Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (359)

Search Parameters:
Keywords = vertical deflections

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1979 KB  
Article
Determination of the Centre of Gravity of Electric Vehicles Using a Static Axle-Load Method
by Balázs Baráth and Dávid Józsa
Future Transp. 2026, 6(1), 22; https://doi.org/10.3390/futuretransp6010022 - 18 Jan 2026
Viewed by 49
Abstract
Accurate determination of a vehicle’s centre of gravity (CoG) is fundamental to driving dynamics, safety, and engineering design. However, existing static CoG estimation methods often neglect tyre deflection and detailed wheel geometry, which can introduce significant errors, particularly in electric vehicles, where the [...] Read more.
Accurate determination of a vehicle’s centre of gravity (CoG) is fundamental to driving dynamics, safety, and engineering design. However, existing static CoG estimation methods often neglect tyre deflection and detailed wheel geometry, which can introduce significant errors, particularly in electric vehicles, where the low and concentrated mass of the battery pack increases the sensitivity of vertical CoG calculations. This study presents a refined static axle-load-based method for electric vehicles, in which the influence of tyre deformation and lifting height on the accuracy of the vertical centre of gravity coordinate is explicitly considered and quantitatively justified. To minimise human error and accelerate the evaluation process, a custom-developed Python (Python 3.13.2.) software tool automates all calculations, provides an intuitive graphical interface, and generates visual representations of the resulting CoG position. The methodology was validated on a Volkswagen e-Golf, demonstrating that the proposed approach provides reliable and repeatable results. Due to its accuracy, reduced measurement complexity, and minimal equipment requirements, the method is suitable for design, educational, and diagnostic applications. Moreover, it enables faster and more precise preparation of vehicle dynamics tests, such as rollover assessments, by ensuring that sensor placement does not interfere with vehicle behaviour. Full article
(This article belongs to the Special Issue Future of Vehicles (FoV2025))
Show Figures

Figure 1

21 pages, 4867 KB  
Article
Variable Impedance Control for Active Suspension of Off-Road Vehicles on Deformable Terrain Considering Soil Sinkage
by Jiaqi Zhao, Mingxin Liu, Xulong Jin, Youlong Du and Ye Zhuang
Vibration 2026, 9(1), 6; https://doi.org/10.3390/vibration9010006 - 14 Jan 2026
Viewed by 128
Abstract
Off-road vehicle control designs often neglect the complex tire–soil interactions inherent to soft terrain. This paper proposes a Variable Impedance Control (VIC) strategy integrated with a high-fidelity terramechanics model. First, a real-time sinkage estimation algorithm is derived using experimentally identified Bekker parameters and [...] Read more.
Off-road vehicle control designs often neglect the complex tire–soil interactions inherent to soft terrain. This paper proposes a Variable Impedance Control (VIC) strategy integrated with a high-fidelity terramechanics model. First, a real-time sinkage estimation algorithm is derived using experimentally identified Bekker parameters and the quasi-rigid wheel assumption to capture the nonlinear feedback between soil deformation and vehicle dynamics. Building on this, the VIC strategy adaptively regulates virtual stiffness, damping, and inertia parameters based on real-time suspension states. Comparative simulations on an ISO Class-C soft soil profile demonstrate that this framework effectively balances ride comfort and safety constraints. Specifically, the VIC strategy reduces the root-mean-square of vertical body acceleration by 46.9% compared to the passive baseline, significantly outperforming the Linear Quadratic Regulator (LQR). Furthermore, it achieves a 48.6% reduction in average power relative to LQR while maintaining suspension deflection strictly within the safe range. Moreover, unlike LQR, the VIC strategy improves tire deflection performance, ensuring superior ground adhesion. These results validate the method’s robustness and energy efficiency for off-road applications. Full article
Show Figures

Graphical abstract

32 pages, 6741 KB  
Article
Coupled ALE–Lagrangian Analysis of Pavement Damage Induced by Buried Natural Gas Pipeline Explosions
by Lijun Li, Jianying Chen, Jiguan Liang and Zhengshou Lai
Infrastructures 2026, 11(1), 10; https://doi.org/10.3390/infrastructures11010010 - 24 Dec 2025
Viewed by 236
Abstract
This study numerically investigates pavement damage caused by explosions in buried leaking natural gas pipelines using a coupled Lagrangian–Eulerian (CLE) framework in LS-DYNA. The gas phase is described by a Jones–Wilkins–Lee-based equation of state, while soil and pavement are modeled using a pressure-dependent [...] Read more.
This study numerically investigates pavement damage caused by explosions in buried leaking natural gas pipelines using a coupled Lagrangian–Eulerian (CLE) framework in LS-DYNA. The gas phase is described by a Jones–Wilkins–Lee-based equation of state, while soil and pavement are modeled using a pressure-dependent soil model and the Riedel–Hiermaier–Thoma concrete model with strain-based erosion, respectively. The approach is validated against benchmark underground explosion tests in sand and blast tests on reinforced concrete slabs, demonstrating accurate prediction of pressure histories, ejecta evolution, and crater or damage patterns. Parametric analyses are then conducted for different leaked gas masses and pipeline burial depths to quantify shock transmission, soil heave, pavement deflection, and damage evolution. The results indicate that the dynamic response of the pavement structure is most pronounced directly above the detonation point and intensifies significantly with increasing total leaked gas mass. For a total leaked gas mass of 36 kg, the maximum vertical deflection, the peak kinetic energy, and the peak pressure at the bottom interface at this location reach 148.46 mm, 14.64 kJ, and 10.82 MPa, respectively. Moreover, a deflection-based index is introduced to classify pavement response into slight (<20 mm), moderate (20–40 mm), severe (40–80 mm), and collapse (>80 mm) states, and empirical curves are derived to predict damage level from leakage mass and burial depth. Finally, the effectiveness of carbon fiber reinforced polymer (CFRP) strengthening schemes is assessed, showing that top and bottom surface reinforcement with a total CFRP thickness of 2.67 mm could reduce vertical deflection by up to 37.93% and significantly mitigates longitudinal cracking. The results provide a rational basis for safety assessment and blast resistant design of pavement structures above buried gas pipelines. Full article
(This article belongs to the Section Infrastructures and Structural Engineering)
Show Figures

Figure 1

20 pages, 5306 KB  
Article
Influence of Training–Testing Data Variation on ML-Based Deflection Prediction of GFRP-Reinforced High-Strength Concrete Beams
by Muhammet Karabulut
Polymers 2026, 18(1), 55; https://doi.org/10.3390/polym18010055 - 24 Dec 2025
Viewed by 343
Abstract
Glass Fiber Reinforced Polymer (GFRP)-reinforced concrete beams have gained significant prominence in structural engineering due to their advantageous mechanical and durability characteristics. However, the influence of training–testing data partitioning on machine learning (ML)-based deflection prediction for such members remains insufficiently explored. This study [...] Read more.
Glass Fiber Reinforced Polymer (GFRP)-reinforced concrete beams have gained significant prominence in structural engineering due to their advantageous mechanical and durability characteristics. However, the influence of training–testing data partitioning on machine learning (ML)-based deflection prediction for such members remains insufficiently explored. This study addresses this gap by evaluating the predictive performance of the K-Nearest Neighbors (KNN) regression algorithm in estimating the load–deflection behavior of GFRP-reinforced high-strength concrete beams. The experimental program comprised nine beams manufactured with concrete strength classes C45, C50, and C65, followed by ML-based deflection analyses using multiple data-splitting strategies. Findings indicate that the KNN model employing an 80:20 training–testing ratio provides the most accurate deflection predictions, achieving approximately 80% agreement with experimental results, while a higher prediction accuracy of approximately 85% was observed for beams with the highest concrete compressive strength (C65). Experimentally recorded deflections ranged from approximately 20 mm to values exceeding 50 mm, depending on the concrete strength class and loading level. Owing to its superior performance, the KNN model with an 80:20 training–testing ratio is recommended for predicting the deflection capacities of GFRP-reinforced high-strength concrete members. The study further examined the structural response associated with the use of GFRP as longitudinal tensile reinforcement. A consistent failure mechanism was observed across all beams, characterized by the formation of a single, wide vertical crack initiating at the beam’s soffit, regardless of concrete strength class. These observations contribute to a deeper understanding of the flexural behavior and fracture characteristics of GFRP-reinforced high-strength concrete beams and provide a foundation for future modeling efforts. Full article
Show Figures

Figure 1

19 pages, 3290 KB  
Article
Magnetically Sculpted Microfluidics for Continuous-Flow Fractionation of Cell Populations by EpCAM Expression Level
by Zhenwei Liang, Xiaolei Guo, Xuanhe Zhang, Yiqing Chen, Chuan Du, Yuan Ma and Jiadao Wang
Micromachines 2026, 17(1), 9; https://doi.org/10.3390/mi17010009 - 22 Dec 2025
Viewed by 299
Abstract
Continuous-flow separation of magnetically labeled cells according to surface-marker expression levels is increasingly needed to study phenotypic heterogeneity and support downstream assays. Here, we present a microfluidic platform that uses spatially engineered soft magnetic strips (SMS) to sculpt lateral magnetic deflection fields for [...] Read more.
Continuous-flow separation of magnetically labeled cells according to surface-marker expression levels is increasingly needed to study phenotypic heterogeneity and support downstream assays. Here, we present a microfluidic platform that uses spatially engineered soft magnetic strips (SMS) to sculpt lateral magnetic deflection fields for quantitative, label-guided cell fractionation. Under a uniform bias field, the SMS generates controllable magnetic gradients within the microchannel, producing distinct lateral velocities among EpCAM-labeled tumor cells that carry different Dynabead loads, which indirectly report membrane protein expression. Multi-outlet collection converts these “race-based” trajectory differences into discrete expression-level-resolved fractions. A COMSOL–MATLAB framework and a force-equivalent metric |(H·∇)H| are used to optimize key structural parameters of the magnetic interface, including strip thickness, width, and vertical spacing from the flow channel. Three journey nodes at 1.5, 3, and 9 mm along the flow path define a three-stage cascade that partitions MDA-MB-231, Caco-2, and A549 cells into four EpCAM-related magnetic subgroups: high (H), medium (M), low (L), and near-negative (N). Experiments show that the sorted fractions follow the expected expression trends reported in the literature, while maintaining high cell recovery (>90%) and viability retention of 98.2 ± 1.3%, indicating compatibility with downstream whole-blood assays and culture. Rather than introducing a new biomarker, this work establishes a quantitative magnetic-field design strategy for continuous microfluidic sorting, in which the spatial configuration of soft magnetic elements is exploited to implement expression-level-dependent fractionation in next-generation magneto-fluidic separation systems. Full article
(This article belongs to the Special Issue Microfluidic Chips for Biomedical Applications)
Show Figures

Figure 1

19 pages, 7019 KB  
Article
Multiparametric Cost–CO2 Optimization of Bored Reinforced-Concrete Piles Under Combined Loading in Cohesive Soils
by Primož Jelušič
Buildings 2025, 15(24), 4519; https://doi.org/10.3390/buildings15244519 - 14 Dec 2025
Viewed by 288
Abstract
Laterally loaded slender piles present a classic soil–structure interaction problem where pile displacements and flexural demands are governed by the mobilized lateral resistance of the surrounding soil and the axial-bending capacity of the reinforced concrete section. In response to increasing pressure to reduce [...] Read more.
Laterally loaded slender piles present a classic soil–structure interaction problem where pile displacements and flexural demands are governed by the mobilized lateral resistance of the surrounding soil and the axial-bending capacity of the reinforced concrete section. In response to increasing pressure to reduce embodied emissions, this study develops LAVERCO, an optimization framework for cost- and CO2-efficient design of bored reinforced-concrete piles in cohesive soils subjected to combined lateral and axial actions. The framework integrates Eurocode-based geotechnical checks with full NM section verification of the RC pile and applies a genetic algorithm over a multi-parametric grid of lateral load, vertical load, and undrained shear strength, using economic cost and embodied CO2 as alternative single objectives. Rank-based (Spearman) sensitivity analysis quantifies how actions, soil strength, and design variables influence the optimal solutions. The results reveal two consistent geometry regimes: CO2-optimal piles are systematically longer and slimmer, while COST-optimal piles are shorter and thicker. In both cases, the objective is dominated by pile length and is reduced by higher undrained shear strength; vertical load has a moderate direct effect, while horizontal load contributes mainly through deflection and bending checks. Feasibility improves significantly in stronger clays, and CO2-optimal geometries generally incur higher costs, clarifying the trade-off between economic and environmental performance. The framework provides explicit geometry-level guidance for selecting bored pile designs that balance cost and embodied CO2 across a wide range of soil and loading conditions and can be directly applied in both preliminary and detailed designs. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

26 pages, 6020 KB  
Article
Numerical Investigation of Maneuvering Characteristics for a Submarine Under Horizontal Stern Plane Deflection in Vertical Plane Straight-Line Motion
by Binbin Zou, Yingfei Zan, Ruinan Guo, Shuaihang Wang, Zhenzhong Jin and Qiang Xu
J. Mar. Sci. Eng. 2025, 13(12), 2371; https://doi.org/10.3390/jmse13122371 - 14 Dec 2025
Viewed by 357
Abstract
The maneuverability of a submarine in the vertical plane is a key indicator of navigation safety. However, existing studies typically evaluate maneuvering performance based on hydrodynamic coefficients, often neglecting the flow-field evolution induced by different steering strategies. In this study, a high-fidelity numerical [...] Read more.
The maneuverability of a submarine in the vertical plane is a key indicator of navigation safety. However, existing studies typically evaluate maneuvering performance based on hydrodynamic coefficients, often neglecting the flow-field evolution induced by different steering strategies. In this study, a high-fidelity numerical model for the vertical-plane motion of the DARPA SUBOFF submarine is established using the Reynolds-Averaged Navier–Stokes (RANS) method and validated against benchmark data. Unlike traditional analyses that employ a fixed rudder angle, this work systematically compares three steering strategies with continuously varying rudder angles—trapezoidal, step, and linear steering—examining their motion responses, hydrodynamic performance, and unsteady flow-field evolution. The results show that, although step steering produces the fastest response with the strongest transient characteristics, it also triggers pronounced flow separation and significant unsteady effects. Linear steering yields a smoother but the weakest motion response, with reduced rudder effectiveness and a noticeable lag effect. In contrast, trapezoidal steering maintains a stable flow field around the submarine, with uniformly concentrated vorticity distribution, ensuring smooth and safe motion and achieving a favorable balance between response speed and flow stability. The findings provide theoretical reference for research on submarine vertical-plane steering motion, rudder-angle control, and flow-field stability. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 4457 KB  
Article
Structural Response and In-Service Deflection of Hollow Beams Constructed with Recycled TetraPak (Thermo-Stiffened Polymeric Aluminum Composite)
by Federico Nuñez-Moreno, Sebastián Aristizábal-Vargas, Heriberto Parada-Sanchez, Yezid A. Alvarado and Camilo Gutiérrez-Quintero
Sustainability 2025, 17(24), 11084; https://doi.org/10.3390/su172411084 - 11 Dec 2025
Viewed by 327
Abstract
This study evaluates the use of recycled materials in producing hollow section structural beams (HSSBs) from agglomerated sheets of thermo-stiffened polymeric aluminum (TSPA) derived from post-consumer Tetra Pak® containers. A novel geometric configuration for the TSPA beam assembly is proposed to reduce [...] Read more.
This study evaluates the use of recycled materials in producing hollow section structural beams (HSSBs) from agglomerated sheets of thermo-stiffened polymeric aluminum (TSPA) derived from post-consumer Tetra Pak® containers. A novel geometric configuration for the TSPA beam assembly is proposed to reduce the deflections observed in the original Casa Eco Sísmica (CES) project. A combined numerical and statistical approach, incorporating Monte Carlo simulations and finite element method (FEM) models, was employed to assess different assembly alternatives and identify the configuration with the lowest deflection, while maintaining values below the L/78 limit. Experimental tests, were performed to compare the proposed configuration with the existing CES beams. Results show that the new configuration reduces deflections by 61% and increases vertical load capacity by 287% compared to the original beams. These findings highlight the critical influence of assembly methods on the structural performance of TSPA beams. The original configuration exhibited deficiencies in deflection and load-bearing capacity due to its construction method, whereas the new assembly efficiently exploits the mechanical properties of the TSPA material. Full article
Show Figures

Figure 1

19 pages, 6907 KB  
Article
Optimal Static Performance Analysis of Large-Span Space Aluminum String-Beam Structures
by Nan Wang, Kai Xiao, Jiale Li, Wenhao Mi and Cun Hui
Buildings 2025, 15(24), 4443; https://doi.org/10.3390/buildings15244443 - 9 Dec 2025
Viewed by 218
Abstract
Aluminum alloys offer advantages such as lightweight properties, high strength, and excellent corrosion resistance. To expand their application in long-span spatial structures, prestressed cables have been introduced into aluminum alloy structural systems, forming a new type of string-beam structure. To further investigate the [...] Read more.
Aluminum alloys offer advantages such as lightweight properties, high strength, and excellent corrosion resistance. To expand their application in long-span spatial structures, prestressed cables have been introduced into aluminum alloy structural systems, forming a new type of string-beam structure. To further investigate the static performance of aluminum alloy string-beam structures, a static analysis was conducted based on the greenhouse project for the archaeological site of the Qin Eastern Mausoleum. This analysis examined the structural response under various load combinations, as well as the effects of the number of struts, cross-sectional area of the cables, prestress level in the cables, and the sag-to-span ratio of the cables. The results indicate that the incorporation of prestressed cables significantly enhances the static performance of aluminum alloy string-beam structures. Under the most critical load combination, the maximum stress observed was 189.45 MPa, and the maximum vertical displacement was 137.31 mm, both of which comply with design specifications. The structure was found to be most sensitive to temperature load. From the perspectives of structural performance and construction economy, setting the number of struts between five and seven is optimal. Increasing the cross-sectional area of the cables effectively reduces structural deflection but leads to an increase in internal stress. Similarly, increasing the prestress level effectively reduces structural displacement. The sag-to-span ratio of the cables has the most pronounced effect on structural stiffness: when the ratio increases from 0.025 to 0.065, the mid-span displacement increases by 33.51%. These findings demonstrate that aluminum alloy beam-string structures are suitable for long-span spatial structures. Full article
Show Figures

Figure 1

23 pages, 6053 KB  
Article
Experimental Identification of Waves Generated by Ribbon-Type Pontoon Bridge and Their Effect on Its Maximum Draught
by Marcin Dejewski, Tomasz Muszyński, Lucjan Śnieżek and Mirosław Przybysz
Appl. Sci. 2025, 15(23), 12846; https://doi.org/10.3390/app152312846 - 4 Dec 2025
Viewed by 285
Abstract
The paper presents the model, methodology and results of experimental research focused on identification of the wave form generated during the crossing of 30-ton and 60-ton vehicles on a ribbon-type pontoon bridge and the analysis of its influence on the characteristics of the [...] Read more.
The paper presents the model, methodology and results of experimental research focused on identification of the wave form generated during the crossing of 30-ton and 60-ton vehicles on a ribbon-type pontoon bridge and the analysis of its influence on the characteristics of the maximum draught. A review of the literature revealed that ribbon-type pontoon bridges are subject to significant vertical deflection. This results from the need to generate sufficient buoyant force to balance the weight of crossing vehicles. The area of maximum draught occurs directly beneath the vehicle and moves along with it, generating a front wave—referred to as a bow wave—which propagates along the crossing and alters the local draught of individual pontoons. Due to the fact that pontoon bridges transfer loads through buoyancy force, a key issue in the process of their design is the precise knowledge of the formation of the volume of the droughted part. No information was found in any publication about the influence of the front wave on the draught form of a ribbon-type pontoon bridge. Their authors do not indicate that the analytical or simulation models they use reflect this phenomenon. Equally, the analysis of the methodologies and results of experimental studies in this area did not show that any attempts were made to identify the form of the front wave. The paper presents the results of measurements of vertical displacements of individual pontoon blocks of the crossing and the characteristics of the front wave occurring during the passing of 30- and 60-ton vehicles with speeds ranging from 7.4 to 30 km/h. Based on the obtained data, an attempt was made to identify the phenomenon of undulation of the surface of the water obstacle and its impact on the loads on the bridge structure. The results allow for identifying a significant front wave with a wavelength of 30–50 m, appearing clearly at speeds above 21 km/h. This wave substantially affects the draught measurement—at a speed of 25 km/h, the maximum draught increased by approximately 30%. Statistical analysis confirmed the significance of this effect (p < 0.05), indicating that wave formation must be considered for accurate determination of pontoon block draught. Furthermore, the mass of the vehicle had a strong influence on the wave and draught parameters—the 60-ton vehicle produced wave troughs and draught depths 55–65% greater than those of the 30-ton vehicle. Full article
(This article belongs to the Topic Hydraulic Engineering and Modelling)
Show Figures

Figure 1

21 pages, 5653 KB  
Article
A Deep Learning Framework for Real-Time Prediction of Thermal and Structural Responses in Car Park Fires
by Xiqiang Wu, Yuanpeng Gao, Wen Xiong and Chunsheng Cai
Fire 2025, 8(12), 470; https://doi.org/10.3390/fire8120470 - 2 Dec 2025
Viewed by 808
Abstract
Car parks are a vital component of infrastructure in modern cities. However, fire in car park buildings may lead to significant structural damage and casualties, highlighting the urgent need for fast forecasting methods. Traditional simulation methods are computationally prohibitive for immediate decision-making during [...] Read more.
Car parks are a vital component of infrastructure in modern cities. However, fire in car park buildings may lead to significant structural damage and casualties, highlighting the urgent need for fast forecasting methods. Traditional simulation methods are computationally prohibitive for immediate decision-making during a fire incident. This study develops a unified deep learning architecture for a real-time prediction of both the temperature distribution and structural response in car park fires. A numerical database was established using FDS and Abaqus, considering key variables including fire size, fire location and load level. A deep learning model based on the convolutional neural network and long short-term memory networks was proposed. The model takes a 10 s history of gas temperatures from ceiling sensors and the applied load level as input to give predictions on the spatial temperature distribution at a 2 m height 3 min into the future and the vertical deflection of the slab edge for up to 5 h after fire ignition. The model achieved high accuracy, with R2 values of 92% for temperature prediction and 95% for deflection prediction. This study provides a new approach for real-time fire and structural safety early warning. Full article
(This article belongs to the Special Issue Fire Risk Management and Emergency Prevention)
Show Figures

Figure 1

18 pages, 4748 KB  
Article
Effects of Inflow Deflection Angle on the Stall Formation Mechanism and Flow Field Structure in a Vertical Axial-Flow Pump
by Fan Meng, Qixiang Hu, Jinhe Liu, Yanjun Li, Guangjian Zhang and Jiaxing Lu
Machines 2025, 13(11), 1054; https://doi.org/10.3390/machines13111054 - 14 Nov 2025
Cited by 1 | Viewed by 381
Abstract
The influence of inflow angle on the stall characteristics of a vertical axial flow pump is investigated numerically by solving the unsteady Reynolds-averaged Navier–Stokes equations. The study predicts both performance parameters and internal flow structures under varying inflow conditions. It is found that [...] Read more.
The influence of inflow angle on the stall characteristics of a vertical axial flow pump is investigated numerically by solving the unsteady Reynolds-averaged Navier–Stokes equations. The study predicts both performance parameters and internal flow structures under varying inflow conditions. It is found that as the deflection angle decreases, both the critical and deep stall points shift toward higher flow rates. For the −30° scheme, the design efficiency and design head decrease by 16.27% and increase by 19.59%, respectively, compared to the 0° scheme. As stall develops, an axisymmetric blockage region forms at the impeller inlet, which reduces axial velocity and increases the impeller’s angle of attack. Under design conditions, a smaller deflection angle exacerbates boundary layer separation near the blade leading edge, thereby weakening the local work capacity and intensifying turbulent dissipation. Furthermore, although a reduced deflection angle promotes an earlier onset of stall, it also leads to a decrease in the instability intensity of the stall flow field. These results reveal a critical trade-off: while a smaller deflection angle promotes an earlier stall onset, it effectively mitigates the intensity of stall instability, providing crucial guidance for optimizing the hydraulic design and operational stability of vertical axial flow pumps. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

15 pages, 3391 KB  
Article
Influence of Timber-to-Concrete Connection Types on the Behaviour of Timber–Concrete Composite Structures
by Dmitrijs Serdjuks, Agris Rogainis, Elza Briuka, Janis Sliseris, Leonids Pakrastins and Vjaceslavs Lapkovskis
J. Compos. Sci. 2025, 9(11), 593; https://doi.org/10.3390/jcs9110593 - 2 Nov 2025
Viewed by 1033
Abstract
The current study investigates the influence of timber-to-concrete connection types on the behaviour of timber–concrete composite (TCC) structures employing metal web timber joists. Two groups of laboratory specimens were prepared, each comprising four samples with push-joisted beams joined by oriented strand board (OSB) [...] Read more.
The current study investigates the influence of timber-to-concrete connection types on the behaviour of timber–concrete composite (TCC) structures employing metal web timber joists. Two groups of laboratory specimens were prepared, each comprising four samples with push-joisted beams joined by oriented strand board (OSB) and cast with a concrete layer. One group utilised compliant timber-to-concrete connections via perforated steel tape angles, while the other employed rigid connections through epoxy adhesive and granite chips. The specimens, consisting of two 1390 mm long beams of grade PS10 timber, were tested under three-point bending. Experimental results and finite element analyses demonstrated that specimens with compliant connections exhibited 14–16% greater maximum vertical displacements but only a marginal 1.79% reduction in load-carrying capacity compared to those with rigid connections. Findings indicate that connection compliance markedly affects stiffness and deflection but has a minor impact on ultimate strength. These insights can guide optimisation of TCC members with metal web joists, balancing structural performance and design requirements in sustainable timber construction. Full article
(This article belongs to the Special Issue Functional Composites: Fabrication, Properties and Applications)
Show Figures

Figure 1

24 pages, 17148 KB  
Article
Plume Deflection Mechanism in Supersonic Rectangular Jet with Aft-Deck
by Ibraheem AlQadi
Aerospace 2025, 12(11), 974; https://doi.org/10.3390/aerospace12110974 - 30 Oct 2025
Viewed by 461
Abstract
This study investigates jet plume deflection in underexpanded supersonic rectangular nozzles with aft-decks. To determine the underlying mechanism, 117 two-dimensional, Reynolds-averaged Navier–Stokes simulations were performed across a nozzle pressure ratio (NPR) range of 1.9NPR5.0 and aft-deck length ( [...] Read more.
This study investigates jet plume deflection in underexpanded supersonic rectangular nozzles with aft-decks. To determine the underlying mechanism, 117 two-dimensional, Reynolds-averaged Navier–Stokes simulations were performed across a nozzle pressure ratio (NPR) range of 1.9NPR5.0 and aft-deck length (Laft/Dh) range of 1.36Laft/Dh3.37. For each simulation, the first shock reflection S1, the wall-pressure field, the vertical force Fy, and the presence of any separation bubble were recorded to characterize the relationships among NPR, Laft, and θ. Accordingly, a cause-and-effect path was delineated as (NPR,Laft)S1Fyθ. A weighted regression captured 96% of the variance in the deflection angle and revealed that shifts in shock position set the wall-pressure imbalance. The imbalance fixes the vertical force and the force ultimately rotates the jet plume. Downward deflection arises when the shock reflects near the deck edge, whereas upstream reflection initiates a shock–boundary-layer interaction that forms a separation bubble and drives the jet plume upward. Between these extremes, a narrow operating band allows either outcome, explaining the divergent trends reported in prior work. The quantitative model assumes steady, two-dimensional flow and the regression prioritises illuminating the underlying physics over exact prediction of θ. Nevertheless, under these assumptions, the analysis establishes a physics-based framework that reconciles earlier observations and offers a basis for understanding how nozzle pressure ratio and aft-deck length govern jet plume deflection. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

19 pages, 5947 KB  
Article
Design and Experiments of Directional Core Drilling Tool
by Yingli Wang, Xiaoyang Li, Yinlong Ma, Shanshan Shi, Qingquan Zhou, Jiabao Chou and Junda Chen
Appl. Sci. 2025, 15(21), 11612; https://doi.org/10.3390/app152111612 - 30 Oct 2025
Viewed by 639
Abstract
In the coring process of ocean drilling, conventional vertical holes face many difficulties, such as the high cost of single holes and limited acquisition of geological information, which cannot meet the demand for fine delineation of strata around drill holes. For this reason, [...] Read more.
In the coring process of ocean drilling, conventional vertical holes face many difficulties, such as the high cost of single holes and limited acquisition of geological information, which cannot meet the demand for fine delineation of strata around drill holes. For this reason, based on wire-line coring and directional drilling technology, a continuous core tool for directional drilling has been designed, which can efficiently and accurately obtain cores in seabed strata and improve perceptions of target geological bodies. In this paper, the structure and working principle of a directional coring drilling tool (DCDT) were introduced in detail, and the ultimate deflecting capacity of a hollow single bend sub (HSBS) and the power demand of a positive displacement motor (PDM) were calculated. Then, an experiment platform was established to test the performance of the DCDT prototype. The test results showed that a total core length of 5.15 m was obtained among hybrid drilling processes, and the maximum core recovery rate was 91.67%. In slide drilling processes, the core recovery rate was only 55–60%, and the calculated build-up rate reached 7.5°/30 m. Through simulation and experiments, the key components of DCDTs were verified. This research will promote the optimization of DCDTs and accelerate engineering applications. Full article
(This article belongs to the Special Issue Mechanical Engineering Reliability Optimization Design)
Show Figures

Figure 1

Back to TopTop