures were established by spectroscopic data and electronic circular dichroism (ECD) spectra. Two pairs of enantiomers [(+)/(–)-6c and (+)/(–)-6d] obtained from the reaction of 6 with acetyl chloride (AcCl) confirmed that 6 was a mixture of two pairs of enantiomers. In addition, the X-ray data confirmed that 7 was also a racemate. The new metabolites (15) were evaluated for their inhibitory activity against cancer and non-cancer cell lines. As a result, compound 1 exhibited moderate cytotoxicity to HL60 and A549 with IC50 values of 6.5 and 8.9 µM, respectively, and weak potency to HL-7702 with IC50 values of 17.6 µM. Furthermore, compounds 19 were screened for their antimicrobial activity using the micro-broth dilution method. MIC values of 200 μg/mL were obtained for compounds 2 and 3 towards Staphylococcus aureus and Escherichia coli, while compound 8 exhibited a MIC of 50 μ/mL towards Candida albicans. Full article
(This article belongs to the Special Issue Microbial Natural Products)
Figures

Graphical abstract

Open AccessArticle
Analysis of Proteins Associated with Quality Deterioration of Grouper Fillets Based on TMT Quantitative Proteomics during Refrigerated Storage
Molecules 2019, 24(14), 2641; https://doi.org/10.3390/molecules24142641 (registering DOI)
Received: 5 July 2019 / Revised: 17 July 2019 / Accepted: 18 July 2019 / Published: 20 July 2019
Viewed by 159 | PDF Full-text (1859 KB) | Supplementary Files
Abstract
A TMT (Tandem Mass Tag)-based strategy was applied to elucidate proteins that change in proteomes of grouper fillets during refrigerated storage. In addition, quality analyses on pH, centrifugal loss, color (L *, a *, b *) and texture (hardness, chewiness, and gumminess) for [...] Read more.
A TMT (Tandem Mass Tag)-based strategy was applied to elucidate proteins that change in proteomes of grouper fillets during refrigerated storage. In addition, quality analyses on pH, centrifugal loss, color (L *, a *, b *) and texture (hardness, chewiness, and gumminess) for grouper fillets were performed. A total of 64 differentially significant expressed proteins (DSEPs) were found in the results in the Day 0 vs. Day 6 group comparison and the Day 0 vs. Day 12 group comparison. It is worth mentioning that more proteome changes were found in the Day 0 vs. Day 12 comparisons. Bioinformatics was utilized to analyze the DSEP. UniProt Knowledgebase (UniProtKB), Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein interaction network analysis were adopted. All DSEPs were classified into seven areas by function: binding proteins, calcium handling, enzymes, heat shock protein, protein turnover, structural proteins and miscellaneous. The numbers of proteins that correlated closely with pH, centrifugal loss, color (L *, a *, b *) and texture (hardness, chewiness, and gumminess) were 4, 3, 6 and 8, respectively. Full article
(This article belongs to the Section Chemical Biology)
Figures

Graphical abstract

Open AccessReview
The Neuroprotective Effects of Astaxanthin: Therapeutic Targets and Clinical Perspective
Molecules 2019, 24(14), 2640; https://doi.org/10.3390/molecules24142640 (registering DOI)
Received: 26 June 2019 / Revised: 16 July 2019 / Accepted: 17 July 2019 / Published: 20 July 2019
Viewed by 135 | PDF Full-text (802 KB)
Abstract
As the leading causes of human disability and mortality, neurological diseases affect millions of people worldwide and are on the rise. Although the general roles of several signaling pathways in the pathogenesis of neurodegenerative disorders have so far been identified, the exact pathophysiology [...] Read more.
As the leading causes of human disability and mortality, neurological diseases affect millions of people worldwide and are on the rise. Although the general roles of several signaling pathways in the pathogenesis of neurodegenerative disorders have so far been identified, the exact pathophysiology of neuronal disorders and their effective treatments have not yet been precisely elucidated. This requires multi-target treatments, which should simultaneously attenuate neuronal inflammation, oxidative stress, and apoptosis. In this regard, astaxanthin (AST) has gained growing interest as a multi-target pharmacological agent against neurological disorders including Parkinson’s disease (PD), Alzheimer’s disease (AD), brain and spinal cord injuries, neuropathic pain (NP), aging, depression, and autism. The present review highlights the neuroprotective effects of AST mainly based on its anti-inflammatory, antioxidative, and anti-apoptotic properties that underlies its pharmacological mechanisms of action to tackle neurodegeneration. The need to develop novel AST delivery systems, including nanoformulations, targeted therapy, and beyond, is also considered. Full article
(This article belongs to the Special Issue Natural Products for Neurodegenerative Diseases)
Open AccessArticle
Role of Post-Exposure Time in Co(II) Sorption of Higher Concentrations on Electron Irradiated Sheep Wool
Molecules 2019, 24(14), 2639; https://doi.org/10.3390/molecules24142639 (registering DOI)
Received: 3 July 2019 / Revised: 16 July 2019 / Accepted: 16 July 2019 / Published: 20 July 2019
Viewed by 116 | PDF Full-text (2276 KB) | HTML Full-text | XML Full-text
Abstract
Sorption of Co(II) was investigated on natural as well as accelerated electron beam modified sheep wool involving low and high concentrations up to 200 mmol·dm−3. The sorption experiments confirmed the dependence of the sorption capacity not only on sorbate concentration and [...] Read more.
Sorption of Co(II) was investigated on natural as well as accelerated electron beam modified sheep wool involving low and high concentrations up to 200 mmol·dm−3. The sorption experiments confirmed the dependence of the sorption capacity not only on sorbate concentration and absorbed dose of energy, but also on post-exposure time. Post-exposure heating to accelerate transformation of the wool structure was of no effect on the sorption comparing with a simple storage for a period of 100 days. Under all tested conditions, the sorption maximum was measured for Co(II) concentration of 125 mmol·dm−3 and that was assigned to form a Co(II) complex with keratin. This assumption was tested on visible spectra of mixed solutions of Arginine and Co(II) to be a simplified model of Co(II) interaction with keratin. The sorption decrease is associated with generation of cross links between macro-chains through ligands of the Co-complex. The nodal points are a hindrance to diffusion of next ions into the fibers. Also, pH variations of aqueous extracts from the wool samples depending on absorbed dose and post-exposure time indicate complexity of the structural transformation being specific for each dose applied. Full article
(This article belongs to the Section Materials Chemistry)
Figures

Graphical abstract

Open AccessArticle
Optimization of the Electro-Peroxone Process for Micropollutant Abatement Using Chemical Kinetic Approaches
Molecules 2019, 24(14), 2638; https://doi.org/10.3390/molecules24142638 (registering DOI)
Received: 2 June 2019 / Revised: 12 July 2019 / Accepted: 16 July 2019 / Published: 20 July 2019
Viewed by 113 | PDF Full-text (3516 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The electro-peroxone (E-peroxone) process is an emerging electrocatalytic ozonation process that is enabled by in situ producing hydrogen peroxide (H2O2) from cathodic oxygen reduction during ozonation. The in situ-generated H2O2 can then promote ozone (O3 [...] Read more.
The electro-peroxone (E-peroxone) process is an emerging electrocatalytic ozonation process that is enabled by in situ producing hydrogen peroxide (H2O2) from cathodic oxygen reduction during ozonation. The in situ-generated H2O2 can then promote ozone (O3) transformation to hydroxyl radicals (•OH), and thus enhance the abatement of ozone-refractory pollutants compared to conventional ozonation. In this study, a chemical kinetic model was employed to simulate micropollutant abatement during the E-peroxone treatment of various water matrices (surface water, secondary wastewater effluent, and groundwater). Results show that by following the O3 and •OH exposures during the E-peroxone process, the abatement kinetics of a variety of model micropollutants could be well predicted using the model. In addition, the effect of specific ozone doses on micropollutant abatement efficiencies could be quantitatively evaluated using the model. Therefore, the chemical kinetic model can be used to reveal important information for the design and optimization of the treatment time and ozone doses of the E-peroxone process for cost-effective micropollutant abatement in water and wastewater treatment. Full article
(This article belongs to the Special Issue Environmental Applications of Catalytic Ozonation)
Figures

Figure 1

Open AccessArticle
Betulin Promotes Differentiation of Human Osteoblasts In Vitro and Exerts an Osteoinductive Effect on the hFOB 1.19 Cell Line Through Activation of JNK, ERK1/2, and mTOR Kinases
Molecules 2019, 24(14), 2637; https://doi.org/10.3390/molecules24142637 (registering DOI)
Received: 13 June 2019 / Revised: 16 July 2019 / Accepted: 17 July 2019 / Published: 19 July 2019
Viewed by 175 | PDF Full-text (2257 KB) | HTML Full-text | XML Full-text
Abstract
Although betulin (BET), a naturally occurring pentacyclic triterpene, has a variety of biological activities, its osteogenic potential has not been investigated so far. The aim of this study was to assess the effect of BET on differentiation of human osteoblasts (hFOB 1.19 and [...] Read more.
Although betulin (BET), a naturally occurring pentacyclic triterpene, has a variety of biological activities, its osteogenic potential has not been investigated so far. The aim of this study was to assess the effect of BET on differentiation of human osteoblasts (hFOB 1.19 and Saos-2 cells) in vitro in osteogenic (with ascorbic acid as an osteogenic supplement) and osteoinductive (without an additional osteogenic supplement) conditions. Osteoblast differentiation was evaluated based on the mRNA expression (RT-qPCR) of Runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), type I collagen-α1 (COL1A1), and osteopontin (OPN). Additionally, ALP activity and production of COL1A1 (western blot analysis) and OPN (ELISA) were evaluated. The level of mineralization (calcium accumulation) was determined with Alizarin red S staining. BET upregulated the mRNA level of RUNX2 and the expression of other osteoblast differentiation markers in both cell lines (except the influence of BET on ALP expression/activity in the Saos-2 cells). Moreover, it increased mineralization in both cell lines in the osteogenic conditions. BET also increased the mRNA level of osteoblast differentiation markers in both cell lines (except for ALP in the Saos-2 cells) in the osteoinductive conditions, which was accompanied with increased matrix mineralization. The osteoinductive activity of BET in the hFOB 1.19 cells was probably mediated via activation of MAPKs (JNK and ERK1/2) and mTOR, as the specific inhibitors of these kinases abolished the BET-induced osteoblast differentiation. Our results suggest that BET has the potential to enhance osteogenesis. Full article
(This article belongs to the Special Issue Terpenes and Terpene Derivatives)
Figures

Graphical abstract

Open AccessArticle
Multicomponent Synthesis of Polyphenols and their in vitro Evaluation as Potential β-Amyloid Aggregation Inhibitors
Molecules 2019, 24(14), 2636; https://doi.org/10.3390/molecules24142636 (registering DOI)
Received: 27 June 2019 / Revised: 15 July 2019 / Accepted: 18 July 2019 / Published: 19 July 2019
Viewed by 180 | PDF Full-text (1023 KB) | Supplementary Files
Abstract
While plant polyphenols possess a variety of biological properties, exploration of chemical diversity around them is still problematic. Here, an example of application of the Ugi multicomponent reaction to the combinatorial assembly of artificial, yet “natural-like”, polyphenols is presented. The synthesized compounds represent [...] Read more.
While plant polyphenols possess a variety of biological properties, exploration of chemical diversity around them is still problematic. Here, an example of application of the Ugi multicomponent reaction to the combinatorial assembly of artificial, yet “natural-like”, polyphenols is presented. The synthesized compounds represent a second-generation library directed to the inhibition of β-amyloid protein aggregation. Chiral enantiopure compounds, and polyphenol-β-lactam hybrids have been prepared too. The biochemical assays have highlighted the importance of the key pharmacophores in these compounds. A lead for inhibition of aggregation of truncated protein AβpE3-42 was selected. Full article
(This article belongs to the Special Issue From Natural Polyphenols to Synthetic Bioactive Analogues)
Figures

Graphical abstract

Open AccessArticle
Chiral Recognition of Carboxylate Anions by (R)-BINOL-Based Macrocyclic Receptors
Molecules 2019, 24(14), 2635; https://doi.org/10.3390/molecules24142635 (registering DOI)
Received: 25 June 2019 / Revised: 12 July 2019 / Accepted: 18 July 2019 / Published: 19 July 2019
Viewed by 144 | PDF Full-text (536 KB)
Abstract
Three (R)-BINOL-based macrocyclic receptors obtained via double-amidation reaction were used for chiral recognition of four anions derived from α-hydroxy and α-amino acids. The structural factors of hosts and guests that affect chiral recognition processes were also investigated, indicating that the proper [...] Read more.
Three (R)-BINOL-based macrocyclic receptors obtained via double-amidation reaction were used for chiral recognition of four anions derived from α-hydroxy and α-amino acids. The structural factors of hosts and guests that affect chiral recognition processes were also investigated, indicating that the proper geometry of both receptor and guest molecules plays a crucial role in effective enantio-discrimination. Full article
(This article belongs to the Special Issue Applications of Supramolecular Anion Recognition)
Open AccessReview
Alkene Difunctionalization Using Hypervalent Iodine Reagents: Progress and Developments in the Past Ten Years
Molecules 2019, 24(14), 2634; https://doi.org/10.3390/molecules24142634 (registering DOI)
Received: 25 June 2019 / Revised: 13 July 2019 / Accepted: 18 July 2019 / Published: 19 July 2019
Viewed by 144 | PDF Full-text (852 KB)
Abstract
Hypervalent iodine reagents are of considerable relevance in organic chemistry as they can provide a complementary reaction strategy to the use of traditional transition metal chemistry. Over the past two decades, there have been an increasing number of applications including stoichiometric oxidation and [...] Read more.
Hypervalent iodine reagents are of considerable relevance in organic chemistry as they can provide a complementary reaction strategy to the use of traditional transition metal chemistry. Over the past two decades, there have been an increasing number of applications including stoichiometric oxidation and catalytic asymmetric variations. This review outlines the main advances in the past 10 years in regard to alkene heterofunctionalization chemistry using achiral and chiral hypervalent iodine reagents and catalysts. Full article
(This article belongs to the Special Issue Advances in the Chemistry of Hypervalent Iodine Compounds)
Open AccessArticle
Styphnolobium japonicum (L.) Schott Fruits Increase Stress Resistance and Exert Antioxidant Properties in Caenorhabditis elegans and Mouse Models
Molecules 2019, 24(14), 2633; https://doi.org/10.3390/molecules24142633 (registering DOI)
Received: 22 June 2019 / Revised: 15 July 2019 / Accepted: 17 July 2019 / Published: 19 July 2019
Viewed by 125 | PDF Full-text (2541 KB) | HTML Full-text | XML Full-text
Abstract
Styphnolobium japonicum (L.) Schott is a popular Asian tree widely used in traditional medicine. The current study explored the potential stress resistance and antioxidant activities of its fruits. Phytochemical profiling of the hydroalcoholic fruit extract was done via high performance liquid chromatography-photodiode array-electrospray [...] Read more.
Styphnolobium japonicum (L.) Schott is a popular Asian tree widely used in traditional medicine. The current study explored the potential stress resistance and antioxidant activities of its fruits. Phytochemical profiling of the hydroalcoholic fruit extract was done via high performance liquid chromatography-photodiode array-electrospray ionization-mass/mass (HPLC-PDA-ESI-MS/MS). Twenty four phenolic constituents were tentatively identified in the extract. The Caenorhabditis elegans (C. elegans) nematode model in addition to trimethyltin (TMT)-induced neurotoxicity mouse model were used for in vivo evaluation of its antioxidant properties. The ability of the extract to enhance stress resistance was manifested through increasing survival rate by 44.7% and decreasing basal reactive oxygen species (ROS) levels by 72.3% in C. elegans. In addition, the extract increased the levels of the stress response enzyme superoxide dismutase-3 (Sod-3) by 55.5% and decreased the expression of heat shock protein-16.2 (Hsp-16.2) in nematodes, which had been challenged by juglone, by 21%. Using a mouse model, the extract significantly decreased the expression of the oxidative stress marker malondialdehyde (MDA). Furthermore, an elevation in the levels of the antioxidant marker glutathione (GSH), SOD and heme oxygenase-1 (HO-1) enzymes were observed. Our findings imply that Styphnolobium japonicum has the potential to be used in future studies focusing on diseases associated with oxidative stress. Full article
(This article belongs to the Special Issue Herbal Medicines–Unraveling Their Molecular Mechanism)
Figures

Figure 1

Open AccessArticle
Annular Tautomerism of 3(5)-Disubstituted-1H-pyrazoles with Ester and Amide Groups
Molecules 2019, 24(14), 2632; https://doi.org/10.3390/molecules24142632 (registering DOI)
Received: 6 July 2019 / Revised: 16 July 2019 / Accepted: 17 July 2019 / Published: 19 July 2019
Viewed by 145 | PDF Full-text (3236 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A series of disubstituted 1H-pyrazoles with methyl (1), amino (2), and nitro (3) groups, as well as ester (a) or amide (b) groups in positions 3 and 5 was synthesized, and [...] Read more.
A series of disubstituted 1H-pyrazoles with methyl (1), amino (2), and nitro (3) groups, as well as ester (a) or amide (b) groups in positions 3 and 5 was synthesized, and annular tautomerism was investigated using X-ray, theoretical calculations, NMR, and FT-IR methods. The X-ray experiment in the crystal state showed for the compounds with methyl (1a, 1b) and amino (2b) groups the tautomer with ester or amide groups at position 3 (tautomer 3), but for those with a nitro group (3b, 4), tautomer 5. Similar results were obtained in solution by NMR NOE experiments in CDCl3, DMSO-d6, and CD3OD solvents. However, tautomer equilibrium was observed for 2b in DMSO. The FT-IR spectra in chloroform and acetonitrile showed equilibria, which can be ascribed to conformational changes of the cis/trans arrangement of the ester/amide group and pyrazole ring. Theoretical analysis using the M06-2X/6-311++G(d,p) method (in vacuo, chloroform, acetonitrile, and water) and measurement of aromaticity (NICS) showed dependence on internal hydrogen bonds, the influence of the environment, and the effect of the substituent. These factors, pyrazole aromaticity and intra- and inter-molecular interactions, seem to have a considerable influence on the choice of tautomer. Full article
(This article belongs to the Section Physical Chemistry)
Figures

Graphical abstract

Open AccessReview
Terpene Derivatives as a Potential Agent against Antimicrobial Resistance (AMR) Pathogens
Molecules 2019, 24(14), 2631; https://doi.org/10.3390/molecules24142631
Received: 24 April 2019 / Revised: 29 May 2019 / Accepted: 3 June 2019 / Published: 19 July 2019
Viewed by 140 | PDF Full-text (873 KB) | HTML Full-text | XML Full-text
Abstract
The evolution of antimicrobial resistance (AMR) in pathogens has prompted extensive research to find alternative therapeutics. Plants rich with natural secondary metabolites are one of the go-to reservoirs for discovery of potential resources to alleviate this problem. Terpenes and their derivatives comprising of [...] Read more.
The evolution of antimicrobial resistance (AMR) in pathogens has prompted extensive research to find alternative therapeutics. Plants rich with natural secondary metabolites are one of the go-to reservoirs for discovery of potential resources to alleviate this problem. Terpenes and their derivatives comprising of hydrocarbons, are usually found in essential oils (EOs). They have been reported to have potent antimicrobial activity, exhibiting bacteriostatic and bactericidal effects against tested pathogens. This brief review discusses the activity of terpenes and derivatives against pathogenic bacteria, describing the potential of the activity against AMR followed by the possible mechanism exerted by each terpene class. Finally, ongoing research and possible improvisation to the usage of terpenes and terpenoids in therapeutic practice against AMR are discussed. Full article
(This article belongs to the Special Issue Natural Products and Drug Discovery)
Figures

Figure 1

Open AccessArticle
Polyphenolic and Physicochemical Properties of Simple-Spined Num-Num (Carissa edulis) Fruit Harvested at Ripe Stage of Maturation
Molecules 2019, 24(14), 2630; https://doi.org/10.3390/molecules24142630
Received: 7 June 2019 / Revised: 6 July 2019 / Accepted: 12 July 2019 / Published: 19 July 2019
Viewed by 138 | PDF Full-text (1511 KB) | HTML Full-text | XML Full-text
Abstract
Wildly grown in most regions of the world, Carissa edulis is a highly underutilised fruit with significant antioxidant characteristics. The phyto and physicochemical properties of C. edulis berries at different stages of ripening are evaluated in this work. Total flavonoids (TF), total phenolic [...] Read more.
Wildly grown in most regions of the world, Carissa edulis is a highly underutilised fruit with significant antioxidant characteristics. The phyto and physicochemical properties of C. edulis berries at different stages of ripening are evaluated in this work. Total flavonoids (TF), total phenolic content (TPC) and antioxidant activity were determined spectrophotometrically, while concentration of polyphenols was determined using liquid chromatography coupled to diode array detection and electrospray ionization mass spectrometry. Results showed that antioxidant activity was lowest (18.36 ± 0.12 mg TE/g) in RS3 and decreased with TPC upon increased ripening. Conversely, TF increased with ripening progression with TF found to be highest in RS3 (5.92 ± 0.03 mg CE/g). Identified phenolic acids in C. edulis were quinic acid, protocatechuoyl-hexose, neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid and dicaffeoylquinic acid. Identified flavonoids included rutin, catechin, procyanidin dimer, procyanidin trimer, quercetin-3-O-glucosyl-xyloside, quercetin-3-O-robinobioside, quercetin-3-O-glucoside and quercetin-3-OH-3-methylglutaryl-glucoside. Physicochemical properties of C. edulis varied among samples with sugar/acid ratio of C. edulis ranging from 25.70 for RS1 to 50.36 for RS3. Ripening stage of C. edulis undoubtedly affects the phyto and physicochemical properties of C. edulis. Full article
Figures

Graphical abstract

Open AccessArticle
Chitosan-Based Bioactive Hemostatic Agents with Antibacterial Properties—Synthesis and Characterization
Molecules 2019, 24(14), 2629; https://doi.org/10.3390/molecules24142629 (registering DOI)
Received: 21 June 2019 / Revised: 9 July 2019 / Accepted: 11 July 2019 / Published: 19 July 2019
Viewed by 132 | PDF Full-text (5739 KB) | HTML Full-text | XML Full-text
Abstract
Massive blood loss is responsible for numerous causes of death. Hemorrhage may occur on the battlefield, at home or during surgery. Commercially available biomaterials may be insufficient to deal with excessive bleeding. Therefore novel, highly efficient hemostatic agents must be developed. The aim [...] Read more.
Massive blood loss is responsible for numerous causes of death. Hemorrhage may occur on the battlefield, at home or during surgery. Commercially available biomaterials may be insufficient to deal with excessive bleeding. Therefore novel, highly efficient hemostatic agents must be developed. The aim of the following research was to obtain a new type of biocompatible chitosan-based hemostatic agents with increased hemostatic properties. The biomaterials were obtained in a quick and efficient manner under microwave radiation using l-aspartic and l-glutamic acid as crosslinking agents with no use of acetic acid. Ready products were investigated over their chemical structure by FT-IR method which confirmed a crosslinking process through the formation of amide bonds. Their high porosity above 90% and low density (below 0.08 g/cm3) were confirmed. The aerogels were also studied over their water vapor permeability and antioxidant activity. Prepared biomaterials were biodegradable in the presence of human lysozyme. All of the samples had excellent hemostatic properties in contact with human blood due to the platelet activation confirmed by blood clotting tests. The SEM microphotographs showed the adherence of blood cells to the biomaterials’ surface. Moreover, they were biocompatible with human dermal fibroblasts (HDFs). The biomaterials also had superior antibacterial properties against both Staphylococcus aureus and Escherichia coli. The obtained results showed that proposed chitosan-based hemostatic agents have great potential as a hemostatic product and may be applied under sterile, as well as contaminated conditions, by both medicals and individuals. Full article
(This article belongs to the Special Issue Advances in Chitin and Chitosan Science)
Figures

Graphical abstract

Open AccessArticle
Intramolecular Carbene C-H Insertion Reactions of 2-Diazo-2-sulfamoylacetamides
Molecules 2019, 24(14), 2628; https://doi.org/10.3390/molecules24142628 (registering DOI)
Received: 1 July 2019 / Revised: 15 July 2019 / Accepted: 16 July 2019 / Published: 19 July 2019
Viewed by 116 | PDF Full-text (2044 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The intramolecular C-H insertions of carbenes derived from 2-diazo-2-sulfamoylacetamides were studied. 2-Diazo-2-sulfamoylacetamides were first prepared from chloroacetyl chloride and secondary amines through acylation followed by sequential treatments with sodium sulfite, phosphorus oxychloride, secondary amines, and 4-nitrobenzenesulfonyl azide. The results indicate that: (1) 2-diazo- [...] Read more.
The intramolecular C-H insertions of carbenes derived from 2-diazo-2-sulfamoylacetamides were studied. 2-Diazo-2-sulfamoylacetamides were first prepared from chloroacetyl chloride and secondary amines through acylation followed by sequential treatments with sodium sulfite, phosphorus oxychloride, secondary amines, and 4-nitrobenzenesulfonyl azide. The results indicate that: (1) 2-diazo-N,N-dimethyl-2-(N,N-diphenylsulfamoyl)acetamide can take the formal aromatic 1,5-C-H insertion in its N-phenylsulfonamide moiety to afford the corresponding 1,3-dihydrobenzo[c]isothiazole-3-carboxamide 2,2-dioxide derivative; (2) no aliphatic C-H insertions occur for 2-diazo-2-(N,N-dialkylsulfamoyl)acetamides; and (3) for 2-diazo-N-phenyl-2-(N-phenylsulfamoyl)acetamides, the formal aromatic 1,5-C-H insertion in the N-phenylacetamide moiety is favorable to afford the corresponding 3-sulfamoylindolin-2-one derivatives as sole or major products. The intramolecular competitive aromatic 1,5-C-H insertion reactions of 2-diazo-2-sulfamoylacetamides with aryl groups on both amide and sulfonamide groups reveal that the N-aryl substituents on acetamide are more active than those on sulfonamide. The chemoselectivity is controlled by electronic effect of the aryl group. Full article
(This article belongs to the collection Heterocyclic Compounds)
Figures

Graphical abstract

Open AccessArticle
Intake of Molecular Hydrogen in Drinking Water Increases Membrane Transporters, p-Glycoprotein, and Multidrug Resistance-Associated Protein 2 without Affecting Xenobiotic-Metabolizing Enzymes in Rat Liver
Molecules 2019, 24(14), 2627; https://doi.org/10.3390/molecules24142627
Received: 26 June 2019 / Revised: 16 July 2019 / Accepted: 17 July 2019 / Published: 19 July 2019
Viewed by 175 | PDF Full-text (1588 KB) | HTML Full-text | XML Full-text
Abstract
Molecular hydrogen (H2) has been shown to have antioxidant and anti-inflammatory activities that may reduce the development and progression of many diseases. In this study, hydrogen-rich water (HRW) was obtained by reacting hybrid magnesium–carbon hydrogen storage materials with water. Then, the [...] Read more.
Molecular hydrogen (H2) has been shown to have antioxidant and anti-inflammatory activities that may reduce the development and progression of many diseases. In this study, hydrogen-rich water (HRW) was obtained by reacting hybrid magnesium–carbon hydrogen storage materials with water. Then, the effects of intake of HRW on the activities of xenobiotic-metabolizing enzymes, membrane transporters, and oxidative stress in rats were investigated. Rats were given HRW ad libitum for four weeks. The results showed that intake of HRW had no significant effect on the activities of various cytochrome P450 (CYP) enzymes (CYP1A1, 1A2, 2B, 2C, 2D, 2E1, 3A, and 4A), glutathione-S-transferase, and Uridine 5′-diphospho (UDP)-glucuronosyltransferase. Except for a mild lower plasma glucose concentration, intake of HRW had no effect on other plasma biochemical parameters in rats. p-Glycoprotein and multidrug resistance-associated protein (Mrp) 2 protein expressions in liver were elevated after intake of HRW. However, HRW had no significant effects on glutathione, glutathione peroxidase, or lipid peroxidation in liver. The results from this study suggest that consumption of HRW may not affect xenobiotic metabolism or oxidative stress in liver. However, intake of HRW may increase the efflux of xenobiotics or toxic substances from the liver into bile by enhancing p-glycoprotein and Mrp2 protein expressions. Full article
(This article belongs to the Special Issue Food and Drug Analysis)
Figures

Graphical abstract

Open AccessArticle
Combination of Three Functionalized Temperature-Sensitive Chromatographic Materials for Serum Protein Analysis
Molecules 2019, 24(14), 2626; https://doi.org/10.3390/molecules24142626
Received: 29 May 2019 / Revised: 15 July 2019 / Accepted: 18 July 2019 / Published: 19 July 2019
Viewed by 141 | PDF Full-text (2826 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
We have developed a methodology to capture acidic proteins, alkaline proteins, and glycoproteins separately in mouse serum using a combination of three functionalized temperature-responsive chromatographic stationary phases. The temperature-responsive polymer poly(N-isopropylacrylamide) was attached to the stationary phase, silica. The three temperature-responsive [...] Read more.
We have developed a methodology to capture acidic proteins, alkaline proteins, and glycoproteins separately in mouse serum using a combination of three functionalized temperature-responsive chromatographic stationary phases. The temperature-responsive polymer poly(N-isopropylacrylamide) was attached to the stationary phase, silica. The three temperature-responsive chromatographic stationary phase materials were prepared by reversible addition–fragmentation chain transfer polymerization. Alkaline, acidic, and boric acid functional groups were introduced to capture acidic proteins, alkaline proteins, and glycoproteins, respectively. The protein enrichment and release properties of the materials were examined using the acidic protein, bovine serum albumin; the alkaline protein, protamine; and the glycoprotein, horseradish peroxidase. Finally, the three materials were used to analyze mouse serum. Without switching the mobile phase, the capture and separation of mouse serum was achieved by the combination of three temperature-responsive chromatographic stationary phase materials. On the whole, 313 proteins were identified successfully. The number of different proteins identified using the new method was 1.46 times greater than the number of proteins that has been identified without applying this method. To our knowledge, this method is the first combinatorial use of three functionalized temperature-responsive chromatographic stationary phase silica materials to separate proteins in mouse serum. Full article
Figures

Figure 1

Open AccessArticle
Cold-Pressing Olive Oil in the Presence of Cryomacerated Leaves of Olea or Citrus: Nutraceutical and Sensorial Features
Molecules 2019, 24(14), 2625; https://doi.org/10.3390/molecules24142625 (registering DOI)
Received: 13 May 2019 / Revised: 12 July 2019 / Accepted: 18 July 2019 / Published: 19 July 2019
Viewed by 119 | PDF Full-text (984 KB) | HTML Full-text | XML Full-text
Abstract
The nutraceutical properties of extra-virgin olive oil (EVOO) can be further improved by the addition of olive leaves during olive pressing. However, while Citrus leaves are rich sources of bioactive substances, no data are available in the literature about the effect of Citrus [...] Read more.
The nutraceutical properties of extra-virgin olive oil (EVOO) can be further improved by the addition of olive leaves during olive pressing. However, while Citrus leaves are rich sources of bioactive substances, no data are available in the literature about the effect of Citrus leaf addition on the nutraceutical and sensorial profiles of olive oil. This study aimed at comparing the chemical and sensorial qualities of olive oils obtained from ripe olives pressed together with either Olea or Citrus spp. (lemon or orange) cryomacerated leaves. General composition parameters as well as major antioxidants and antioxidant activity were measured. A panel test evaluation, as well as headspace volatile characterization (headspace solid phase microextraction, HS-SPME), were also performed. All data were compared with an EVOO extracted from the same olive batch used as control. It was possible to obtain Leaf Olive Oils (LOOs) characterized by a higher (p < 0.05) content of antioxidants, compared to the control sample, and the highest oleuropein concentration was detected in the olive oil extracted in presence of olive leaf (+50% in comparison with the control). All the LOOs showed a higher smell complexity and the scent of ripe fruit was generally mitigated. Lemon and olive LOOs showed the best smell profile. Full article
(This article belongs to the Special Issue Olive Bioactives: From Molecules to Human Health)
Figures

Graphical abstract

Open AccessArticle
Genome-Wide and Functional View of Proteolytic and Lipolytic Bacteria for Efficient Biogas Production through Enhanced Sewage Sludge Hydrolysis
Molecules 2019, 24(14), 2624; https://doi.org/10.3390/molecules24142624
Received: 27 June 2019 / Revised: 17 July 2019 / Accepted: 17 July 2019 / Published: 18 July 2019
Viewed by 177 | PDF Full-text (902 KB) | Supplementary Files
Abstract
In this study, we used a multifaceted approach to select robust bioaugmentation candidates for enhancing biogas production and to demonstrate the usefulness of a genome-centric approach for strain selection for specific bioaugmentation purposes. We also investigated the influence of the isolation source of [...] Read more.
In this study, we used a multifaceted approach to select robust bioaugmentation candidates for enhancing biogas production and to demonstrate the usefulness of a genome-centric approach for strain selection for specific bioaugmentation purposes. We also investigated the influence of the isolation source of bacterial strains on their metabolic potential and their efficiency in enhancing anaerobic digestion. Whole genome sequencing, metabolic pathway reconstruction, and physiological analyses, including phenomics, of phylogenetically diverse strains, Rummeliibacillus sp. POC4, Ochrobactrum sp. POC9 (both isolated from sewage sludge) and Brevundimonas sp. LPMIX5 (isolated from an agricultural biogas plant) showed their diverse enzymatic activities, metabolic versatility and ability to survive under varied growth conditions. All tested strains display proteolytic, lipolytic, cellulolytic, amylolytic, and xylanolytic activities and are able to utilize a wide array of single carbon and energy sources, as well as more complex industrial by-products, such as dairy waste and molasses. The specific enzymatic activity expressed by the three strains studied was related to the type of substrate present in the original isolation source. Bioaugmentation with sewage sludge isolates–POC4 and POC9–was more effective for enhancing biogas production from sewage sludge (22% and 28%, respectively) than an approach based on LPMIX5 strain (biogas production boosted by 7%) that had been isolated from an agricultural biogas plant, where other type of substrate is used. Full article
(This article belongs to the Special Issue Advances in Conversion of Biomass and Waste to Chemicals and Fuels)
Open AccessArticle
Content of Phenolic Compounds and Antioxidant Activity of New Gluten-Free Pasta with the Addition of Chestnut Flour
Molecules 2019, 24(14), 2623; https://doi.org/10.3390/molecules24142623
Received: 28 May 2019 / Revised: 17 July 2019 / Accepted: 18 July 2019 / Published: 18 July 2019
Viewed by 192 | PDF Full-text (1078 KB) | HTML Full-text | XML Full-text
Abstract
Chestnut fruit abounds in carbohydrates, proteins, unsaturated fatty acids, fiber, polyphenolic compounds, as well as vitamins and micronutrients, that are behind the health-promoting properties of this plant. The purpose of the discussed research was to obtain innovative gluten-free pasta from rice and field [...] Read more.
Chestnut fruit abounds in carbohydrates, proteins, unsaturated fatty acids, fiber, polyphenolic compounds, as well as vitamins and micronutrients, that are behind the health-promoting properties of this plant. The purpose of the discussed research was to obtain innovative gluten-free pasta from rice and field bean flour enriched with a various addition of chestnut flour. Regarding the studied pasta, the following were determined: the content of free phenolic acids, total polyphenols, and antioxidant properties. Chromatographic analysis (HPLC-ESI-MS/MS (high-performance liquid chromatography-electrospray ionization tandem mass spectrometry)) revealed a wide variety of phenolic acids. In a sample with 20% and higher content of chestnut flour, as many as 13 acids were detected. Isoferulic acid prevailed. The total content of free phenolic acids and total polyphenols increased along with the increasing chestnut content. Moreover, in most cases, the content of individual acids increased with the addition of chestnut flour. Besides, the antioxidant activity was positively correlated with the addition of chestnut fruit flour, the content of free phenolic acids, and total polyphenols. Our research has demonstrated that our innovative gluten-free pasta, with the addition of chestnut flour, has a potential to be a source of polyphenolic compounds, including free phenolic acids, that are valuable for human health. Full article
Figures

Figure 1

Open AccessArticle
Changes in Content of Polyphenols and Ascorbic Acid in Leaves of White Cabbage after Pest Infestation
Molecules 2019, 24(14), 2622; https://doi.org/10.3390/molecules24142622
Received: 1 June 2019 / Revised: 11 July 2019 / Accepted: 17 July 2019 / Published: 18 July 2019
Viewed by 173 | PDF Full-text (1169 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Crops, such as white cabbage (Brassica oleracea L. var. capitata (L.) f. alba), are often infested by herbivorous insects that consume the leaves directly or lay eggs with subsequent injury by caterpillars. The plants can produce various defensive metabolites or free [...] Read more.
Crops, such as white cabbage (Brassica oleracea L. var. capitata (L.) f. alba), are often infested by herbivorous insects that consume the leaves directly or lay eggs with subsequent injury by caterpillars. The plants can produce various defensive metabolites or free radicals that repel the insects to avert further damage. To study the production and effects of these compounds, large white cabbage butterflies, Pieris brassicae and flea beetles, Phyllotreta nemorum, were captured in a cabbage field and applied to plants cultivated in the lab. After insect infestation, leaves were collected and UV/Vis spectrophotometry and HPLC used to determine the content of stress molecules (superoxide), primary metabolites (amino acids), and secondary metabolites (phenolic acids and flavonoids). The highest level of superoxide was measured in plants exposed to fifty flea beetles. These plants also manifested a higher content of phenylalanine, a substrate for the synthesis of phenolic compounds, and in activation of total phenolics and flavonoid production. The levels of specific phenolic acids and flavonoids had higher variability when the dominant increase was in the flavonoid, quercetin. The leaves after flea beetle attack also showed an increase in ascorbic acid which is an important nutrient of cabbage. Full article
Figures

Figure 1

Open AccessArticle
Ultrasound Treatment on Stability of Total and Individual Anthocyanin Extraction from Blueberry Pomace: Optimization and Comparison
Molecules 2019, 24(14), 2621; https://doi.org/10.3390/molecules24142621
Received: 3 June 2019 / Accepted: 16 June 2019 / Published: 18 July 2019
Viewed by 164 | PDF Full-text (3194 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Blueberry pomace is abundant in anthocyanins. This work characterized the anthocyanins in blueberry pomace, discussed the stability of anthocyanins under ultrasound treatment, and compared the extraction conditions for different anthocyanin compositions. Thirteen anthocyanins were identified, and malvidin-3-galactoside (18.56%), which represented the most abundant [...] Read more.
Blueberry pomace is abundant in anthocyanins. This work characterized the anthocyanins in blueberry pomace, discussed the stability of anthocyanins under ultrasound treatment, and compared the extraction conditions for different anthocyanin compositions. Thirteen anthocyanins were identified, and malvidin-3-galactoside (18.56%), which represented the most abundant anthocyanin, was selected as the individual analyte. The general linear model univariate analysis revealed that ultrasound-assisted extraction (UAE) resulted in higher recoveries of both total anthocyanins (TA) and individual anthocyanins (IA) when compared with conventional solvent extraction. The optimized extraction conditions for TA and IA were UAE in pure methanol (12.49 mg/g dry weight) at 25 °C for 30 min and UAE in 70% ethanol (3.57 mg/g dry weight) at 40 °C for 40 min, respectively. Moreover, IA was more vulnerable to degradation compared with TA. Therefore, a specific extraction process of IA is significant for monomer preparation, and harsh conditions should be avoided in UAE. Full article
Figures

Figure 1

Open AccessArticle
Cyclization of Single-Chain Fv Antibodies Markedly Suppressed Their Characteristic Aggregation Mediated by Inter-Chain VH-VL Interactions
Molecules 2019, 24(14), 2620; https://doi.org/10.3390/molecules24142620
Received: 25 June 2019 / Revised: 16 July 2019 / Accepted: 17 July 2019 / Published: 18 July 2019
Viewed by 214 | PDF Full-text (2164 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Single-chain Fv (scFv) antibodies are recombinant proteins in which the variable regions of the heavy chain (VH) and light chain (VL) are connected by a short flexible polypeptide linker. ScFvs have the advantages of easy genetic manipulation and low-cost production using Escherichia coli [...] Read more.
Single-chain Fv (scFv) antibodies are recombinant proteins in which the variable regions of the heavy chain (VH) and light chain (VL) are connected by a short flexible polypeptide linker. ScFvs have the advantages of easy genetic manipulation and low-cost production using Escherichia coli compared with monoclonal antibodies, and are thus expected to be utilized as next-generation medical antibodies. However, the practical use of scFvs has been limited due to low homogeneity caused by their aggregation propensity mediated by inter-chain VH-VL interactions. Because the interactions between the VH and VL domains of antibodies are generally weak, individual scFvs are assumed to be in equilibrium between a closed state and an open state, in which the VH and VL domains are assembled and disassembled, respectively. This dynamic feature of scFvs triggers the formation of dimer, trimer, and larger aggregates caused by the inter-chain VH-VL interactions. To overcome this problem, the N-terminus and C-terminus were herein connected by sortase A-mediated ligation to produce a cyclic scFv. Open-closed dynamics and aggregation were markedly suppressed in the cyclic scFv, as judged from dynamic light scattering and high-speed atomic force microscopy analyses. Surface plasmon resonance and differential scanning fluorometry analysis revealed that neither the affinity for antigen nor the thermal stability was disrupted by the scFv cyclization. Generality was confirmed by applying the present method to several scFv proteins. Based on these results, cyclic scFvs are expected to be widely utilized in industrial and therapeutic applications. Full article
(This article belongs to the Special Issue Protein Domains: Structures and Molecular Functions)
Figures

Graphical abstract

Open AccessArticle
Ampelopsin E Reduces the Invasiveness of the Triple Negative Breast Cancer Cell Line, MDA-MB-231
Molecules 2019, 24(14), 2619; https://doi.org/10.3390/molecules24142619
Received: 23 May 2019 / Revised: 10 June 2019 / Accepted: 11 June 2019 / Published: 18 July 2019
Viewed by 159 | PDF Full-text (4737 KB) | HTML Full-text | XML Full-text
Abstract
Breast cancer is the most common and the second leading cause of cancer-related deaths in women. It has two distinctive hallmarks: rapid abnormal growth and the ability to invade and metastasize. During metastasis, cancer cells are thought to form actin-rich protrusions, called invadopodia, [...] Read more.
Breast cancer is the most common and the second leading cause of cancer-related deaths in women. It has two distinctive hallmarks: rapid abnormal growth and the ability to invade and metastasize. During metastasis, cancer cells are thought to form actin-rich protrusions, called invadopodia, which degrade the extracellular matrix. Current breast cancer treatments, particularly chemotherapy, comes with adverse effects like immunosuppression, resistance development and secondary tumour formation. Hence, naturally-occurring molecules claimed to be less toxic are being studied as new drug candidates. Ampelopsin E, a natural oligostilbene extracted from Dryobalanops species, has exhibited various pharmacological properties, including anticancer and anti-inflammatory activities. However, there is yet no scientific evidence of the effects of ampelopsin E towards metastasis. Scratch assay, transwell migration and invasion assays, invadopodia and gelatin degradation assays, and ELISA were used to determine the effects of ampelopsin E towards the invasiveness of MDA-MB-231 cells. Strikingly in this study, ampelopsin E was able to halt migration, transmigration and invasion in MDA-MB-231 cells by reducing formation of invadopodia and its degradation capability through significant reduction (p < 0.05) in expression levels of PDGF, MMP2, MMP9 and MMP14. In conclusion, ampelopsin E reduced the invasiveness of MDA-MB-231 cells and was proven to be a potential alternative in treating TNBC. Full article
Figures

Graphical abstract

Open AccessArticle
Detection of 13 Ginsenosides (Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, Rg3, Rh2, F1, Compound K, 20(S)-Protopanaxadiol, and 20(S)-Protopanaxatriol) in Human Plasma and Application of the Analytical Method to Human Pharmacokinetic Studies Following Two Week-Repeated Administration of Red Ginseng Extract
Molecules 2019, 24(14), 2618; https://doi.org/10.3390/molecules24142618
Received: 19 June 2019 / Revised: 10 July 2019 / Accepted: 17 July 2019 / Published: 18 July 2019
Viewed by 135 | PDF Full-text (1746 KB) | HTML Full-text | XML Full-text
Abstract
We aimed to develop a sensitive method for detecting 13 ginsenosides using liquid chromatography–tandem mass spectrometry and to apply this method to pharmacokinetic studies in human following repeated oral administration of red ginseng extract. The chromatograms of Rb1, Rb2, Rc, Rd, Re, Rf, [...] Read more.
We aimed to develop a sensitive method for detecting 13 ginsenosides using liquid chromatography–tandem mass spectrometry and to apply this method to pharmacokinetic studies in human following repeated oral administration of red ginseng extract. The chromatograms of Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, Rg3, Rh2, F1, compound K (CK), protopanaxadiol (PPD), and protopanaxatriol (PPT) in human plasma were well separated. The calibration curve range for 13 ginsenosides was 0.5–200 ng/mL and the lower limit of quantitation was 0.5 ng/mL for all ginsenosides. The inter- and intra-day accuracy, precision, and stability were less than 15%. Among the 13 ginsenosides tested, nine ginsenosides (Rb1, Rb2, Rc, Rd, Rg3, CK, Rh2, PPD, and PPT) were detected in the human plasma samples. The plasma concentrations of Rb1, Rb2, Rc, Rd, and Rg3 were correlated with the content in red ginseng extract; however, CK, Rh2, PPD, and PPT were detected although they are not present in red ginseng extract, suggesting the formation of these ginsenosides through the human metabolism. In conclusion, our analytical method could be effectively used to evaluate pharmacokinetic properties of ginsenosides, which would be useful for establishing the pharmacokinetic–pharmacodymic relationship of ginsenosides as well as ginsenoside metabolism in humans. Full article
(This article belongs to the Special Issue Method Development and Validation in Food and Pharmaceutical Analysis)
Figures

Graphical abstract

Open AccessArticle
Production of Biosurfactant Produced from Used Cooking Oil by Bacillus sp. HIP3 for Heavy Metals Removal
Molecules 2019, 24(14), 2617; https://doi.org/10.3390/molecules24142617
Received: 14 May 2019 / Revised: 13 June 2019 / Accepted: 14 June 2019 / Published: 18 July 2019
Viewed by 175 | PDF Full-text (1681 KB) | HTML Full-text | XML Full-text
Abstract
Heavy metals from industrial effluents and sewage contribute to serious water pollution in most developing countries. The constant penetration and contamination of heavy metals into natural water sources may substantially raise the chances of human exposure to these metals through ingestion, inhalation, or [...] Read more.
Heavy metals from industrial effluents and sewage contribute to serious water pollution in most developing countries. The constant penetration and contamination of heavy metals into natural water sources may substantially raise the chances of human exposure to these metals through ingestion, inhalation, or skin contact, which could lead to liver damage, cancer, and other severe conditions in the long term. Biosurfactant as an efficient biological surface-active agent may provide an alternative solution for the removal of heavy metals from industrial wastes. Biosurfactants exhibit the properties of reducing surface and interfacial tension, stabilizing emulsions, promoting foaming, high selectivity, and specific activity at extreme temperatures, pH, and salinity, and the ability to be synthesized from renewable resources. This study aimed to produce biosurfactant from renewable feedstock, which is used cooking oil (UCO), by a local isolate, namely Bacillus sp. HIP3 for heavy metals removal. Bacillus sp. HIP3 is a Gram-positive isolate that gave the highest oil displacement area with the lowest surface tension, of 38 mN/m, after 7 days of culturing in mineral salt medium and 2% (v/v) UCO at a temperature of 30 °C and under agitation at 200 rpm. An extraction method, using chloroform:methanol (2:1) as the solvents, gave the highest biosurfactant yield, which was 9.5 g/L. High performance liquid chromatography (HPLC) analysis confirmed that the biosurfactant produced by Bacillus sp. HIP3 consists of a lipopeptide similar to standard surfactin. The biosurfactant was capable of removing 13.57%, 12.71%, 2.91%, 1.68%, and 0.7% of copper, lead, zinc, chromium, and cadmium, respectively, from artificially contaminated water, highlighting its potential for bioremediation. Full article
(This article belongs to the Special Issue Heavy Metals Removal from Contaminated Soil and Water)
Figures

Graphical abstract

Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top